
Information Discovery, Extraction and Integration
for the Hidden Web

Jiying Wang

Department of Computer Science
University of Science and Technology

Clear Water Bay, Kowloon
Hong Kong

cswangjy@cs.ust.hk

Abstract

In this paper, we report our initial investigations
on the problems of automatically extracting data
objects from a given hidden-web source (i.e., the
web site with an HTML search form) and
automatically assigning semantics to the
extracted data. We also propose some future
work to address the problem of information
discovery and integration for hidden-web sources.

1. Introduction

Currently, there exist a number of standard tools, such as
search engines and hierarchical indices that can help
people in finding information. However, a large number
of the web pages returned by filling in search forms are
not indexable to most search engines since they are
dynamically generated by querying a back-end (relational
or object-relational) database. Unlike text documents, the
dynamically generated web pages usually contain
complex data objects with nested structures. Referred to
as the Deep Web [1] or Hidden Web [5], the set of such
pages is estimated to be around 500 times the size of the
“surface web”. Besides the larger volume than the surface
web, the deep web also has a higher quality and a faster
growth rate [1].

Consider, for example, a user who wants to search for
some information, such as configuration and price of a
notebook computer, before he/she shops on the Web.
Since such information only exists in the back-end
databases of notebook vendors, the user first needs to
discover the URLs of several notebook vendors, go to the
homepages of the vendors, send queries through HTML
forms, extract the relevant information from the result
web pages, and finally compare or integrate the results
from multiple sources. Therefore, there arises the need for
new information services that can help users locate
information in the hidden web, i.e., to discover the
promising information sources, disseminate the queries,

extract the corresponding results from web pages and
integrate the retrieved information.

To minimize user effort in such an information
retrieval process and enable the tools to scale with the
growth of the web, we explore the problem of
automatically interacting with information sources in the
hidden web. This problem has four aspects:
• Information discovery: How to automatically locate

the web sites containing structured data of interest to
the user?

• Information extraction: How to induce wrappers to
extract relevant data objects from discovered web
sources?

• Information understanding: Having extracted data
objects with complex structures, how to automatically
or semi-automatically annotate or label the fields of
the extracted data?

• Information integration: How to integrate the
various data objects from multiple sources with or
without knowing their schemas?
In this paper, we concentrate our investigation of these

four aspects on some specific web sites, referred to as
webbases, which provide a complex HTML search form
for users to query the back-end databases. Webbases
usually employ templates (script programs) to generate
query result pages carrying multiple instances of data
objects, and those data objects usually follow a particular
alignment and format.

For webbases, some of these four aspects have been
studied for years while some of them have not even been
touched. Information discovery tools, such as crawlers
and spiders for general search engines, nowadays mainly
focus on searching for web pages that are indexable by
words or terms. The data objects contained in webbases
have been ignored until the concept of the “hidden” web
arose. Recently some companies provide directories for
categorizing webbases, but they mainly depend on
expertise judgment. How to automatically locate a

“suitable” webbase for users to query is still an open
question.

For some given web pages containing regular
structured data objects, information extraction tools are
designed to induce wrappers from the pages. Previous
approaches on wrapper construction either are hand-
tailored for each source or need good examples for them
to learn. Currently, work on the fully automatic wrapper
induction problem is still in a nascent stage ([2], [3] and
[4]).

After extracting data objects from webbases, although
understanding the semantic meaning of the data attributes
is very critical for latter data manipulation such as
querying and reporting, the information understanding
problem still waits for a good solution.

Among these four aspects, information integration is
the one that has been examined the longest and there exist
many good algorithms (see [5] and [9] for surveys).
However, most of the existing approaches make the
assumption that the schemas of multiple sources are
known in advance, which is not a realistic assumption for
the case of webbases. The possibility of integrating web
data with partial schemas or no schema information at all
is interesting and worth investigation.

In this paper, we report in section 2 our initial
investigations on two of these aspects: the problem of
automatically extracting data objects from a given
webbase and the problem of automatically assigning
semantics to the extracted data ([10], [11] and [12]).
Furthermore, we propose some future work in section 3 to
address the remaining two questions: information
discovery and integration.

2. Data Extraction and Label Assignment

Given a web site with an HTML search form, we design a
system DeLa (Data Extraction and Label Assignment).
DeLa is built to automatically induce a regular expression
wrapper from the result pages of a given webbase, and
also to automatically extract data objects using the
induced wrapper and assign semantic labels to the data
attributes. In this section, we first present the employed
data model and then introduce the system architecture for
DeLa. We use a simple example to illustrate how the four
components of the system work.

2.1 Data model

In this paper, we employ the nested type as an abstraction
to model the data objects contained in result pages
returned by webbases. For example, the top figure in
Figure 1 shows a web page of an online bookstore with a
search form in its left side for users to query its back-end
database of books. If we type a word, such as “Harry
Potter”, in the textbox with label “Title”, we get a result
page, shown in the bottom figure of Figure 1, containing
four book objects with “Harry Potter” appearing in their
title. In this page, each book has a book title, zero or one

author and one or more edition information, e.g., the first
book has no author and the third book with the title “A
Guide to the Harry Potter Novels” has two editions, a
“hardcover” in “Apr, 2002” and a “paperback” in “Apr,
2002”. Therefore, we can model the book object
contained in this page as the following nested type: Book
< Title, (Author < Name >)?, {BookEdition < Format,
Publish Date, Publisher >} >, where the symbols < >
represent an unordered list tuple, the symbols { }
represent a set and the symbol ? represents an optional
attribute.

Figure 1. An example web site with an HTML search
form and an example result page.

We consider the data objects contained in web pages
as string instances of the implied nested type of its back-

end database, where these instances are encoded in
HTML tags. Thus, a regular expression can be employed
to model the HTML-encoded version of the nested type.
In Figure 2 we show the HTML code for the first book
and the third book contained in the web page in Figure 1
and the corresponding regular expression wrapper to
extract book instances from the page. After we extract
data objects from a web page, we choose to re-arrange the
extracted data from the web page in a table manner such
that each row of the table represents a data instance and
each column represents a data attribute. For example,
Figure 3 shows the table containing book instances
extracted from the result page in Figure 1. Note that it is
not necessary to represent the data in only one table where
some attributes are duplicated; we can easily build more
tables or relations for multiple-value attributes according
to the regular expression wrapper. Here, we choose to
unify the data representation of each web site as a single
table, because it is easier for the later data integration.

Figure 2. HTML code for the example data and the
corresponding wrapper.

Figure 3. Table representation of the extracted data.

2.2 System architecture

The system consists of four components as shown in
Figure 4.
• Form crawler. Given a web site with an HTML

search form, the form crawler collects the labels of

each element contained in the form and sends queries
though the form elements to obtain the result pages
containing data objects. We adopt the hidden web
crawler, HiWe [8] for this task. HiWe was built on the
observation that “most forms are usually associated
with some descriptive text to help the user understand
the semantics of the element.” It is equipped with a
database that stores some values of the task-specific
concepts and assigns those values as queries to the
form elements if the form labels and the database
labels match. Similarly, our system, DeLa, further
utilizes the descriptive labels of the form elements by
matching them to the attributes of the data extracted
from the query-result pages. Readers can refer to [8]
for more details about the form crawler.

Figure 4. The DeLa Architecture.

• Wrapper generator. The pages collected by the form
crawler are output to the wrapper generator to induce
the regular expression wrapper based on the pages’
HTML-tag structures. Since pre-defined templates
generate the web pages, the HTML tag-structure
enclosing data objects may appear repeatedly if the
page contains more than one instance of a data object.
Therefore, the wrapper generator first considers the
web page as a token sequence composed of HTML
tags and a special token “text” representing any text
string enclosed by pairs of HTML-tags, then extracts
repeated HTML tag substrings from the token
sequence and induces a regular expression wrapper
from the repeated substrings according to some
hierarchical relationships among them. The wrapper
generator is inspired by previous work on IEPAD [2].

HTML code of the embedded data:
<TR><TD> A Comprehensive ... </TD></TR>
<TR>

<TD> </TD>
 <TD> Paperback | Jan 2001 | Carson-Dellosa ... </TD>
</TR>
...
<TR><TD> A Guide to the ... </TD></TR>
<TR>
 <TD> Julia Eccleshare </TD>
 <TD> Hardcover | Apr 2002 | Continuum ...

Paperback | Apr 2002 | Continuum ...
 </TD>
</TR>
...

Corresponding regular expression wrapper:
<TR><TD> text </TD></TR>
<TR>
 <TD> (text)? </TD>
 <TD> (text
)* </TD>
</TR>

We present in [12] a more technical comparison
between our work and theirs.

• Data aligner. Given the induced wrapper and the web
pages, the data aligner first extracts data objects from
the pages by matching the wrapper with the token
sequence of each page. It then filters out the HTML
tags and rearranges the data instances into a table
similar to the table defined in a relational DBMS,
where rows represent data instances and columns
represent attributes. Note that the extracted data
objects may have optional or multi-valued attributes,
e.g., in Figure 1 the first book has no author listed and
the third book has two editions. Furthermore,
sometimes several attributes of the data object are
encoded together into one text string that is not
separated by HTML tags, e.g., the format, publish date
and publisher information of the books in Figure 1.
Therefore, the data aligner needs to distribute multiple
values of one data attribute into several rows and
separate the attributes encoded in one string to several
columns, if possible. Figure 3 shows the table
representation of the four books contained in Figure 1,
where the third book with two editions is re-arranged
into two rows (the third and the fourth) and the last
three attributes are separated.

• Label assigner. The label assigner is responsible for
assigning labels to the data table by matching the form
labels obtained by the form crawler to the columns of
the table. The basic idea is that the query word
submitted through the form elements will probably
reappear in the corresponding fields of the data objects,
since the web sites usually try their best to provide the
most relevant data back to the users. For example in
Figure 1, the web page is generated to answer the
query “Harry Potter” submitted through the form
element labelled by “Title”. Therefore, the first
column of the data table in Figure 3, with “Harry
Potter” appearing in all five rows, can be marked as
“Title”, the label of the form element. Similarly, the
second and the third columns are marked as “Author”
and “Format”, which also comes from the form
element labels in Figure 1. Note that the mappings
between form elements and data attributes are usually
not exactly one-to-one. The label assigner sometimes
needs to employ other information, such as the data
format, as clues to understand the semantics of the
data objects. For example, in Figure 3, the fourth
column is marked as “Date”, since the data it contains
are in a date format.
To test the performance of DeLa on wrapper induction

and label assignment, we employ 3 categories of hidden
webbases (web sites with a complex HTML search form)
and manually collect some result pages from those web
sites. Next, we use DeLa to generate a wrapper for each
web site, extract data objects from the result pages and
restoring the retrieved data with discovered attribute
labels into a table. The experimental results in [10]

indicate that DeLa performs very well in automatically
inducing wrappers (over 90% precision) and assigning
meaningful labels to the retrieved data (over 80%
correctness). As far as we know, ROADRUNNER [3]
and IEPAD [2] are the only works that try to solve the
problem of fully-automatic wrapper induction. However,
both of them have limitations. ROADRUNNER assumes
no disjunctive attributes and IEPAD assumes no nested
attributes of data objects to be extracted. In contrast, we
believe such assumptions may not be realistic in the web,
and our work can handle not only plain-structured data
but also nested-structured data possibly with disjunctive
attributes. Moreover, our work also demonstrates the
feasibility of heuristic-based, semantic-label assignment
and the effectiveness of the employed heuristics, which
we believe sets the stage for more fully automatic data
annotation of web sites.

3. Webbase Discovery and Web Information
Integration

As mentioned before, our final goal is to develop a series
of information services from source discovery to data
integration, which can automatically interact with
information sources in the hidden web to help users locate
high quality and relevant information. In our previous
work, we concentrated on the problem of automatic
wrapper induction for web pages containing regular-
structured data objects. We also explored the possibility
of heuristic-based automatic annotation of data objects
extracted from webbases. The remaining problems in
building an information integration system for webbases
will be our future focus, i.e., the problem of webbase
discovery and integration. In fact, these two problems are
strongly interdependent, i.e., the results of the discovery
phase are the sources for integration and how to integrate
information sources (or what we refer to as integration
models) directly decides the factors or features of
webbases to be examined at the discovery phase.

Currently search engines are the most widely-used
tools to help users locate or discover desired information.
Adopting most of their techniques from Information
Retrieval (IR), search engines index web documents by
keywords and consider the web pages to be relevant once
they contain the query keywords. There are mainly three
ways employed by search engines to discover new web
pages on the web (web pages that have not been visited
yet): random IP attempt, user registration and following
the hyperlinks of visited pages. These ways are effective
in locating static web pages, i.e. the web pages that can be
accessed by a specific URL address. However, web pages
in the hidden web cannot be identified by these traditional
ways, because they are generated on the fly to answer user
queries by retrieving data from back-end server databases.

Unlike collecting static web pages, it is more difficult
to design spiders or crawlers to automatically collect
dynamically-generated web pages since the spiders need

to deal with HTML search forms, which are designed for
human use. To the best of our knowledge, work on the
problem of webbase discovery is still at a nascent stage.
Past works on constructing wrappers for webbases or
integrating information from webbases usually assume
that the target web sources are already known. Thus, they
ignore the need to help users find the desired sources they
want to extract data from or they want to integrate.
Currently some commercial companies, such as
CompletePlanet.com and Invisibleweb.com, provide some
categories of webbases according to their topics. To build
such categories, web sites were manually examined,
filtered by their quality or appropriateness and finally
classified. However, creating and updating such
categories is quite time consuming and also possibly
labour intensive.

The next step after discovering appropriate web
sources and constructing wrappers for them is to be able
to integrate data objects extracted from multiple sources,
so as to provide a uniform interface for users to review or
query the integrated data. Previous research on
information integration ([5] and [9]) assumed either that
each web site cooperatively provides the schema
information or that the user can specify the relational
schema for each web site. However, it is not guaranteed
either that cooperation from web sites is always provided
to the integration system or that every user is a database
expert and able to specify the schemas.

Optimistically, we would like to integrate data from
autonomous web sources with little or no human effort.
This goal is hard to achieve especially when the contents
of many valuable webbases are only accessible through
search interfaces. Recently, the problem of automatic
interaction with webbases to obtain statistical summaries
of the contents has drawn more and more attention. [6]
and [7] proposed automatic approaches to summarize and
classify hidden-web databases containing text contents.
They send topically focused queries to the target
webbases and determine the topic coverage of the
databases by exploiting the number of matches each query
generated. As the pioneering work on automatic content
summaries for hidden-web databases, [6] and [7] are
fairly simple in the management of automatic interaction
between “uncooperative” sources as they only target at
text-webbases whose search interface is usually one
textbox for keyword query submission.

In order to build a large scale information integration
system for the hidden web, the cost of manually locating
information sources and manually obtaining source
descriptions will not be acceptable. Therefore the
following problems are worth studying: automatically
locating webbases relevant to a given area; automatically
determining the topic or domain of a given webbase;
automatically determining the appropriateness or quality
of information from a given webbase; automatically
obtaining descriptions about a given webbase’s content,
such as schema or semantics of the contained data.

Without good solutions to these problems, the cost of
discovering sources and obtaining source descriptions will
become the “bottleneck” in building large-scale
information integration systems. Moreover, an efficient
method to reconcile inconsistency between data objects
from various sources is also critical in building an
integration system for web sources that are autonomous
and varied.

References

[1] BrightPlanet Corp. “The deep web: surfacing
hidden value.”

[2] C.H. Chang, and S.C. Lui. “IEPAD: information
extraction based on pattern discovery,” Proc. 10th
World Wide Web Conf. 681-688, 2001.

[3] V. Crescenzi, G. Mecca and P. Merialdo.
“ROADRUNNER: towards automatic data
extraction from large web sites,” Proc. 27th Intl.
Conf. on Very Large Data Bases, 109-118, 2001.

[4] D. Embley, Y. Jiang and Y.K. Ng. “Record-
boundary discovery in web documents,” Proc.
ACM SIGMOD Conf., 467-478, 1999.

[5] D. Florescu, A.Y. Levy, and A.O. Mendelzon.
“Database techniques for the world-wide web: a
survey,” SIGMOD Record 27(3), 59-74, 1998.

[6] P. G. Ipeirotis and L. Gravano. “Distributed search
over hidden web: hierarchical database sampling
and selection,” Proc. 28th VLDB Conf., 2002.

[7] P. G. Ipeirotis and L. Gravano. “Probe, count and
classify: categorizing hidden-web databases,” Proc.
ACM SIGMOD Conf., 2001.

[8] S. Raghavan, and H. Garcia-Molina. “Crawling the
hidden web,” Proc. 27th Intl. Conf. on Very Large
Data Base, 129-138, 2001.

[9] S. Raghavan, and H. Garcia-Molina. “Integrating
diverse information management systems: a brief
survey,” In IEEE Data Engineering Bulletin 24(4),
44-52, 2001.

[10] J. Wang and F. Lochovsky, “Data extraction and
label assignment for Web databases,” Proc. 12th
World Wide Web Conf., to appear, 2003.

[11] J. Wang and F. Lochovsky. “Data-rich section
extraction from HTML pages,” Proc. 3rd Intl. Conf.
on Web Information System Engineering, 313-322,
2002.

[12] J. Wang and F. Lochovsky. “Wrapper Induction
based on Nested Pattern Discovery,” Technical
Report HKUST-CS-27-02, Dept. of Computer
Science, Hong Kong U. of Science & Technology,
2002 (submitted for publication).

