
Relational to RDF mapping using D2R for 
translational research in neuroscience 

 

Rudi Verbeeck*1, Tim Schultz2, Laurent Alquier3 and Susie Stephens4 

Johnson & Johnson Pharmaceutical Research and Development 
1 Turnhoutseweg 30, Beerse, Belgium;  

2 Welch & McKean Roads, Spring House, PA, United States; 3 1000 Route 202, 
Raritan, NJ, United States and  

4 145 King of Prussia Road, Radnor, PA, United States 

Abstract. Motivation: To support translational research and external 
innovation, we are evaluating the potential of the Semantic Web to 
integrate data from discovery research through to the clinical 
environment. This paper describes our experiences in mapping relational 
databases to RDF for data sets relating to neuroscience. 
Implementation: We describe how classes were identified in the 
original data sets and mapped to RDF, and how connections were made 
to public ontologies. Special attention was paid to the mapping of 
experimental measures to RDF and how it was impacted by the relational 
schemata. 
Results: Mapping from relational databases to RDF can benefit from 
techniques borrowed from dimensional modeling. However, current tools 
like D2R are still evolving. Nevertheless, mapping data in RDF, if done 
properly and consistently, facilitates data integration efforts. 

1. Introduction 

Translational research has emerged over recent years as an important enabler of 
personalized medicine. It encompasses bridging the gap between discovery research 
insights in the molecular biology of a disease and predicted clinical response of an 
individual patient to a medicine. It also involves finding gene signatures or other 
biomarkers that separate responders from non-responders and understanding how these 
insights may contribute to disease mechanisms. 

To counterbalance compound attrition and fill short or medium term pipeline gaps, 
pharmaceutical companies are seeking collaboration and licensing opportunities 
outside company boundaries. Internally and externally derived resources need to be 
viewed alongside each other in order to gain a comprehensive understanding of a 
company’s development pipeline. 

The translational medicine and external innovation trends are both leading to a more 
data intensive environment that requires well defined strategies for data integration and 
governance. 

Relational database technology has been developed as an approach for managing and 
integrating data in a highly available, secure and scalable architecture. With this 



approach, all metadata is embedded or implicit in the application or metadata schema 
itself, which results in performant queries. However, this architecture makes it difficult 
to share data across a large organization where different database schemata and 
applications are being used. 

The Semantic Web offers a promising approach to interconnect databases across an 
organization, since the technology was designed to function within the distributed 
environment of the web. Resource Description Framework (RDF) and Web Ontology 
Language (OWL) are the two main Semantic Web standard recommendations. RDF 
represents data using subject-predicate-object triples, which connects data in a flexible 
piece-by-piece and link-by-link fashion that forms a directed labeled graph. The 
components of each RDF statement can be identified with Uniform Resource 
Identifiers (URIs). Alternatively, they can be referenced via links to RDF Schemas 
(RDFS), OWL ontologies, or to other (non-schema) RDF documents. Data in a 
Semantic Web representation can be queried using the SPARQL query language. Data 
can gradually be made available on the Semantic Web, without intensive coordination 
between data source providers [1,2]. Further, as semantics are added to the data, it 
becomes self-describing, so applications can be made agnostic of the data domain. 

To verify if the Semantic Web can facilitate data integration, a Linked Data project [3] 
was established. The primary goal of the project was to enable scientists to answer 
novel translational questions related to Alzheimer’s Disease (AD) by providing a 
flexible integrative data layer. The project hypotheses were that new, valuable 
scientific insights can be gained through the interrogation of Linked Data, and that 
Linked Data simplifies the incorporation of data sources from collaborators. This paper 
focuses on describing the mapping of data sources to RDF. More details regarding the 
Linked Data framework are described in reference [4]. 

In the next section we describe the data sources used in the Linked Data project. 
Section 0 reviews the modeling choices we took for mapping and translating the data 
sources to RDF. The final section discusses some considerations in the implementation 
of a successful data integration platform. 

2. Methods 

2.1. Data sources 

An internal and a publicly available data source relating to AD were selected for the 
project. 

 In 2005, the National Institutes of Health (NIH) and a number of partners 
started the Alzheimer’s Disease Neuroimaging Initiative (ADNI). This multi-
site, longitudinal study was designed to evaluate imaging and genetic 
biomarkers for the onset and progression of Mild Cognitive Impairment (MCI) 
and AD [5]. The study of around 800 subjects distributed over 3 cohorts 
(normal, MCI and AD) resulted in the collection of a wide variety of data, 
ranging from clinical, cognitive, functional and behavioral assessments, 
imaging derived anatomical volumes, and blood and Cerebro-Spinal Fluid 
(CSF) biomarker measurements. 



 Internal clinical study data relating to AD that contains demographic and 
treatment information, vital signs, cognitive assessments and image derived 
measurements. 

2.2. Data source formats 

2.2.1. ADNI data.  

The clinical data that are collected by participant sites in the ADNI study are deposited 
into an ADNI hosted, web accessible database according to published guidelines. Data 
sets reflecting the entry forms are made available to researchers in a flat file format 
(http://www.loni.ucla.edu/ADNI/). 

A Microsoft SQL Server Database was used to host the ADNI data within Johnson & 
Johnson. The flat files were mapped to a star schema (Fig. 1), using SQL server 
integration services and Perl scripts. This has facilitated access to the data through SQL 
based query and analysis tools. 

2.2.2. Internal clinical study data.  

Clinical data was extracted from SAS files and loaded in an Oracle Database reflecting 
the original pivoted table structure of the files. 

2.3. Ontologies 

BioPortal (http://bioportal.bioontology.org) was used to identify public ontologies that 
best map to the entities in the clinical data sets. Selected ontologies included the 
Neuroscience Information Framework (NIF) [6], the National Cancer Institute’s 
thesaurus (NCIt) and SNOMED CT (Systematized Nomenclature of Medicine - 
Clinical Terms). 

Relevant terms from the ontologies were linked into a Common Resource Ontology 
(CRO) that was loaded into an instance of an openRDF triple store from Sesame. 

2.4. The D2RQ platform 

The SQL Server Database and Oracle Database were mapped to RDF using D2R server 
0.7 (http://www4.wiwiss. fu-berlin.de/bizer/d2r-server/). 

 

  



 

Fig. 1. High level representation of the star schema used to represent ADNI within 
Johnson & Johnson 

3. D2R mapping patterns 

There are many options as to how to publish relational data to RDF. For general 
guidelines, see reference [7]. In this section, we describe the patterns we used and 
design options we selected to develop the D2R mapping files to ease the integration of 
complex longitudinal data sources. 

3.1. Identifying RDF classes 

D2R provides an automated process to generate the mapping file, which converts every 
table into a class. This approach did not yield satisfactory results for a database with a 
normalized schema, largely because Third Normal Form modeling seeks to eliminate 
data redundancies, not reflect real world objects – such as patients, medical images, etc. 

In dimensional modeling, a logical design technique for data warehouses [8], data are 
grouped into coherent categories1 that more closely mimic reality. This makes the 
mapping of dimensional representations to RDF classes more straightforward, and 
enables the default D2R mapping process to yield better results. Further, hierarchies in 
the dimension tables may help to indicate RDF classes and their relationships. 

The ADNI data were loaded into a star schema (Fig. 1). The Single Nucleotide 
Polymorphism (SNP) dimension contained hierarchical information relating to genes 
and chromosomes. By converting table column headers to classes, instead of the 
default literal values, they could be used to link to external ontologies. Fig. 2 shows the 
high level graph that was created when ADNI was mapped to OWL. 

 

 

 

                                                            
1 In a star schema implementation, data are stored in fact tables, and categories in 

dimension tables. A fact table is joined to dimension tables creating a star-like 
representation. 



3.2. Local namespaces and ontology mappings 

The classes in Fig. 2 were defined in the CRO to avoid repeating class definitions for 
every data source. For classes available in public ontologies, the CRO builds a 
comprehensive representation of a domain by importing a standard set of 
complementary ontologies using the guidelines described in MIREOT [9]. Using an 
internal ontology presents some advantages: 

 

Fig. 2. Ontology used to represent content of the ADNI data  (ER=ExperimentalResult, 
RT=ResultType). 

 

 Scientists may have strong preferences for particular ontologies. When there is 
no general agreement about which ontology to use, we can include the 
definition of a proxy class in the CRO. The proxy can be linked to a number 
of public ontologies using URI aliases. 

 Not all class definitions that were required for the mappings were available in 
public ontologies (e.g. subscores for the AD Assessment Scale Cognition). 
These definitions could be included within the CRO in anticipation of 
acceptance of the terms in public ontologies. 

 Building a SPARQL query requires knowledge as to which ontology was 
selected during the mapping phase. This information can be retrieved from the 
CRO. 

 Using Semantic MediaWiki technology, scientists can discuss CRO term 
definitions or suggest extensions. 

 Data owners can use the wiki to enter metadata about their sources using 
terminology from the CRO. As Semantic MediaWiki stores its data in RDF it 
can be used as a metadata repository for data source discovery. This 
functionality is not well supported by SPARQL [10]. 
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BioPortal is a valuable tool for searching for terms within public ontologies. Once the 
term has been identified, the mapping to public ontologies can be handled in a number 
of ways by D2R. For example, volume measurements of brain regions on MRI images 
were linked to the gross anatomy section of NIF using lookup tables. The lookup table 
can be stored in the D2R file (using d2rq:TranslationTable) or in the database (and used 
in a d2rq:join). We prefer the latter solution, but note that this approach restricts the 
lookup table to being in the same database as the data. When SNPs or genes were 
mapped to Bio2RDF (http://bio2rdf.org/), the database values were used directly to 
generate the URI of the object in the public ontology at runtime (using d2rq:uriPattern 
or d2rq:uriSqlExpression). 

3.3. Experimental measures 

To encode experimental results in RDF, the experimental conditions need to be 
uniquely specified. For example, to be able to correctly interpret a measured value, it 
needs to be clear which patient is being referred to, on which visit, and what exactly 
was measured. 

One option is to define properties for the Patient class for every type of experiment. 
Reification 2  could be used to specify additional conditions (e.g. the visit and the 
imaging modality). However, this option was not selected because several levels of 
reification would be needed to specify the experimental conditions completely. This 
would lead to ballooning of the data and such queries are not well supported by 
SPARQL. 

We decided to encode every experimental result (the measured value and the 
experimental conditions) in an ExperimentalResult class and link out to the 
corresponding Patient, Visit and Image classes (Fig. 2). However, this still leaves 
several options as to how to encode all of the details surrounding the experiment. 

Defining a subclass of the ExperimentalResult class for every measurement type (e.g. 
ClinicalDementiaRating, HippocampalVolume, SystolicBloodPressure) was 
impractical due to the large number of observation types in the data sets. Alternatively, 
the measurement type can be encoded in an ExperimentalResult property name (e.g. 
hasClinicalDementiaRating). Contrary to subclass definitions, we can avoid writing 
D2R code for property definitions for a large number of measurement types using a 
d2rq:dynamicProperty statement, which specifies a pattern to generate the property URI 
at runtime. However, some experimental conditions are hard to describe in a property 
name3 and are difficult to use in queries. We therefore took a different approach. 

We decided to use two properties to specify the experimental conditions and 
measurement value of an ExperimentalResult, namely hasResultType and hasValue. 
The ResultType class can contain multiple properties to specify the experimental 
conditions fully and can be used as a bridge to public ontologies. 

                                                            
2 Reification is a process that uses RDF to make statements about other RDF triples. 
The RDF vocabulary to describe a reified statement uses three triples to specify a 
single assertion, thus inflating the database. 
3 For example, take a property like    
  hasStandardDeviationOfCorticalThicknessOfRightTransverseTemporalCortex. 



3.4. Pivoted and depivoted tables 

The depivoted format of the fact tables in Fig. 1 can be converted to RDF using the 
previously described techniques. Occasionally, a column in the fact table may contain 
values that can be used as predicates. In this case, using a d2rq:dynamicProperty may be 
sufficient to define all properties for the fact table at once. The mapping becomes 
independent of the properties listed in the fact table, and remains valid as rows 
introducing new properties are added to the table. 

For statistical analysis, clinical data are mostly represented in a pivoted table format, 
where each patient is represented as a single row and columns represent clinical, 
laboratory and image results for each visit. Table columns can easily be mapped to 
properties connected to a Patient class. But as discussed above, we may have to 
introduce impractical property names to specify the experimental conditions. 

Forming ExperimentalResult classes on a pivoted table requires that column names of 
the table are parsed and mapped to literal values or URIs. Where a D2R mapping 
would normally create an instance for every table row, this use case requires the 
mapping to create a new instance for every table cell (for selected columns). This is 
equivalent to depivoting the table before applying the mapping. The D2R release we 
used did not have this functionality. Consequently, we did the depivoting operation in 
the database instead. 

4. Discussion 

This paper highlights many design considerations that need to be taken into account 
when mapping relational databases to RDF. The approach taken for the mapping 
influences the ease with which data sources can be integrated, and the simplicity with 
which they can be queried. Further, although D2R is able to map most relational 
schemata to RDF, there are strong benefits to dimensional modeling over normalized 
approaches. This should be taken into consideration when designing schemata for data 
sources that are being brought into an organization. 

Mapping data sources to public ontologies is a time consuming process. It also requires 
that subject matter experts are involved to ensure that the work is done accurately. This 
is especially the case when data sources are referencing brain regions, as the 
neuroscience domain does not have a common lexicon. 

The Linked Data approach has the significant advantage that experts can incrementally 
and independently add data sources to the RDF graph. This enables the gradual 
creation of an integrated ecosystem of data. To allow domain experts to contribute 
requires an architecture for ontology curation and data source discovery, a strategy on 
data governance and stewardship and a culture of data caring and sharing. 

In this paper, we focused on lessons learned using D2R to map clinical data to RDF for 
a Linked Data project. As more data sources are added, we will need to adapt the 
domain model in our CRO to accommodate new class definitions. Going forwards, it is 
likely that we will use the emerging Translational Medicine Ontology (http://esw.w3. 
org/HCLSIG/PharmaOntology) to meet our needs. This is because it includes a broader 
set of class definitions, and uses the Basic Formal Ontology (http://www.ifomis.org/ 
bfo). 
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