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Abstract—Modern financial mathematics consume more and
more computational power and energy. Finding efficient algo-
rithms and implementations to accelerate calculations is therefore
a very active area of research. We show why interdisciplinary
cooperation such as (CM)2 are key in order to build optimal
designs.

For option pricing based on the state-of-the-art Heston model,
no implementation on dedicated hardware is known, yet. We
are currently designing a highly parallel architecture for field
programmable gate arrays based on the multi-level Monte Carlo
method. It is optimized for high throughput and low energy
consumption, compared to GPGPUs. In order to be able to
evaluate different algorithms and their implementations, we
present a benchmark set for this application. We will show a very
promising outlook on future work, including dedicated ASIPs,
fixed-point research and real-time applications.

Index Terms—finance, benchmarking, hardware acceleration

I. INTRODUCTION

Nowadays, financial markets are as vivid as never before. In
modern electronic markets, stock prices may change several
times within a few milliseconds. Participating traders (that can
also be computers) have to evaluate the prices and react very
quickly in order to get the highest profit, which requires a lot
of computational effort.

In general, running these computations on servers or clusters
with standard CPUs is not feasible due to either long run times
or high energy consumption. Using general purpose graphics
processing units (GPGPUs) as accelerators helps to increase
the speed, but still requires a lot of energy. Besides, at the
moment energy efficiency becomes more and more crucial for
the reason of high energy costs and - even more critical - a
limited supply of energy that can be provided. For example,
in [16] it is stated that the City of London (with its new
financial center Canary Wharf where a lot of leading institutes
are located) does not provide additional energy until after
the Olympic winter games in 2012, that have higher priority.
Financial institutes are currently outsourcing all computing
systems not used for pricing computations (such as storage
or backup) out of the critical area.

This leads to the dilemma of needing faster computations on
the one hand and limited energy resources on the other hand.

PC GPGPU FPGA

Fig. 1. PC vs. GPGPU vs. FPGA

Moving away from GPGPUs to dedicated hardware acceler-
ators can help to drastically reduce the power consumption
at the same or even higher throughput. For different applica-
tion domains, some comparisons between CPU, GPGPU and
programmable hardware units (field programmable gate arrays,
FPGAs) have already been shown in [13] and [5], highlighting
the enormous potential of energy savings for FPGAs. Figure 1
shows that standard software implementations require the
least effort for implementation and can provide the highest
flexibility, while dedicated hardware solutions on FPGAs are
hard to design and - once finished - not easy to be changed
again. From a different view, FPGAs can save up to about
99% of energy compared to a software implementation on a
standard PC and allow a much higher throughput. GPGPUs
are located between standard PCs and FPGAs. Between each
neighboring architectures, one can expect a difference of about
one order of magnitude on average for power consumption and
throughput [13]. Although most financial institutes are relying
on GPGPUs at the moment for the reason of standardized
software development toolkits and their flexibility, FPGAs
are an interesting alternative because of their higher energy
efficiency.

A big challenge is the complexity of many models used
to estimate the future price behavior of financial products. In
many cases no mathematical closed-form solution exists so
that approximation methods like Monte Carlo simulations or
the finite difference method must be employed. Though, it is
necessary to precisely specify a solution right at the beginning
of the design process. Re-designing a nearly finished hardware
implementation can require a very high amount of effort. The
Center of Mathematical and Computational Modeling (CM)2



of the University of Kaiserslautern is a perfect forum for an
interdisciplinary cooperation to tackle this issue.

For this project, we have developed a design methodology
that helps to select a feasible parameter set for a hardware ac-
celerator in question that we present in Section III. In order to
make implementations transparently comparable, we propose
to use standardized benchmark sets - we elaborate on this in
Section IV. By applying this methodology and our benchmark,
we have developed some reference implementation designs
that we show in Section V, together with the status quo of our
research and our contributions up to now. In Section VI we
give an overview of open issues and what we plan to examine
in the future. Section VII concludes the paper.

II. STATE-OF-THE-ART AND RELATED WORK

Mathematical finance basically has two different directions.
One is concerned with the evaluation of optimal investment
strategies under certain market conditions and the other di-
rection is the pricing of derivatives. The basic idea of pricing
options is to assume some sort of model for the underlying
price process and take the discounted expected value - under
a certain measure - of an option as the option price.

A very common problem treated is the calculation of
option prices based on the Black-Scholes model from 1973.
This model relies on one stochastic differential equation and
describes the price development of an option over the time,
depending on market parameters such as riskless interest rate,
long term drift and a constant volatility.

Accelerator design for financial mathematics is a very active
research area, and several FPGA implementations have been
published in the past. At the FPL 2008 Woods and VanCourt
[17] presented a hardware accelerator for multiple, quasi-
random, standard Brownian motions suitable for the accelera-
tion of quasi-Monte Carlo simulation of financial derivatives.
For credit risk modelling, Thomas and Luk could gain a
speed-up of more than 90 times compared to a 2.4 GHz
Pentium-4 Core2 [14]. An accelerator for Monte Carlo based
credit derivative pricing was developed by Kaganov, Chow
and Lakhany [10] in 2008 and showed to be 63 times faster
than their software model. Wynnyk and Magdon-Ismail [18]
presented an FPGA accelerator for American option pricing
based on the Black-Scholes model in 2009 and could achieve
a speedup of eleven up to 73 times compared to a software
implementation running on a standard PC.

However, nowadays the Black-Scholes model is no longer
up to date and does not provide an accurate reflection of
modern financial market behaviors, mostly because of the
volatility not being constant in reality. Furthermore, closed-
form solutions for the Black-Scholes model exist and it only
has demonstration purposes to apply stochastic solution meth-
ods such as Monte Carlo simulations or the finite difference
method [1]. Nevertheless, it is still very common to publish
accelerator implementations based on that model, at least in
the electrical engineering community.

In 1993, Steven L. Heston presented a more accurate model
[9] that extends the model from Black and Scholes by a

second stochastic differential equation for stochastic volatility
variations. This significantly increases the complexity of the
calculation and of the implementation thereof. Nevertheless,
the Heston model reflects the real behavior of current stock
markets much better and is nowadays widely accepted in the
financial mathematics community. But - to the best of our
knowledge - no hardware accelerator for that model has been
published up to now. For GPGPUs, the first implementations
have been presented in the last year. Bernemann, Schreyer
and Spanderen from the german bank WestLB [3] showed
that they could achieve a speeup of 50 times over CPU by
using GPGPUs for simulating the Heston model. Zhang and
Oosterlee published a technical report [19] in March 2010
where they even showed speedups of more than 100 times.

The presented speed-ups look very impressive. However,
unfortunately we were not able to fairly decide which solution
seems to be the most promising for further research and
refinements. We will go a bit more into the details of that
problem in Section IV.

III. HOW TO CHOOSE THE RIGHT DESIGN

For many fields of applications, finding the most efficient
design under certain constraints is a difficult job. The main
reason for this is a large design space. The design space is
made up of all possible parameter choices for the design, that
means all possible implementation instances.

Most parameters are not adjustable independently, since
they are mutually linked. For example, fixing the target ar-
chitecture to FPGAs one the one hand has a large impact on
the selection of suitable algorithms and number systems, and
on the other hand affects many performance metrics such as
energy consumption, throughput and numerical precision.

Furthermore, the parameters within the design space are in
many cases not limited to a single domain of expertise, but
require interdisciplinary know-how and decisions. This makes
not only the choice of the right values a challenge, but also
the evaluation and comparison of different implementations.
Besides speedup, more characteristics such as energy effi-
ciency, convergence rate or numerical precision may be very
important. This especially holds true for financial mathematics
accelerators.

During our research we have seen a lot of papers that
show elaborate implementations of a specific algorithm (see
Section II) that is not questioned in the papers anymore.
However, we claim that the algorithm itself is in fact not the
most important selection. An accelerator should be designed to
solve a specific problem - it does not matter which algorithm is
used, as long as the result is calculated correctly. We therefore
propose to distinguish clearly between three terms:
• the problem that is tackled (what to solve)
• the employed model (how to solve)
• the solution (how to build)
To clarify the situation, we use the problem “calculate the

price of an option with two barriers for a given duration” as
an example. European knock-out barrier options pay a certain
amount of money at a fixed maturity time depending on the



Fig. 2. Barrier testing for a Brownian motion

value of the underlying asset. This amount is only paid when
the barrier is not crossed up to the maturity time. If one of the
barriers is hit, the option becomes worthless. Thus it needs to
be checked whether the barrier was ever hit or not. Figure 2
illustrates the typical random behavior of different realizations
of an asset price over the time.

It is obvious that the problem description itself does not
yet give any suggestions to the solution. Since the price of an
option is tightly coupled to the price of a certain stock at the
market, we need a model that provides the stock price behavior.
For our chosen example, suitable models are for example
the Black-Scholes model (outdated nowadays) or the Heston
model. The model in general gives a formal and abstract view
of (a certain aspect of) the problem.

The solution finally is a dedicated approach for solving a
(modeled) problem. It is characterized by a specific algorithm
and its implementation. For evaluating the Heston model,
for example, finite difference methods or stochastic Monte
Carlo simulations can be used. They may be implemented for
example on standard PC clusters, GPGPUs or on FPGAs.

The parameters of the design space can basically be divided
into two groups: the algorithmic parameters that are mostly se-
lected by mathematicians, and the implementation parameters
determined by the hardware designers. However, as mentioned
before correlations exist between several parameters, so that
the selection should be optimally made by having a generative
exchange between experts of both groups.

For the rest of the paper, we will use the problem-model-
solution triple “calculate the price of an option with two
barriers for a given duration with the Heston model by using
Monte Carlo methods” as a showcase. Even for that specific
selection, the design space is still very large. An extract of
the related design space is shown in Figure 31. We cannot
explain every parameter here (for details see [11] [8]), but
in a nutshell it is obvious that even for a very specific task
a huge amount of possible accelerator implementations may
exist. In Figure 3 we see two different views of the same
tree. These trees are symbolic for the design space. The left
one is the view of a mathematician that has mostly to do
with algorithmic and numerical aspects. The right view is the

1http://www.sxc.hu/photo/285734 We thank sxc user vxdigital for sharing this image of the oak tree and allowing the
use of it in this paper. He holds all copyrights to this image.

one of an electrical engineer who may not understand the
mathematician’s concerns in detail, but is wondering what the
best decisions with respect to hardware efficiency might be.

IV. BENCHMARKING - FAIRLY COMPARING
IMPLEMENTATIONS

Comparing different implementations is a non-trivial task.
Many attributes can be considered, including speed, accuracy
and energy consumption. This becomes even more difficult
when it is not clear which algorithm was used. Furthermore,
in many cases it is not possible to distinct whether a presented
algorithm or implementation has the displayed behavior only
with the employed example or in a more general setting.
Nevertheless, it is important to be able to compare various
algorithms and different implementations, also over various
target architectures.

Therefore the need for a benchmark set arises. This set
should be independent of the algorithm and implementation
used. For option pricing in financial mathematics, this need
has already been claimed by Morris and Aubury in 2007 [12].
We are not aware of any progress made since that paper was
published. We therefore have decided to develop a completely
new benchmark that will enable us to fairly compare different
algorithms, e.g. multi-level and single-level Monte Carlo, on
different hardware. Thus we propose a benchmark based on
the problem/model combination. In our case it is the pricing
of double barrier options in the Heston model. It is clear that
independently of the used algorithm and implementation the
result must be the same. Therefore the final prices of the
different options in the benchmark set have to be provided.

With the benchmark set it is possible to use different
metrics, like speed (that is now the real time until the results
are available), accuracy and power consumption, for the cal-
culations leading to the right (or approximate) result without
actually looking at the implementation and the algorithm itself.
This allows a fair and publicly traceable comparison of the
solution part of the problem/model/solution triplet.

The benchmark itself consists of different combinations
of parameters for the Heston model and for barrier options,
including the prices. The data for the Heston parameters is
taken from different recent publications ( [2], [11], [20]) and
are enlarged by an extremer case. The benchmark parameters
span a wide range of possible combinations used in this field.
For some options of the benchmark closed form solutions
exist that allow to obtain the exact results. This is important
to verify that simulations converge to the correct values and
makes it easier to compare the results. For the other cases the
exact prices are not known and are therefore provided as close
approximations.

For further publications we not only encourage the authors
to use the presented benchmark but also give details of the
algorithm and the implementation used. Thus it is possible
to see where an increase in performance comes from. This
is essential in order to evaluate the contribution of a certain
result and to find ways to improve it even further. To achieve
a higher transparency we will publish the code we used to
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Fig. 3. Two views of the same solution tree

analyze the algorithms and the one we implemented on the
FPGA.

The benchmark was directly used when comparing different
Monte Carlo algorithms with the metric of computational
complexity. In our special problem/model combination there
are a lot more adjustments to the algorithms than seen in
figure 3(a). Many of them can be combined, what leads to
a huge design space that now can be handled by applying
the benchmark set, so that we haven been able to choose a
specific algorithm to be efficiently implemented on dedicated
hardware. The multi-level Monte Carlo method provides a bet-
ter asymptotic convergence behavior, using our benchmark we
checked whether this method is beneficial for our application.
We will show our first results in the next section.

V. STATUS QUO AND FIRST RESULTS

We have started this cooperation within (CM)2 about one
year ago now. Both participating chairs have experience of
more than ten years in their respective field of research, so
that we can profit from a lot of knowledge in the areas of
efficient hardware design respectively stochastics and financial
mathematics.

After evaluating the state-of-the-art, we decided to focus on
accelerators for option pricing based on the Heston model - it
seems to be a very promising topic since no implementations
(either on GPGPUs or FPGAs) have been available one year
ago. In contrast to that, the Heston model is already widely
spread within the financial community. From former research
done in the group of Prof. Korn, multi-level Monte Carlo
methods [7] seemed to provide a better convergence behavior
than standard single-level Monte Carlo or finite difference
methods. Monte Carlo methods also have the advantage of
being very flexible. A barrier that is only relevant on a certain
time interval to evaluate an option price for example can be
easily implemented. Furthermore, multi-dimensional problems
can also be solved. This is needed in the case that an option has

more than one underlying asset. Nevertheless, for our project
we will stick to one asset.

A. A New Random Number Generator for Non-Uniform Dis-
tributions

Inherently, Monte Carlo simulations always consume a huge
amount of random numbers. To obtain the maximum hardware
efficiency for our implementation, we have developed a new
random number generator for non-uniform distributions tai-
lored to our application.

For our option pricing accelerators, we need two inde-
pendent, normally distributed random numbers for each time
step of a single simulated stock price path. In general, non-
uniformly distributed random numbers are generated in two
steps: First, a uniform random number generator creates uni-
formly distributed values, and in a second step this number is
transformed into the desired target distribution.

For the uniform random number generation, a lot of research
has already been made leading to efficient and well-proven
implementations, such as the Mersenne Twister MT19937 that
we use. The three main approaches for obtaining non-uniform
distributions are transformation, rejection, and inversion meth-
ods [15].

For FPGAs, inversion methods are the usual way to go.
They combine many desireable properties: by applying the
respective inverse cumulative distribution function (ICDF),
they transform every input sample x ∈ (0, 1) from a uniform
distribution to one output sample y = icdf(x) of the desired
output distribution by using piecewise polynomial approxima-
tion of the ICDF. The works of Woods and VanCourt [17] and
Cheung et al. [4] show FPGA implementations of the inversion
method.

However, both implementations use fixed-point number
representations at the input. This leads to a loss of precision
in the tail regions where the probability of a value lying there
is very low. But these extreme events can have a large impact,
for example for options with barriers it is crucial to know if a



barrier was hit or not, since it completely changes the refund
conditions. We have therefore developed a new implementa-
tion based on floating-point representation that provides the
same precision over the whole ICDF implementation at much
lower hardware costs. This work has been presented at the
2010 International Conference on ReConFigurable Computing
and FPGAs (ReConFig) in December in Cancún, Mexico [6].
Our random number converter unit requires only about half
of the area compared to other state-of-the-art implementations
by even higher numerical precision.

To validate our work, it was crucial to develop a new testing
methodology, since standardized test suites do not exist for
non-uniform distributions. This work has been carried out in
cooperation with Elke Korn who has a lot of knowledge in the
field of random numbers. The methodology and the validation
results for our implementation are also presented in the paper.
Our random numbers did not show any noticeable problems
in the stochastic tests and also perfectly passed two different
application simulations.

B. Fully Parallel Hardware Accelerator

To the best of our knowlege, no hardware implementations
of option price accelerators based on the Heston model exist
at the moment. We have therefore started with the first imple-
mentation, that is nearly finished now. The hardware is fully-
parallel, fully-pipelined and designed for high throughput.
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Fig. 4. Fully Parallel Accelerator Structure

Figure 4 shows the structure of one pipelined accelerator
circuit. In each clock cycle, our unit consumes two normally
distributed random numbers, one for the stock price variation
and one for the volatility variation. The Heston step generator
unit calculates the price and volatility values for the next
time step based on a multi-level Monte Carlo algorithm. The
pipeline depth is about 60 stages. In order to maximally
utilize the pipelined hardware, it computates one time step
for 60 assets in parallel, before moving to the next time
step. The values for the respective time steps are stored in
a memory temporarily. The coarse step memory holds interim

values for a higher step width, this means for a lower Monte
Carlo simulation level. In the configuration memory, all model
parameters are stored.

Due to the inherent parallelism of Monte Carlo simulations,
it is not only feasible but self-evident to instantiate as many
of these circuits as possible on an FPGA in order to increase
the simulation throughput.

The accelerator is implemented on a Xilinx ML-605 evalula-
tion board equipped with a Xilinx Virtex-6 FPGA. The board
is connected via Gigabit ethernet to a host PC running the
user interface and the program that calculates and sets the
configuration values for the accelerator based on the retrieved
simulation results.

Synthesis and benchmarking results will be available soon.
We are currently supporting single- and double-precision
floating-point computations and are working on a fixed-point
implementation as well.

VI. OUTLOOK AND FUTURE WORK

Also for the intended future work a close cooperation
between financial mathematics and electrical engineering will
be mandatory, since we are planning to research aspects out
of both fields.

One characteristic of the Monte Carlo method is the inherent
capability to parallelize the calculation. It therefore makes no
difference whether several calculations are done in parallel but
slowly or only one calculation is done at high speed, as long
as the number of calculations remains equal altogether. At the
moment, our parallel implementation allows simulating one
time step on many assets simultaneously. The whole procedure
of calculating one time step is fixed on the FPGA and limited
to a single algorithm that is set at design time.

One possible way to improve this is to sequentially com-
pute the basic calculations needed for one time step on a
Application-Specific Instruction-Set Processor (ASIP) within
the FPGA, i.e. it is runtime-programmable. This procedure
can reduce the required area and allows to calculate various
algorithms since the functionality is defined in a corresponding
program. It is therefore sufficient to load a different program
without changing the hardware. The ASIP will occupy much
less area than the parallel implementation presented in Sec-
tion V-B, therefore many ASIPs can be instantiated in parallel.
We are currently investigating the necessary instruction set.

To increase the speed of the implementation even more,
the floating-point computation can be replaced by fixed point
computations. In order to do so, errors resulting from the use
of fixed-point calculations have to be approximated. This task
will also require both theoretical and practical expertise.

Besides working on the implementation, the benchmark
is very important to evaluate the designs. It will also allow
to research fixed-point solutions with respect to necessary
precision. Further steps will be to publish the analysis of the
algorithms with the benchmark in a journal. To increase the
transparency even more, we are currently setting up a web
site offering all the program code used to create the analysis.
It will contain an implementation of the multi-level and the



crude Monte Carlo algorithm with a focus on the calculation
complexity rather than the implementation.

To provide more benchmarking results, also for different
architectures, we are working on a GPGPU implementation.
It provides more flexibility and less implementation work than
hardware designs do, but also requires higher energy consump-
tion. In order to verify this assumption the implementation is
required. The Monte Carlo simulation algorithm for the Heston
model is currently carried out as a student work.

Moreover, we are currently researching on real-time accel-
eration of financial calculations. This means that hardware or
GPGPU accelerators are linked to real-time data streams. This
approach seems to be very promising for keeping track with
the prices changing quickly in high-frequency trading.

VII. CONCLUSION

The financial world is running faster and faster and the
importance of energy consumption increases drastically. To
address this challenge the question of pricing double barrier
options in the Heston setting is faced. As the model is more
complex than the famous Black-Scholes model and these
types of options are path dependent, the algorithms for the
calculations are more distinct and also the implementation
thereof. In order to be able to cope with the strong connection
between the algorithm and the implementation, a combined
mathematical and electrical engineering view is needed. (CM)2

provides a perfect framework to do so.
To approximate the pricing process Monte Carlo simulations

are used. For a good implementation a fast algorithm with
an adjusted implementation thereof is needed. In order to
distinguish the different algorithms we have created a bench-
mark set for double barrier options. This benchmark allows to
fairly analyze and compare the diverse algorithms and designs,
which is a very important issue due to the big differences in
the convergence speed of these algorithms.

For the target architecture, using FPGAs is the hardware of
choice if implementation time is not considered. It allows fast
computation with low energy consumption. Nevertheless, op-
timal FPGA designs require deep understanding of the FPGA
characteristics and the calculations need to be optimized for it.
One commonality of all the Monte Carlo algorithms is the use
of (pseudo-)random numbers. In the Heston setting standard
normal random numbers are used. There are procedures to
create these running efficiently on GPGPUs and CPUs. A
new method was presented which is very efficient for an
implementation on a FPGA.

The detailed analysis of the diverse algorithms was used to
make an efficient implementation. Therefore the algorithm is
implemented on an FPGA. This should allow a fast compu-
tation with low energy consumption. As far as we know, this
will be the first implementation of a Monte Carlo simulation in
the Heston model on a FPGA. Furthermore it will be the first
implementation of the multi-level Monte Carlo method on this
hardware. Thus this work expands the field of implementations
of financial mathematical problems on dedicated hardware in
several ways as new concepts are taken into consideration.
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