
Infrastructure Support for Contextual Applications - An
Experience Report

Damián Arregui1, Sophie Dupuy-Chessa2,
Martin Muehlenbrock1, and Jutta Willamowski1

1 Xerox Research Centre Europe
Meylan, France

Firstname.Lastname@xrce.xerox.com
2 Laboratoire CLIPS-IMAG

Grenoble, France
Sophie.Dupuy@imag.fr

Abstract. In this article we report our experience on building a contextual ap-
plication with two different middlewares: the Context Toolkit from Georgia Tech
and the Coordination Language Facility (CLF) from XRCE. In our email noti-
fier sample application people receive audible or visual notifications about se-
lected incoming emails at their current locations, e.g. in a colleague’s room. Al-
though rather straightforward, this application provides a good starting point for
discussing requirements on software infrastructures for contextual computing.

1 Introduction

Context-aware computing [1], allowing an application to react to its actual context, is
gaining increasing interest. Supposing that contextual computing requires appropriate
support from the underlying infrastructure, we conducted a first experiment in order to
help us identifying these requirements. We implemented a simple contextual application
on top of two different middlewares, the Context Toolkit from Georgia Tech [2] and the
Coordination Language Facility (CLF) from XRCE [3]. We chose the former because
it is one of the few freely available context-aware platforms, and the latter because we
wanted to evaluate our own in-house platform as support for contextual applications.

For the experiment we wanted to benefit from our existing environment, consisting
essentially of iButtons3 as directly available sensors. The system consists of sockets
that are connected to desktop computers in a number of rooms, and coin-sized iButtons
that are carried by the users and are plugged into an available socket when entering a
room. We developed an email notifier application, which notifies users at their current
location, e.g. in a colleague’s room, about new and important email messages.

The idea of forwarding messages can already been found in early ubiquitous com-
puting systems. Roy Want and his colleagues report that the most common usage of the
active badge location system was by the receptionist who routinely used it when for-
warding phone calls to the location of a recipient’s current location [4]. More recently, a
communication support system has been developed that uses location information that

3 http://www.ibutton.com/



is available from the cellular phone operator to provide a dynamic phone pool with
entries ranked according to the location information [5].

In the email notifier application, users specify relevant emails by means of criteria
on its sender or subject. If such an email arrives and the system localises the user in an-
other room through his hardware iButton, it sends a notification (sound and/or graphic)
to the appropriated host. Therefore, the application first needs to gather sensor infor-
mation as well as email data, then process this data and match it with user information
such as preferences and filtering criteria, and finally, if necessary, trigger some user
notification mechanism.

This project provided use with some conclusions on using middleware to support the
development of an application that uses contextual information such as user location. In
the next two sections we describe our experience with implementing the email notifier
application on top of the Context Toolkit on one hand and the Coordination Language
Facility on the other hand. Section 4 then exposes the main requirements we identified
as a result of these implementations.

2 The Context Toolkit

2.1 Context Toolkit description

The Context Toolkit, developed at Georgia Tech [2], is a Java-based framework that
facilitates the development and deployment of context-aware applications. It includes
different building blocks for capturing, interpreting, and aggregating raw information
stemming from sensors:

– Context widgets collect information from the environment through the use of soft-
ware or hardware-based sensors. For instance, the iButton widget is a pre-
defined context widget that sends a message to other components whenever an
iButton is plugged into the sensor.

– Interpreters abstract away from raw context data into richer forms of information.
A typical interpreter included in the context toolkit maps iButton identifiers to peo-
ple’s names.

– Aggregators collect context information related to the different entities in the envi-
ronment (people, places, etc.). An aggregator can for example subscribe to several
context widgets to receive information about a certain person.

– A discoverer, like a name service, provides information on locations and protocols
of available components. This component is not available in the current version of
the Context Toolkit4. This means that the structure of the application is rather static
since no new sensors can be added at runtime.

These components communicate over a network to compute a contextual state. In
general, the Context Toolkit provides processing of contextual information in the fol-
lowing manner: whenever a component receives a message from another component, it
extracts the information from the message, processes the information in some way (this
has to be implemented by the system developer), and sends one or more messages to
other components.

4 http://www.cc.gatech.edu/fce/contexttoolkit/



Fig. 1. Email Notifier Architecture in the Context Toolkit.

2.2 Implementation

For the email notifier we used and extended some of the pre-defined components and
added some new ones. In our application, the context consists of the users’ locations
and the arrival of new email (see figure 1). This information is captured by two different
widgets for a real world sensor and a service sensor, WpersonNamePresence and
WEmailDetection, respectively.

Each WpersonNamePresencewidget is connected to an iButton sensor and pro-
vides information about the presence of users (when having their iButton plugged in).
An interpreter IButton2Name maps identifiers to user names.

The WEmailDetection is a new widget that automatically scans a mail server
for incoming email. There is one widget for each user, connected to a user interface
EmailUI that allows for specifying user related data (a simple user profile) such as
a user name, a password, and a mailbox to scan as well as to define conditions on the
sender or subject of an email to trigger the user notification. There is no generalized
way in the Context Toolkit to define and check distributed conditions on contextual
states. Here, it has been implemented by adding a listener to the thread that monitors
the mailbox and by checking the conditions by means of ordinary if-then statements.

A pair of these widgets is running on each of the users’ computers. In addition, for
each user an aggregator Suser collects information on the user from all WEmailDe-
tection widgets. Due to the limitation described above, no new users can be added
at runtime. In case an important email arrival is detected by WEmailDetection,
a message is sent to the component PersonNamePresenceAgg, which requests
the current user’s location from Suser and forwards the message to the appropriate
widget.



2.3 Lessons Learned

The Context Toolkit represents a good starting point for doing your own contextual
application by identifying components such as widgets, interpreters, and aggregators. It
provides some concepts to elegantly design contextual applications. The architecture is
rather easy to understand, so new developers can quickly build contextual applications.
However, concrete support to developers is sometimes insufficient:

– Interpreters provide currently only very simple mappings, e.g. linking iButton iden-
tifier to user name. It would be interesting to develop them in order to integrate more
complex reasoning like machine learning techniques.

– There is no high level abstraction for situations. For instance, the situation where a
user is docked somewhere and receives an email cannot be expressed easily. Appli-
cation logic and context interpretation must be encoded in Java. So they cannot be
expressed by end users or dynamically changed by developers.

– Even if the toolkit supports distributed components and their interaction through
conditions placed on the subscription or query request, it lacks a discovery service
and support for distributed application setup and monitoring. In particular, new
components cannot be added at runtime.

In conclusion, the Context Toolkit currently seems mainly targeted at small applications
in rather static settings. This accords with findings elsewhere [6]: “The framework and
toolkit is an elegant way to design and implement context-aware applications for simple
and highly routine contextual situations.”

3 The Coordination Language Facility

3.1 CLF Description

CLF [3] is a middleware platform aimed at coordinating distributed active software
components over a Wide Area Network5. Mekano complements the CLF platform
with a library of reusable coarse grain components and component development tools.
CLF/Mekano have been used in the implementation of various distributed applica-
tions [7] deployed across multiple intranets.

CLF relies on the resource-based programming paradigm [8, 9]. It models objects
as resource managers, and the interactions between them as transactional resource ma-
nipulations. The resources managed by CLF objects are tuples of strings, each string
element containing either text, string-encoded, or marshalled objects. They may repre-
sent events, data records, service offers, etc.

To manipulate their resources, CLF objects offer two kinds of interfaces: direct
methods and services. Direct methods implement traditional remote method invoca-
tions on single objects while services allow to coordinate the manipulation of resources
across multiple objects. The coherence with respect to the access and manipulation of
resources across a set of object services is achieved through the CLF protocol, This

5 Available under the name of STITCH at http://www.alphaave.com/



protocol, deployed on top of the object services, consists of three phases, negotiation,
performance, and notification.

The negotiation phase, queries each service for resources matching a given filter.
On such a request, the service returns a potentially infinite stream of offers identified
by unique actionIds. The performance phase, unrolls a classical two-phase commit
protocol over the set of services, ensuring the atomic execution of a selected set of
actions obtained during the negotiation phase. To achieve atomicity, it first attempts to
reserve all the resources corresponding to the selected actionIds. If successful, it
enacts all actions. Otherwise, if any reservation fails, it cancels all previously executed
reservations. Finally, the notification phase allows for asynchronous creation of new
resources.

CLF provides a scripting language exploiting the CLF object model and services
through the above described protocol. It views coordination as a complex block of
inter-related manipulations of resources held by a set of objects. CLF scripts describe,
through rules, the expected global behavior of such blocks in terms of resulting resource
manipulations. But they abstract away from the detailed sequencing of invocations of
the CLF interaction verbs required to achieve this behavior. This abstraction feature
considerably simplifies the design and verification of coordination scripts.

In a CLF application, dedicated CLF objects called coordinators enact the coor-
dination scripts. As any CLF object, coordinators manage resources representing CLF
coordination scripts and the rules which compose them. The possibility to dynamically
modify the set of rules held by a coordinator allows to dynamically adapt the behavior
of an application to contextual needs.

3.2 Implementation

It turned out to be straightforward to translate the application scenario described in
section 1 into resource manipulations. We had to figure out which would be the compo-
nents involved in the application and which services they should provide, and to write
the appropiate coordination script to wire them together. The types of the application
components and their associated services are:

– Workstation: Each machine runs one Workstation component connected to the
application, providing the IsButtonDocked service for the local iButton dock,
and the Popup service to show a window on the local display.

– IMAP: This component encapsulates the IMAP [10] e-mail server, and provides
filtered access to the users’ mailboxes through the filteredMail service.

– DataCenter: This component holds some application specific data, i.e. the mail
filters and iButton identifier associated to each user, the notification tickets, and the
list of registered machines. These are resp. accessible through the UserFilter,
UserButton, Notification and YellowPages services.

Besides, two infrastructural components are used:

– NameServer: The NameServer allows to dynamically resolve service names into
network addresses.



– Coordinator: The coordinator enacts the coordination scripts representing the
application logic (more details below).

In fact, two CLF rules6 are enough to express the desired behavior:

‘userFilter(userId, IMAPfilter) @
‘filteredMail(userId, IMAPfilter, mailId, from, to, subject) @
buildMsg(from, to, subject, msg)
<>- notification(userId, msg)

notification(userId, msg) @ ‘userButton(userId, buttonId) @
‘yellowPages(machine) @
‘isDocked(machine, ’IsButtonDocked’, buttonId, ’docked’)
<>- popup(machine, ’Popup’, msg)

The first rule retrieves regularly, for each user, the new incoming e-mails matching
a particular filter and builds a notification message. It inserts a resource made up of this
message and the user’s id in the Notification service.

Each notification resource triggers in the second rule for each registered machine a
check whether the users iButton is docked there. In that case it inserts a new resource
in the Popup service of the machine, which results in showing a notification window
on the corresponding display.

3.3 Lessons Learned

The CLF middleware targets distributed applications in a general sense, but it seems to
match well with the contextual aspects introduced in our scenario. Indeed, it provides a
number of features that facilitate the implementation:

– The resource-based paradigm allows to uniformly encapsulate a very diverse set
of components, contextual or not. So CLF does not provide a specific help (like
interpreters or aggregators) to build contextual components; but their development
is similar to any other one.

– The negotiation phase of the CLF protocol allows to capture the asynchronous and
reactive nature of a contextual application.

– The performance phase of the CLF protocol supports the need to coherently verify
distributed contextual conditions.

– The scripting facility allows to easily define, modify and reuse the application logic,
hiding at the same time the complexity of the CLF protocol.

– The built-in component library and tools for application deployment and monitor-
ing ensure a comfortable development environment.

Finally, it is important to stress the fact that the full application was running in only
a week’s time. Most of the work went into encapsulating the external entities, namely
the IMAP server and the iButton dockstation: as we were already familiar with CLF

6 Output parameters are underlined. The backquote character indicates that the resource should
not be consumed during the performance phase.



we didn’t have to pay the price of learning the resource-based programming paradigm.
Developers who are new to CLF should take the time to grasp this paradigm, which is
essential to be proficient at building components and weaving them together with the
scripting language.

Moreover if we can expect developers to learn writing application logic with CLF
rules, these rules are not adapted to end users. End users cannot specify the situations
where they want the system to react. This would require a simplified or graphical ver-
sion of the CLF scripting language.

However, real-life applications would certainly be much more complex than our
email notifier. People interact with increasingly diverse hardware which is often mobile
itself. Contextual data provided by sensors is abundant but noisy, and of many different
kinds (e.g. temperature, sound, movement). Making sense of all these inputs will require
an infrastructure capable of advanced multi-layered reasoning. Such issues are further
discussed below.

4 Where to Go from There

Having reported on our experience, in this section we point out some of the issues that
still need to be addressed in a software infrastructure supporting the development of
contextual, mobile and device-based applications.

4.1 ”Standard” Aspects of Infrastructures

Contextual applications benefit from a number of features common to distributed com-
puting platforms such as reliability, scalability, manageability, re-usability, etc. But they
are particularly demanding in the areas of privacy, reactivity and adaptability.

Privacy turns out to be the outstanding issue if contextual applications will ever be
actually deployed in real-world settings. Some kind of generic access control mech-
anism is needed to protect each user’s private information. The right balance between
granularity and complexity has to be found to produce a system both flexible and usable.
A privacy context could be introduced into existing models. For instance, do not notify
me about any new personal email when I am in my boss’ office, or hide my calendar
data from all applications but the corporation’s meeting scheduling server.

Furthermore, contextual systems have to cope with fast-evolving inputs. Thus they
have to take into account the limited lifetime of data (sensed or inferred) and to react
accordingly. For example in the case of a contextual city guide, I want my personal
profile, interaction history and current location to be aggregated with the central tourist
guide database to provide me with timely indications about interesting sights to visit.
For a system with tens of thousands of widely distributed users this requires an infras-
tructure capable of delivering the required efficiency, probably involving hierarchical
structures with some level of replication.

In fact, being able to cope with as many unforeseen situations as possible is prob-
ably the strongest requirement for the underlying infrastructure. At the lowest level,
this implies acting as an interoperability layer, hence providing a rich library of compo-
nents able to interact with various hardware devices. Moreover, some components may



be mobile, and should thus be able to dynamically join and leave the system. In our
email notifier application for example, new workstations and iButtons should be able
to seamlessly enter and leave the application. To support this the infrastructure needs
appropriate lookup and discovery mechanisms, similar to those provided by Jini [11].
Once the different components are aware of each other, the infrastructure should provide
the means to bring these ad-hoc networks to life by defining collaborative behaviors as
discussed in the following section.

4.2 Manipulating Contextual Data

Another issue for contextual applications is how to support the intelligent processing
of contextual data at the infrastructure level. Indeed at this level raw data needs to be
collected, filtered, aggregated and interpreted in order to trigger useful actions automat-
ically, without user intervention. In fact, events often appropriately represent contextual
data. In parallel with our experiment, we therefore enhanced CLF with an event model
allowing to quickly and easily integrate context sensors or devices as event producers
and/or consumers [19].

Aggregators and interpreters as proposed by the Context Toolkit are a step towards
processing contextual data, but there is a need for higher abstraction levels. The Cybre-
minder [12] prototype extends the Context Toolkit in this sense, providing some support
for defining “situations” as conjunctions of elementary “sub-situations”, constituted by
constraints on contextual data delivered by widgets and aggregators. The Cybreminder
prototype thus supports rule-based reminders. But there is no discussion on how to
extend this situational approach to other applications, making it a feature of the infras-
tructure. As far as we know, the Context Toolkit does not integrate these results up to
now ; hence, in our application, we had to encode the email notifier logic inside a Java
class, a solution lacking suitable dynamicity and abstraction levels.

Concerning CLF, the scripting feature reminds the rule-based definition of situa-
tional reminders in Cybreminder: it allows to declaratively specify the behavior of an
application, as shown in section 3. However, CLF was designed from a slightly dif-
ferent perspective: providing a generic tool for application developers to express ar-
bitrarily complex interactions between distributed components. It allows for example
to coordinate context sensors and more traditional services like databases or document
transformers, which broadens the horizon of possible applications. It even gives the
possibility to reflexively control the behavior of the middleware itself [13] to perform
contextual adaptation.

Lastly, the uncertainty of data appears as an open issue. Indeed sensors provide data
with varying confidence levels. This has to be taken into account when reasoning on
these data to infer higher level contexts. Therefore a probabilistic model could be inte-
grated in the approaches discussed earlier in this section. If we consider the rule-base
scripting in CLF, a probability level could be assigned by each service to the resources
it holds. Each resource inserted on the right hand side of a rule could be tagged with a
probability value calculated by some function (e.g. product, average) of the probability
values associated to the resources on the left hand side of the rule. Then the new re-
source could trigger an action depending on its probability value, for example only if
this value exceeds a preset threshold.



Related work tackles the issue of manipulating contextual data. [14] proposes a
contextual extension of the context widget which models relation between contextual
data and identifies six basic operations on contextual data. [15] proposes an architecture
where sensor data are abstracted by the concept of cues (e.g. average, standard devia-
tion) and the current situation is derived from cues. The authors also evoke scripting
as the top layer of the architecture. In SOLAR [16] the collected events flow through
a graph of operators (i.e. filter, merge, aggregate and transform). In [17] the authors
propose to use automated path creation to dynamically combine a set of operators. [18]
presents a location service that interprets location sensed data into a location-technology
independent format by representing location information in terms of regions and inter-
actions between regions.

These proposals, much like the CLF scripting language, clearly target application
developers. It remains a challenge to build appropriate tools to empower end-users for
working with context. We are currently exploring the possibilities of a graphical inter-
face which, even if it will not provide all the features of the scripting language, may
allow end-users to taylor contextual applications to their own needs.

5 Conclusion

In this article we reported our experience with using two different-purpose infrastruc-
tures to implement the same contextual email notifier application: the Context Toolkit
as dedicated contextual platform, and the CLF as general purpose distributed compo-
nent coordination framework. Our goals were to gain a first expertise in developing
contextual applications on one hand, and to better understand requirements on soft-
ware infrastructures for contextual computing on the other hand. In conclusion, we
want to emphasize two points. First, as contextual applications are heterogeneous and
distributed by nature, their implementation requires efficient interoperability and dis-
tribution support. Second, context processing becomes quickly complex and requires
high level abstractions, like situations.

Concerning the first point our experiment seems to show that currently available
contextual platforms, or at least the Context Toolkit, lack some basic features which
come for free in generic distributed computing platforms. Concerning the second point,
both the Context Toolkit through Cybreminder, and the CLF through its scripting lan-
guage adopt a rule-based approach which allows to declaratively specify behavior.
Rules seem appropriate to easily express conditions on contextual data, generate in-
termediate context, and finally trigger the required application behavior.

Overall, adapting and enriching a general purpose platform like CLF with contex-
tual features seems feasible and appropriate. According to the requirements introduced
in section 4, the CLF middleware provides a good support for interoperability and dis-
tribution, even if it can be improved for look-up and discovery mechanisms. It also
proposes a high level of abstraction to manipulate contextual data through its script-
ing rules. Of course they must be adapted for fast-evolving and uncertain data. We still
need to refine our understanding of how a “generic” platform like CLF must be adapted
to also tackle other problems of particular interest in contextual computing. Efficient
solutions to issues such as privacy and data uncertainty remain to be found.



References

1. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Report
TR2000-381, Dartmouth College, Computer Science (2000)

2. Dey, A.K.: Providing Architectural Support for Building Context-Aware Applications. PhD
thesis, College of Computing, Georgia Institute of Technology (2000)

3. Andreoli, J.M., Arregui, D., Pacull, F., Riviere, M., Vion-Dury, J.Y., Willamowski, J.:
CLF/Mekano: a framework for building virtual-enterprise applications. In: Proc. of
EDOC’99, Mannheim, Germany (1999)

4. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM
Transactions on Information Systems 10 (1992) 91–102

5. Nakanishi, Y., Takahashi, K., Tsuji, T., Hakozaki, K.: iCAMS: A mobile communication
tool using location and schedule information. In Mattern, F., Naghsineh, M., eds.: Pervasive
2002, Berlin, Springer (2002) 239–252

6. Greenberg, S.: Context as a dynamic construct. Human-Computer Interaction 16 (2001)
7. Arregui, D., Pacull, F., Willamowski, J.: Yaka: Document notification and delivery across

heterogeneous document repositories. In: Proc. of CRIWG’01, Darmstadt, Germany (2001)
8. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming

Languages and Systems” (1985)
9. Andreoli, J.M., Arregui, D., Pacull, F., Willamowski, J.: Resource-based scripting to stitch

distributed components. In: Proc. of ECIS 2002, Beijing, China (2002)
10. Crispin, M.: Internet Message Access Protocol. RFC 2060, IETF (1996)
11. Arnold, K., Wollrath, A., O’Sullivan, B., Scheifler, R., Waldo, J.: The Jini specification.

Addison-Wesley, Reading, MA, USA (1999)
12. Dey, A.K., Abowd, G.D.: Cybreminder: A context-aware system for supporting reminders.

In: HUC. (2000)
13. Arregui, D., Pacull, F., Willamowski, J.: Rule-based transactional object migration over a

reflective middleware. In: Proc. of Middleware 2001, Heidelberg, Germany (2001)
14. Coutaz, J., Rey, G.: Foundations for a theory of Contextors. In: Proc. of the 4th International

Conference on Computer-Aided Design of User Interfaces - CADUI’2002, Valenciennes,
France, Kluwer Academics (2002)

15. Schmidt, A., Laerhoven, K.V.: How to build smart appliances? IEEE Personal Communica-
tions 8 (2001)

16. Chen, G., Kotz, D.: Supporting adaptive ubiquitous applications with the SOLAR system.
Technical Report TR2001-397, Dartmouth College, Computer Science (2001)

17. Hong, J.I., Landay, J.A.: An infrastructure approach to context-aware computing. Human-
Computer Interaction 16 (2001)

18. Naguib, H., Coulouris, G.: Location Information Management. In: Proc. of UbiComp’2001.
Number 2201 in LNCS, Atlanta, USA, Springer Verlag (2001)

19. Arregui, D., Fernstrom, C., Pacull, F., Rondeau, G., Willamowski, J.: Stitch: Middleware
for ubiquitous applications. In: Proceedings of Smart Objects Conference 2003, Grenoble,
France (2003)


	Str: 
	:1121: 113
	:1131: 114
	:1141: 115
	:1151: 116
	:1161: 117
	:1171: 118
	:1181: 119
	:1191: 120
	:1201: 121
	:1211: 122



