
Selection of Web Services for Composition

Using Location of Provider Hosts Criterion

Zakaria Maamar1, Quan Z. Sheng2, and Boualem Benatallah2

1 College of Information Systems
Zayed University, Dubai, U.A.E

zakaria.maamar@zu.ac.ae
2 School of Computer Science & Engineering

The University of New South Wales, Sydney, Australia
{qsheng,boualem}@cse.unsw.edu.au

Abstract. We present a Web service composition approach that relies
on three selection criteria: execution cost, execution time, and location
of provider hosts. A Web service is an accessible application that can be
automatically discovered and invoked by other applications and humans.
Web services can be composed into high level business-processes that
users trigger in order to satisfy their needs. Because providers can have
Web services in common, criteria are needed to select which Web services
will be considered for composition. Location of provider hosts is among
these criteria and aims for example at reducing the number of remote
interactions between provider hosts.

1 Introduction

Nowadays, several businesses are adopting for their operation Web-based solu-
tions, aiming for more process automation and more worldwide visibility. Thanks
to the Web technology, users from over the world can satisfy their needs by
browsing and triggering the services of these businesses. Such services are usu-
ally known as Web services [1]. The advantages of Web services have already been
demonstrated in various projects [1] and highlight their capacity to be composed
into high-level business processes. For example, a summer vacation business pro-
cess calls for the collaboration of at least four Web services: flight reservation,
accommodation booking, attraction searching, and user notification. These Web
services have to be connected according to a certain flow of control (first flight
reservation and then accommodation booking and attraction searching). Multi-
ple technologies are associated with the success of Web services including WSDL,
UDDI, and SOAP [4]. These technologies aim at supporting the definition of Web
services, their advertisement, and their binding for triggering purposes.

With the progress of the telecommunication technologies, new Web ser-
vices are devised for the benefit of persons who are most of the time on the
move (e.g., sales representatives). These persons heavily rely on mobile devices
(e.g. PDAs) to conduct their daily operations. M-services (M for Mobile) denote
these new Web services [6] and are meant to be either 1) executed remotely from
mobile devices or 2) transferred through a wireless channel from their host to
mobile devices on which their execution is performed.

In general, composing multiple services1 rather than accessing a single service
is essential and provides benefits to users. Discovering the component services,
inserting the services into a composite service, triggering the composite service
and its component services for execution, and monitoring the execution of the
composite service are among the operations that users will have to be in charge.
Most of these operations are complex, although repetitive with a large segment
suitable to computer aid and automation. Therefore, Software Agents (SAs) are
deemed appropriate to assist users in their operations [7]. SAs are autonomous
entities that act on behalf of users, make decisions, interact with other agents,
and migrate to provider hosts if needed.

The identification of the component services to constitute a composite service
is basically a process that relies on the use of selection criteria. Execution cost,
execution time, reliability, and reputation, just to cite a few are among the se-
lection criteria that have commonly been used in various projects. In this paper,
we consider location of provider hosts as another criterion that is worthwhile
to integrate in the selection process of services. Provider hosts are associated
with computing resources on top of which services are executed. By gathering
the maximum number of services for execution in the same provider host2, the
following advantages can be obtained: 1) remote interactions between provider
hosts can be reduced, 2) migrations of agents to provider hosts can be avoided,
and 3) remote exchange of data between provider hosts can be reduced, too. In
this paper, we aim at presenting a service composition approach that uses the
location of provider host as a major selection criterion.

Section 2 overviews Web services. The agentification of an environment of
Web services is presented in Section 3. Section 4 discusses the preparation of
services for composition. Section 5 presents our ongoing work. Finally, Section 6
overviews related work and draws our conclusions. It is made clear at that level
that the mechanisms for discovering the component services of a composite ser-
vice, while important, do not fall within the scope of this paper.

2 Web services

A Web service is an accessible application that can be automatically discovered
and invoked by other applications (and humans as well). An application is a Web
service if it is [2]: 1) independent as much as possible from specific platforms
and computing paradigms; 2) developed mainly for inter-organizational situa-
tions rather than for intra-organizational situations; and 3) easily composable
(i.e., its composition with other Web services does not require the development
of complex adapters).

Maamar et al. introduce M-services as a specific type of Web services [5]. Two
definitions are associated with an M-service. The weak definition is to remotely
trigger a Web service from a mobile device for execution. In that case, the Web

1 In the rest of this paper, Web service and service are interchangeably used.
2 It is assumed that this host has the capabilities to meet the execution requirements

of the services.

service is an M-service. The strong definition is to transfer a Web service through
a wireless channel from its hosting site to a mobile device where its execution
takes place. In that case, the Web service is an M-service that is: 1) transportable
through wireless networks; 2) composable with other M-services; 3) adaptable
according to the computing features of mobile devices; and 4) runnable on mobile
devices. In this paper, we only consider the M-services that comply with the
weak definition. The M-services that comply with the strong definition have
been considered elsewhere [5].
In the rest of this paper,

– The term composite service (C-service) denotes the list of component ser-
vices, whether composite services or primitive services (P-services), that are
involved in a composition.

– A C-service is deployed in two different versions: composite Web service for
users of fixed devices and composite M-service for users of mobile devices.

– A P-service always refers to a Web service.
– A P-service can be invoked for execution either remotely or locally.

3 Agentification of an environment of Web services

For the agentification needs of an environment of services, we decided to deploy
a multi-domain architecture (Fig. 1). Compared to hosting sites, domains are
spread across the network and administrators manage them. Two types of do-
main exist: user-domain and provider-domain. We assume the existence of one
user-domain (independently of the issues of bottleneck or single point of fail-
ure) and several provider-domains. A domain is a computing platform on top
of which portal of services are deployed and also agents undertake their opera-
tions. Basically, two types of software agents have been considered during the
agentification process. User-agents act on behalf of users. And, provider-agents
act on behalf of providers announcing their services to users. Users browse the
portal of C-services from different devices: fixed devices such as desktops and
mobile devices such as PDAs. The deployment of a C-service is not affected by
the type of the device from which it is launched. The only difference occurs at
the communication protocol that connects users to the portal of C-services. For
users of fixed devices, HTTP is the protocol. For users of mobile devices, WAP is
the protocol.

In Fig. 1, the user-domain has two zones: service-zone and working-zone. The
service-zone has a dedicated portal from which C-services are managed in terms
of specification, development, and deployment. The service-zone of the user-
domain has also a pool from which user-agents are created. For their installation,
user-agents are located in the working-zone of the user-domain. User-agents are
mobile and thus, have the ability to migrate from one domain to another based
on the strategy that will be adopted for invoking services (Section 4). For each
C-service that a user selects, a user-agent is associated with that C-service for
performance purposes.

A provider-domain consists of a working-zone and several portals of P-services.
Each portal is related to a category of P-services such as education and travel.
The working-zones receive user-agents arriving from the user-domain or from
other provider-domains. Within these working-zones, installation and control
procedures of user-agents are executed. Portals of provider-domains are associ-
ated with provider-agents that handle the invocation requests that user-agents
submit to the P-services. A user-agent submits a local request to a provider-agent
in case both agents reside in the same provider-domain. This means that the user-
agent has migrated to that provider-domain; the user-agent arrives either from
the user-domain or from a different provider-domain. In case the user-agent and
provider-agent are in separate domains, the user-agent submits a remote request
to the provider-agent so, a P-service can be executed.

User-domain

Working-zone

Portal of
C-services

Bank of
user-agents

Service-zone

Provider-domain1

Working-zone

Provider-domain2

Working-zone

MigrationRemote interaction

Migration

Remote
interaction

User-agents

Portal 21 of P-services
Portal 11 of P-services

Portal 12 of P-services

Administrator

Provider-domain3 Provider-domain4

Provider-agent User-agent Network P: Primitive C: Composite

Administrator Administrator

Users

WAP

HTTP

Local
interaction

Fig. 1. Agent-based multi-domain architecture

4 Composition of Web services

For any C-service, the preparation of its component P-services for composition
is based on three selection criteria: execution time, execution cost, and location
of provider hosts (provider hosts correspond to provider-agents associated with
their provider-domain). The first two selection criteria are intimately related to
a P-service. The third selection criterion aims at gathering in the same provider-
domain the maximum number of P-services for execution, reducing 1) the num-
ber of remote interactions between domains, 2) the number of migrations of
user-agents to domains, and 3) the number of data transfer between domains.
The ranking of domains is conducted as follows. First, the domain of where a

service is being executed is considered. By selecting this domain, remote data
exchanges between services are avoided. Next, the domain of where the user-
agent resides now is considered. By selecting this domain, local invocations of
services as well as local data exchanges between services are enabled. Finally, in
case none of the aforementioned cases happens, any other domain is considered.

4.1 Definitions

A C-service is an ordered set of component P-servicesi = 1, ···, n. Each P-servicei

is offered by several provider-agentsj = 1, ···, m. In the preparation process, the
user-agent aims at reaching two goals: associate a P-service p.si with a provider-
agent pro.agtj , and define the strategy of invoking the P-service p.si (remotely
or locally).

Let us assume a C-service CS of p P-services, CS = {p.s1, p.s2, · · · , p.sp}. A
deployment of the C-service CS aims at defining the set {< p.s1, pro.agt1, type >
, < p.s2, pro.agt2, type >, · · · , < p.sp, pro.agtp, type >} where

⋃p
i=1 p.si = CS

and for each < p.si, pro.agti, type >(i∈[1,p]) the P-service p.si is provided by the
provider-agent pro.agti and invoked according to remote or local type. It should
be noted that the number of provider-agents that contribute to the deployment
of a C-service CS is not necessarily equal to the number of P-services that are
involved. Certain provider-agents may contribute to a C-service with more than
one P-service (e.g., < p.s1, pro.agt1, type > and < p.s2, pro.agt1, type >).

Given a P-service p.si, its execution cost is decomposed into two parts:

– Remote.Cost(p.si) includes 1) the cost of establishing a communication link
between the domain of the user-agent and the domain of the provider-agent
of the P-service p.si, plus 2) the cost of performing the P-service p.si, plus
3) the cost of returning the results from the domain of the provider-agent to
the domain of the user-agent.

– Local.Cost(p.si) includes 1) the cost of transferring the user-agent from the
domain in which it is currently located to the domain of the provider-agent
of the P-service p.si, plus 2) the cost of performing the P-service p.si.

Therefore, the execution cost Cost(CS) of a C-service CS is the sum of the costs
of all the P-services, Cost(CS) =

∑p
i=1(Remote.Cost(p.si)⊕Local.Cost(p.si)).

The execution cost of a P-service p.si is either a remote cost or a local cost.

Given a P-service p.si, the execution time T ime(p.si) does not depend on the in-
vocation strategy (i.e., local or remote). Therefore, the execution time T ime(CS)
of a C-service CS is the sum of

– The execution times of all the P-services (
∑p

i=1 T ime(p.si));
– Plus, the estimated communication time of triggering the first P-service

(T ime(CS, p.s1)) after the C-service CS has been initiated;
– Plus, the estimated communication time of triggering the next P-service p.si+1

after the execution of the current P-service p.si is completed

(
∑p−1

i=1 (Remote.T ime(p.si, p.si+1) ⊕ Local.T ime(p.si, p.si+1))). The com-
munication time handles the case of whether the next P-service p.si+1 will
be locally or remotely triggered. It is expected that the time of locally
triggering a next P-service to be neglected because of the small duration
(Local.T ime(p.si, p.si+1) ≈ 0).

4.2 Preparation process

The preparation process to deploy a C-service CS is decomposed into two phases.
Phase 1 consists of searching for the provider-agents that have the P-services.
Because provider-agents can have P-services in common, Phase 2 consists of se-
lecting a specific provider-agent based on the criteria of execution time, execution
cost, and location of provider hosts.

Phase 1: Search for provider-agents As stated in Section 1, through appro-
priate discovering mechanisms the provider-agents that offer the P-service p.si

are known to the user-agent that handles the execution of a C-service. For
each P-service p.si, a set of potential provider-agents exists. This is similar to
< p.si, PRO.AGTi, type > where PRO.AGTi = {pro.agt1, · · · , pro.agtn} is the
list of provider-agents that have the P-service p.si in common. In the example
of CS = {p.s1, p.s2, · · · , p.sp}, the following situations can occur
< p.s1, PRO.AGT1, type >: PRO.AGT1 = {pro.agt1, pro.agt2, pro.agt3}.
< p.s2, PRO.AGT2, type >: PRO.AGT2 = {pro.agt2, pro.agt4}.

Phase 2: Definition of < p.si, pro.agti, type > Because several provider-agents
can have P-services in common (PRO.AGT1 = {pro.agt1, pro.agt2, pro.agt3}),
the association of a P-service with a specific provider-agent has to be completed.
In addition, because of the location criterion the P-services are treated in a serial
way (i.e., one at a time). The definition of < p.si, pro.agti, type > is divided into
two sub-phases.

Phase 2.1 - Initially, the work starts with the P-service p.si (i=1) of the C-
service CS. At this level, only execution cost and execution time criteria are
considered. Each criterion has a weight factor (w ∈ [0, 1]) that a user defines.
From each provider-agent that offers the P-service p.si (i=1), the user-agent re-
ceives the following details about that P-service: execution cost for remote and
local types, and execution time (Equation 1). Because the execution time is
evaluated in seconds, a function converts that time into a monetary cost.

User − agent : p.si (i=1)

pro.aget1 : (Remote.Cost(p.s1
i), Local.Cost(p.s1

i)),
F ct.Cost(T ime(p.s1

i))
...
pro.agetn : (Remote.Cost(p.sn

i), Local.Cost(p.sn
i)),

F ct.Cost(T ime(p.sn
i))

(1)

For each offer, the user-agent selects the minimum cost between the invoca-
tion types and adds that minimum to the cost of the execution time. Further-
more, each selection criterion has a weight factor wtime(Fct.Cost(T ime(p.s1)))+
wcost(min(Remote.Cost(p.s1), Local.Cost(p.s1))). Finally, the user-agent selects
for the P-service p.si (i=1) the minimum offer among all the offers of the provider-
agents. For example,

User−agent : p.si (i=1) �→ pro.agt2 : Remote.Cost(p.s2
i), F ct.Cost(T ime(p.s2

i))
(2)

Based on Equation (2), < p.s1, pro.agt2, remote > is set. The user-agent has first
decided to select pro.agt2 to provide p.s1 and second to remotely invoke p.s1.
This means that the user-agent and pro.agt2 will be in two different domains
during the invocation process.

Phase 2.2 - After the preparation of the P-service p.si (i=1) is finished, the user-
agent starts working on the remaining P-servicesi = 2, ···, p. This time the three
selection criteria are simultaneously considered. We recall that the location crite-
rion is privileged to the other two criteria because of the previously-cited reasons.
According to the location criterion, the provider-agent that will be associated
with the P-service p.si (i∈[2,p]) depends on the provider-agent that has been se-
lected to offer the predecessor P-service p.si−1. The user-agent proceeds accord-
ing to the algorithm of Table 1 (it is assumed that < p.si−1, pro.agti−1, type >
is established). When the user-agent finishes working on the P-service p.si, the
provider-agent and invocation strategy of that P-service are known.

5 Current work - Reliability of execution

The reliability of a Web service is the probability that a request submitted to
a Web service is correctly responded within the maximum expended time frame
[9]. This time frame is mostly published as part of the Web service description.
Reliability is a technical measure that depends on hardware and/or software
configuration of Web services and on network connections between requestors
and service providers. The reliability value can be computed from historical data
about past invocations using for example the number of times that a Web service
has been successfully delivered within the maximum expected time frame, with
regard to the total number of invocations.

Because reliability deals with service execution failures, backup approaches
are deemed appropriate. A Web service cannot be executed for multiple rea-
sons: network connection problems, service disconnected for maintenance, ser-
vice overloaded, just to cite a few. In the following, we present the way reliability
is integrated into the operating of the multi-domain architecture of Fig. 1.

Because we aim at interleaving Web services composition and execution, two
types of agents will be required: user-agent and delegate-agent. Initially, the
delegate-agent associates a Web service with a provider-agent and submits that
information to the user-agent that must be running either in the user-domain
or in one of the multiple provider-domains. The selected provider-agent is part

Table 1. Algorithm of provider-hosts selection

∀ i, i = 2, · · · , p
for each < p.si, PRO.AGTi, type >
if ((pro.agti−1 ∈ PRO.AGTi) = true) // does pro.agti−1 offer p.si?
then begin

| establish < p.si, pro.agti−1, type > // type p.si depends on type p.si−1

end
else begin

| A ← φ // set of provider-agents that are in the same domain as pro.agti−1

| B ← φ // set of provider-agents that are in the same domain as user-agent
| C ← φ // set of provider-agents that are in other domains
| for (j = 0; j < ‖PRO.AGTi‖; j + +) // pro.agti ∈ PRO.AGTi

| begin
| | if domain(pro.agtj) = domain(pro.agti−1)
| | then A ← A ∪ pro.agtj

| | else if domain(pro.agtj) = domain(user − agent)
| | then B ← B ∪ pro.agtj

| | else C ← C ∪ pro.agtj

| end // A ∪ B ∪ C = PRO.AGTi

| if p.si−1 executed remotely // < p.si−1, pro.agti−1, remote >
| then begin
| | if A �= φ
| | then contact provider-agents of A - Go to Phase 2.1
| | else if B �= φ
| | then contact provider-agents of B - Go to Phase 2.1
| | else contact provider-agents of C - Go to Phase 2.1
| end
| else begin // A = B and < p.si−1, pro.agti−1, local >
| | if A �= φ
| | then contact provider-agents of A - Go to Phase 2.1
| | else contact provider-agents of C - Go to Phase 2.1
| end
end

of a pool of potential provider-agents (PRO.AGTi) that have a Web service
in common (Equation 2). Before the delegate-agent starts working on the next
component services, it stores the information about the pool of provider-agents
(e.g., the x best ranked provider-agents from sets A, B, and C of PRO.AGTi,
x <= (‖PRO.AGTi‖ − 1)) for a later use. If the user-agent faces any diffi-
culties in the execution of a service, it immediately contacts the delegate-agent
which is always located in the user-domain. Because the delegate-agent is now
working on the preparation of the remaining component services, it stops its
preparation work and browses the stored pool of provider-agents for the ser-
vice in trouble. The objective is to identify a new provider-agent, inform the
user-agent about this provider-agent, and finally store the newly updated pool
of potential provider-agents. Information on a pool of potential provider-agents
are not deleted until the delegate-agent receives a notification message from the
user-agent that the execution of a service has been successfully completed. Dur-
ing that confirmation exchange, the delegate-agent submits to the user-agent the
details on the next service to execute.

When a delegate-agent receives a message from a user-agent in case of prob-
lems, it interrupts its operations and starts new operations as described in the
above paragraph. When the delegate-agent resumes its work, it has two options.
The first option consists of pursuing the suspended operations. The second option
consists of dropping all the suspended operations. This is due to the location
criterion that may suggest a new set of potential provider-agents to consider.
We recall that the identification of a provider-agent for a service depends on the
current position of the provider-agent of the direct predecessor service.

6 Related work and conclusion

In [3], Chakraborty et al. have introduced a reactive service composition archi-
tecture for pervasive computing environments. The architecture consists of five
layers: network, service discovery, service composition, service execution, and
application. While reviewing Chakraborty et al.’s work, we were interested in
the service execution layer. During the execution of services, this layer might
want to optimize the bandwidth required to transfer data over the wireless links
between services and hence, execute the services in an order that minimizes the
bandwidth utilization. This optimization approach is similar to the location of
provider hosts criterion that we have introduced. With the location criterion, we
aimed at reducing the number of remote interactions between domains, the num-
ber of migrations of the user-agent to domains, and the number of data transfer
between domains. Another relevant work to the location criterion is presented
in [8]. Because it will be challenging to create services that can execute well
on the large variety of devices (problems of diversity and resource constraints),
Messer et al. suggest to transparently offload portions of a service code from
resource-constrained devices to nearby servers [8]. Code offloading requires par-
titioning strategies. If two components interact frequently (e.g., because of many
method invocations), then a partitioning strategy should suggest placing these
components together on one machine; splitting them across the network could

severely affect performance. The aforementioned partitioning strategy has sim-
ilarities with the location of computing hosts criterion. This criterion promotes
the use of local interactions between services as well as between agents. In [8],
the selection of the same host may cause an overloading for that host. In our
research, this situation can be avoided for two main reasons. First, the work is
done at the level of domains of computing hosts and not at the level of comput-
ing hosts. Second, the location criterion helps in finding and ranking domains
(sets A, B, and C in the algorithm). When a domain is considered, traditional
selection criterion (such as execution cost and execution time) are applied to
identify the best computing hosts, and thus the best providers of services.

We presented our work on composing services. Our long-term objective is to
allow users to satisfy their needs regardless of the resources (fixed or mobile)
that are involved in the execution of the services. We suggested two types of
agents (user-agent and provider-agent) in order to undertake the agentification
of the components of a Web service environment. We also suggested an approach
for service composition that is deployed by these agents. The approach uses
different selection criteria for the identification of the best component services
of a composite service. Location of provider hosts is among these criteria and
aims at gathering the maximum number of component services to be executed
in the same computing host (i.e., using the same resource).
References

1. B. Benatallah and F. Casati (Guest Editors). Special Issue on Web Services. Dis-
tributed and Parallel Databases, Kluwer Academic Publishers, 12(2-3), September
2002.

2. B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv Environment for Web
Services Composition. IEEE Internet Computing, 7(1), January/February 2003.

3. D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha. A Reactive Service
Composition Architecture for Pervasive Computing Environments. In Proceedings
of the 7th Personal Wireless Communications Conference (PCW’2002), Singapore,
2002.

4. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Un-
raveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI. IEEE
Internet Computing, 6(2), March/April 2002.

5. Z. Maamar and W. Mansoor. Design and Development of a Software Agent-based
and Mobile Service-oriented Environment. e-Service Journal, Indiana University
Press, 2003 (forthcoming).

6. Z. Maamar, W. Mansoor, and Q. H. Mahmoud. Software Agents to Support Mobile
Services. In Proceedings of the First International Joint Conference on Autonomous
Agents & Multi-Agent Systems (AAMAS’2002), Bologna, Italy, 2002.

7. P. Maes. Agents that Reduce Work and Information Overload. Communication of
the ACM, 37(7), July 1994.

8. A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, T. J. Giuli, and
X. Gu. Towards a Distributed Platform for Resource-Constrained Devices. In
Proceedings of the IEEE 22nd International Conference on Distributed Computing
Systems (ICDCS’2002), Vienna, Austria, 2002.

9. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality Driven
Web Service Composition. In Proceedings of The Twelfth International World Wide
Web Conference (WWW’2003), Budapest, Hungary, 2003.

	Str:
	:661: 67
	:671: 68
	:681: 69
	:691: 70
	:701: 71
	:711: 72
	:721: 73
	:731: 74
	:741: 75
	:751: 76

