
–

Coordination for Distributed Business Systems

L.Andrade1, J.L.Fiadeiro2, A.Lopes3 and M.Wermelinger4

1ATX Software SA
Alameda António Sérgio 7, 2795-023 Linda-a-Velha, PORTUGAL

landrade@atxsoftware.com
2Department of Mathematics and Computer Science, University of Leicester

University Road, Leicester LE1 7RH, UK
jose@fiadeiro.org

3Department of Informatics, Faculty of Sciences, University of Lisbon
Campo Grande, 1749-016 Lisboa, PORTUGAL

mal@di.fc.ul.pt
4Dep. of Informatics, Faculty of Sciences and Technology, New University of Lisbon

Quinta da Torre, 2829-516 Caparica, PORTUGAL
mw@di.fct.unl.pt

Abstract. We motivate, discuss and present extensions to architecture model-
ling techniques through which business systems can support services and appli-
cations that are location and network aware. These extensions provide a com-
plete separation between three concerns: Computation, which accounts for the
way service functionalities are provided in system components, Coordination,
which accounts for the interactions that need to be put in place to enforce busi-
ness rules, and Distribution, which accounts for the need to reconfigure the way
services are provided in reaction to changes in the locations where functional-
ities are computed and the communication infrastructure over which coordina-
tion takes place.

1 Introduction

The advent of the Net and the promise of ever more stable wireless technologies have
completely changed the way information systems are required to support business.
For instance, the user friendliness of PDAs and the speed, relative low cost, and reli-
ability of communication protocols (e.g. GPRS) is creating natural expectations on
companies such as banks, which are now looking for ways of putting in place chan-
nels dedicated to B2C interactions for customers using handheld devices. It is clear
that there will be an increasing demand for more sophisticated applications that can
take advantage of the user friendliness of PDAs, e.g. for integrating services from
different corporations such as consolidated account statements from different banks,
management of personal payment plans, inter alia.

The challenges that the ability of being on-line anywhere and at any time is raising
on software development are, therefore, immense. For a start, we have definitely
shifted from a product to a service-based economy for which systems can no longer

–

be conceived in terms of static client-server relationships between components. Sys-
tems have to be prepared to support business interactions that occur over a network of
distributed locations in which the different parties can be mobile. Mobility means, in
particular, that business services need to be location-aware. For instance, the services
that we can expect from our bank account will be different depending on whether we
are sitting in front of our bank manager, using the Internet at home or the office, us-
ing an ATM on the street, or our PDA while sitting in a traffic jam. Mobility also
means that systems need to be network-aware: the interaction with my account will
have to be updated when I change from using the PDA in the car to my desktop com-
puter when I arrive in my office.

The increased levels of complexity involved in the design, development and
deployment of this new generation of systems, services and applications is no longer
of an algorithmic nature but results, instead, from the need to account for intricate
networks of interconnected components from which the global behaviour of the
system emerges. Each individual component is, usually, sufficiently simple and self-
contained in terms of its computational nature. It is the ability to interconnect these
components dynamically, according the the properties of the distribution topology
over which they are operating, that enables business systems to take advantage of the
opportunities that are being offered by the new networking technologies. In other
words, in the age of Ubiquitous Computing, the challenge is not to program "clever"
algorithms but "clever" interactions. This is the challenge that we have proposed
ourselves to address and on which we wish to report in this paper: to investigate
techniques through which business systems can be made location and network aware.

2 Coordination and Architectures

The approach that we decided to follow comes from the simple realisation that we can
only focus on and configure interactions once these are made first-class citizens, i.e.
available explicitly in system models, not hidden in the code that programs the behav-
iour of individual components. Although this observation seems to be too obvious to
deserve much attention, one just has to remember that object-oriented programming is
a good example of a class of languages in which interactions are, precisely, buried in
the code that implements the components through feature calls and other means of
association [11]!

This ability to separate interactions from computations has been the subject of
study, for the past 10 years, of a research area called "Coordination Languages and
Models" [7]. Languages like Linda, Gamma and Manifold, to name just a few, have
shown how this principle of separation can be made effective from a computational
point of view and how it leads to more flexible composition mechanisms. These same
principle of separation can be found at the core of Software Architectures [2]: it leads
to the explicit representation, as first-class citizens, of architectural connectors as
entities that can be dynamically superposed over computational components to coor-
dinate the way they interact.

–

Our previous work [1] has shown how such an architectural approach ensures that
interconnections can evolve to reflect changes in the business rules that determine
how business entities should interact, or to integrate new business components, with-
out interfering with the rest of the system. It demonstrated how individual compo-
nents can evolve, for instance to take advantage of new technologies or computational
solutions for their functional behaviour, without requiring the other components of
the system to be changed or the global configuration of the system to be updated.

The architectural, coordination-based approach that we have developed has been
characterised, in a canonical way, through a “prototype” Architecture Definition
Language – CommUnity – defined precisely having in mind the formalisation of the
separation of concerns that allows for interactions to be modelled as first-class entities
through connectors. CommUnity, introduced in [5], was conceived as a parallel pro-
gram design language, similar to Unity [4] in its computational model, but adopting a
different coordination model. More concretely, whereas, in Unity, the interaction
between a program and its environment relies on the sharing of memory, CommUnity
relies on the sharing (synchronisation) of actions and exchange of data through input
and output channels. Furthermore, CommUnity requires interactions between com-
ponents to be made explicit whereas, in Unity, these are defined implicitly by relying
on the use of the same variables names in different programs. As a consequence,
CommUnity takes to an extreme the separation between “computation” and “coordi-
nation” in the sense that the definition of the individual components of a system is
completely separated from the interconnections through which they interact

The following example illustrates how CommUnity supports this separation. Con-
sider a banking application in which we have to address the way customers can han-
dle their accounts. A simple, abstract model of a bank account can be given by the
following CommUnity program:

program account is
out number, balance: int
in amount: int
do deposit[balance]: → balance:=balance+amount

 [] withdrawal[balance]: → balance:=balance-amount

What we call a CommUnity program (in fact, a special case of what we call de-
signs in other papers) is a structure of the following form:

program P is
out O
in I

 prv V

do [],
g sh(Γ)

g[D(g)]: G(g) → R(g)

[],
g prv(Γ)

prv g[D(g)]: G(g) → R(g)

� I and O are the sets of input and output channels of P, respectively, and V is
the set of channels that model internal communication. Input channels are
used for reading data from the environment of the component, for instance
the amount with which a customer may wish to make a deposit or a with-
drawal. The component has no control on the values that are made available
in such channels (in the example, it is the customer who decides the value
available in amount). Moreover, reading a value from an input channel does

–

not “consume” it: the value remains available until the environment decides
to replace it.

� Output and private channels are controlled locally by the component, i.e. the
values that, at any given moment, are available on these channels cannot be
modified by the environment without involving the actions declared in the
program. Output channels allow the environment to read data that the com-
ponent may calculate from its current state, for instance the current balance
of the account. Private channels support internal activity that does not in-
volve the environment in any way.

� Γ is a set of action names. The named actions can be declared either as pri-
vate or shared. Private actions represent internal computations in the sense
that their execution is uniquely under the control of the component. Shared
actions represent possible interactions between the component and the en-
vironment, meaning that their execution is also under the control of the envi-
ronment. The significance of naming actions will become obvious below;
the idea is to provide points of rendez-vous at which components can syn-
chronise.

Guarded commands are the means through which the computational aspects can be
described and are associated with actions as follows:

� D(g) consists of the local channels into which executions of the action can
place values. This is what is sometimes called the write frame of g. Given a
private or output channel v, we will also denote by D(v) the set of actions g
such that v∈D(g). In the example, both actions can only interfere with the
value made available in the output channel balance. When the write frame
can be deduced from the assignments performed by the action, we normally
omit it.

� G(g) is the enabling condition (guard) of g. We normally omit it when it is
tautological.

� R(g) is a multiple assignment on D(g). When the write frame D(g) is empty,
R(g) is denoted by skip.

In contrast to what might be expected in the example, the guard of the command
associated with the withdrawal action is true. The idea is that the bank may wish to
provide different policies on withdrawals, for instance depending on the type of cli-
ent, by restricting the guard in different ways. For instance, a strict policy of with-
drawals could be programmed as follows:

program standard_account is
out number, balance: int
in amount: int
do deposit: balance:=balance+amount

 [] withdrawal: balance•amount → balance:=balance–amount

This program is obtained from the previous one by superposing what can be seen
as a business rule, in this case a guard restricting withdrawals to states in which the
balance is greater than the amount requested by the customer. This kind of superposi-
tion can be related to typical uses of inheritance in object-oriented program and illus-
trates why such forms of evolution interfere with the way the components in place are

–

programmed: they require the code that implements the withdrawal to be changed,
and these changes to be propagated to the components that use the service. That is to
say, each time a new business service needs to be offered, its deployment may require
the overall system to be redesigned. This hindrance of “traditional” development
methods, like object-oriented ones, has been analysed and illustrated in more detail in
[1,9].

CommUnity supports instead the externalisation and explicit representation of this
business rule as a regulator that can be connected to the account to restrict the way it
can be used without interfering with its implementation. The regulator can be de-
signed as follows:

program inhibitor is
in big, small: int
do restrict: big•small → skip

This program models a very simple component that is able to block an action (re-
strict) whenever the value that it reads in big is smaller than the value it reads in
small. The idea is to use this inhibitor to model the business rule above by intercon-
necting it with the account in a way that it reads big from balance and small from
amount, and synchronises restrict with withdrawal. This interconnection can be
specified by the following diagram:

cable_2in_1a

 inhibitor account

where
program cable_2in_1a is
in a, b: int
do c:

models a component with no computational behaviour and whose role is to perform
the bindings between channels and establish the rendez-vous required by the inter-
connection. The bindings and the rendez-vous themselves are expressed through the
arrows. Such diagrams are formal, mathematical objects as shown in [6]. Their se-
mantics is given by the program that represents the joint behaviour of the inhibitor
and the account interconnected as specified, which, as proved in [6], is precisely the
standard_account.

Diagrams like the one above represent system configurations in which business
rules are explicitly represented. Hence, they can be evolved by simply replacing the
coordination mechanisms in place. For instance, one can upgrade the standard ac-
count to a more flexible account in which an overdraft is made available by replacing
the inhibitor by the following regulator:

program flexitor is
in big, small, over: int
do restrict: big+over•small → skip

For maximum flexibility, the overdraft limit itself is modelled as an input channel
meaning that its value can be changed dynamically. Because the coordination on the

big←•→balance

small←•→amount

i → ← i hd l

–

use of withdrawal has been separated from its computational aspects, the change of
business rule can be performed by replacing inhibitor by flexitor, which leaves ac-
count unchanged:

cable_2in_1a

 flexitor account

We are aware that this is an oversimplistic example, but its sole purpose is to illus-
trate what an architectural approach centred on coordination can offer in terms of
flexibility in terms of incorporating, dynamically, new business rules, or revising the
ones already in place. Again, we refer to some of our previous papers, e.g. [1,9], for
a more detailed discussion. What we want to address in this paper are the limitations
of the approach in handling the challenges that “ubiquity” raises for business systems.

Indeed, this architectural approach offers only a “logical” view of change. It does
not take into account the properties of the “physical” distribution topology of loca-
tions and communication links. It relies on the fact that the individual components
can perform the computations that are required to ensure the functionalities specified
for their services at the locations in which they are placed, and that the coordination
mechanisms put in place through connectors can be made effective across the “wires”
that link components in the underlying communication network.

The effects of mobility on coordination are only now being recognised as an addi-
tional factor of complexity, one for which current architectural concepts and tech-
niques are not prepared for. As components move across a network, the ability of
locations to deliver the expected services and of the “wires” to support the required
interactions will change as well, which may make the connectors in place ineffective
and require that they be replaced with ones that are compatible with the new topology
of distribution. For instance, deposits and withdrawals are not available when the
customer is using internet-banking. Withdrawals at an ATM are limited to a certain
daily amount if the balance is not accessible through the network.

Hence, our recent research has focused on making architectures “location and net-
work-aware” [10]. In the remainder of the paper, we will give an outline of the ex-
tensions that we are developing to meet this goal.

3 Making CommUnity network aware

The extension that we are proposing for CommUnity to support the design of the
distribution and mobility dimension of systems adopts an explicit representation of
the space within which movement takes place, but no specific notion of space is as-
sumed. This is achieved by considering that “space” is constituted by the set of possi-
ble values of a special data type Loc included in a fixed data type specification over
which components are designed. The data sort Loc models the positions of the space

big←•→balance

small←•→amount

i → ← i hd l

–

in a way that is considered to be adequate for the particular application domain in
which the system is or will be embedded. Together with the definition of operations
on locations, this provides a description mechanism that is expressive enough to es-
tablish location hierarchies or taxonomies, which is crucial in the context of mobile
and ubiquitous systems. The only requirement that we make is for a special location
–⊥– to be distinguished (its role will be discussed further below).

In this way, CommUnity can remain independent of any specific notion of space
and, hence, be used for designing systems with different kinds of mobility. For in-
stance, in physical mobility, the space is, typically, the surface of the earth, repre-
sented through a set of GPS coordinates. In some kinds of logical mobility, space is
formed by IP addresses. Other notions of space can be modelled, namely multidimen-
sional spaces, allowing us to accommodate richer perspectives on mobility such as
the ones that result from combinations of logical and physical mobility, or logical
mobility with security concerns.

In order to model systems that are location-aware, we make explicit how system
“constituents” (output and private channels, actions, or any group of these) are
mapped to the positions of the space statically determined by Loc. This is achieved by
associating each “constituent” of a system with a location variable. Mobility is then
associated with the change of value of location variables.

Location Variables. Location variables (locations, for short) are a new syntactic
category, all typed with sort Loc. Like channels, they can be declared as input or
output. The movement of any constituent located at an input location is under the
control of the environment. Output locations can only be modified locally but can be
read by the environment. Hence, the movement of any constituent located at an out-
put location is under the control of the component.

Channels. Each output and private channel x of a program is now associated with
a location l. We make this assignment explicit by writing x@l. The value of l indi-
cates the current position of the space where the values of x are made available. A
modification in the value of l entails the movement of x as well as of the other chan-
nels and actions located at l. Input channels are located at a special location λ whose
value is invariant and given by ⊥. The intuition is that this location variable is a non-
commitment to any particular location. The idea is that input channels will be as-
signed a location when connected with a specific output channel of some other com-
ponent of the system.

Actions. Each action name g is now associated with a set Λ(g) of locations, mean-
ing that the execution of action g is distributed over those locations. In other words,
the execution of g consists of the synchronous execution of a guarded command in
each of these locations. Guarded commands are associated with located actions, i.e.
pairs g@l, for l∈Λ(g). Their execution can change the value of output locations, thus
accounting for self-inflicted mobility.

It is important to notice that, by using the special location λ, we keep the possibil-
ity of designing location-unaware systems. Every “standard” CommUnity program
defines a canonical distributed program in which every action and channel is consid-
ered to be located at λ.

–

Variations in the context of execution of a mobile system are not limited to the lo-
cations of its components and respective hosts. It is important that other observables,
e.g. network bandwidth, battery power or the communication range, can be used at
the programming level. These can be handled by data type constructs, for instance
inrange:Loc→bool for modelling observations of whether given positions of the
space are in the communication range of a location.

Semantics. The distribution space consists of the set of possible values of the
given data sort Loc. Two binary relations capture the relevant properties of this space:

� A relation bt s.t. n bt m means that n and m are positions in the space “in
touch” with each other. Interactions among components can only take place
when they are located in positions that are “in touch” with one another. Be-
cause the special location variable λ intends to be a position to locate entities
that can communicate with any other entity in a location-transparent manner,
we require that the value of λ is always set at configuration time as being ⊥
and, furthermore, ⊥ bt m, for every m.

� A relation reach s.t. n reach m means that position n is reachable from m.
Permission to move a component or a group of components is conceded
when the new position “is reachable” from the current one.

In general, the topology of locations is dynamic and, hence, the operational seman-
tics for a program is given in terms of an infinite sequence of relations (bti,reachi)i∈N.
The conditions under which a distributed action g can be executed at time i are the
following:

� for every l1,l2∈Λ(g), [l1]i bti [l2]i: the execution of g involves the synchroni-
sation of its local actions and, hence, their locations have to be in touch.

� for every l∈Λ(g), g@l can be executed, i.e.,
i. for every x∈F(g@l), [l]i bti [Λ(x)]i: the execution of g@l requires

that every channel in the frame of g@l can be accessed and, hence, l
has to be in touch with their locations.

ii. for every location l1∈D(g@l) and m∈[R(g)]i(l1), m reachi [l1]i : if a
location l1 can be effected by the execution of g@l, every possible
new value of l1 must be a location reachable from the current one.

iii. the local guard G(g@l) evaluates to true
where [e]i denotes the value of the expression e at time i.

In order to illustrate the extension, consider the bank account again. According to
the motivation we gave in the introduction, it makes sense to assign a specific loca-
tion to each account in order to reflect the fact that customers may invoke services
from locations different from their bank’s:

program account is
outloc branch
out number@branch, balance@branch: int
in amount: int
do deposit@branch: balance:=balance+amount

 [] withdrawal@branch: balance:=balance-amount

Because the location branch of the account is declared as an output variable, it
cannot be modified by the environment. On the other hand, none of the actions of

–

account changes the value of branch. This means that the location of an account,
once it is set at configuration time, remains unchanged. That is to say, account is a
located but non-mobile component.

It is now up to the bank to establish different rules for customers to use the ser-
vices of their accounts depending on their location. We might do this by extending
account as follows:

program mobile_account is
outloc branch
inloc cust
out number@branch, balance@branch: int
in amount, lim_atm: int
do deposit

 @branch: balance:=balance+amount
 @cust: branch=cust ∨ atm(cust) → skip
 [] withdrawal
 @branch: balance:=balance-amount
 @cust: branch=cust ∨ (atm(cust)∧amount•lim_atm)) → skip

That is to say, we are making the account aware of the location of the customer
through the input location cust. As a consequence, each of its actions is now distrib-
uted over both locations. The projection of each action on the location of the cus-
tomer is now guarded according to a given business rule. For instance, when the cus-
tomer is using an ATM, withdrawals cannot exceed a given limit.

Like in the previous section, this extension is intrusive on account. In fact, each
time a new type of location is made available, the account needs to be redesigned to
reflect the rules that determine how its services can be used from locations of that
type. Even worse, rules that are related to locations can now become mixed together
with the other business rules!

Again, CommUnity allows for the mobility aspects to be separated from the coor-
dination and computational ones. For each type of location, we can define a distribu-
tion connector that enforces the business rules that apply to that location. For in-
stance, the distribution connector that controls access through an ATM could be de-
signed as follows:

program ATM_access is
inloc cust: Loc
in amount, lim_atm: int
do deposit@cust: atm(cust) → skip

 [] withdrawal@cust: atm(cust)∧amount•lim_atm → skip

Notice that the actions of the connector are performed in the location of the cus-
tomer, meaning that the controller is co-located with the customer. The superposition
of this business rule on the account can be made through the following configuration
diagram:

cable_1in_2a

 account ATM_access

Other rules can now be superposed and evolved independently of the location:

amount←•→amount

deposit→•←deposit

withdrawal →•←withdrawal

–

cable_2in_1a cable_1in_2a

inhibitor account ATM_access

We have thus achieved a complete separation of three different concerns – compu-
tation, coordination and distribution, leading to architectures in which each of the
concerns can evolve independently of the others.

4 Concluding remarks

In this paper, we presented extensions to a prototype architecture description lan-
guage – CommUnity – to illustrate how interactions can be made network-aware and
distribution concerns can be separated from calculations and location-independent
coordination mechanisms. Location awareness at this architectural modelling level
should be distinguished from the other ways of addressing system mobility that can
be found in the literature, which take place in the context of programming languages
or process calculi (e.g., Cardelli’s Ambient Calculus [3]). We believe that, for appli-
cation domains in which location-awareness is intrinsic, distribution and mobility are
aspects that should be addressed as first-class citizens from the very early levels of
modelling and be represented explicitly in the business architecture. Postponing their
treatment to properties of the programming and middleware platforms precludes a
level of separation between concerns that can support the levels of flexibility that
systems are required to exhibit to operate in volatile and turbulent business environ-
ments.

This is the first step that we have taken to extend architectural approaches in order
to meet the challenges that the ability of being on-line anywhere and at any time is
raising on software development. In [12], locations have been addressed not from
first principles but as any other kind of data, similarly to Mobile Unity [8]. Again,
this prevents a proper separation of concerns and a corresponding architectural sup-
port to business policies that are location-dependent. Restrictions on the length of the
paper prevent us from illustrating our approach in greater detail (case studies can be
found in [http://boogie.pst.informatik.uni-muenchen.de/Agile]) as well as its mathe-
matical semantics (which can be found in [10]).

Research is now progressing in order to provide a language and semantics for ad-
dressing the need to program operations that reconfigure the system in reaction to
changes in the distribution topology, i.e. to make systems aware and self-adaptable to
mobility. For instance, in the case of the banking application that we used, the re-
placement of an ATM_access connector by an Internet_access one should be auto-
matically performed whenever the customer, through its PDA, moves away from the
ATM and starts using the internet though its wireless connection. We hope to be able
to report on this new important facet in the near future.

big←•→balance

small←•→amount

i → ← i hd l

amount←•→amount

deposit→•←deposit

withdrawal →•←withdrawal

–

Acknowledgements

This work has been partially supported by the project IST-2001-32747 AGILE –
Architectures for Mobility.

References

[1] L.F.Andrade and J.L.Fiadeiro, "Agility through Coordination", Information
Systems 27, 2002, 411-424.

[2] L. Bass, P.Clements and R.Kasman, Software Architecture in Practice, Addison
Wesley 1998.

[3] L.Cardelli and A.Gordon, “Mobile Ambients”, in Foundations of Software Sci-
ence and Computational Structures, LNCS 1378, Springer-Verlag 1998, 140-
155.

[4] K.Chandy and J.Misra, Parallel Program Design - A Foundation, Addison-
Wesley 1988.

[5] J.L.Fiadeiro and T.Maibaum, "Categorical Semantics of Parallel Program De-
sign", Science of Computer Programming 28, 1997, 111-138.

[6] J.L.Fiadeiro and A.Lopes, "Semantics of Architectural Connectors", in
TAPSOFT'97, LNCS 1214, Springer-Verlag 1997, 505-519.

[7] D.Gelernter and N.Carriero, "Coordination Languages and their Significance",
Communications ACM 35, 2, pp. 97-107, 1992.

[8] R.Gruia-Catalin, P.J.McCann and J.Y.Plun, “Mobile UNITY: reasoning and
specification in mobile computing”, ACM TOSEM, 6(3), 250-282.

[9] G.Koutsoukos, T.Kotridis, L.Andrade, J.L.Fiadeiro, J.Gouveia and
M.Wermelinger, “Coordination technologies for business strategy support: a
case study in stock-trading”, in R.Corchuelo, A,Ruiz and M.Toro (eds), Ad-
vances in Business Solutions, Catedral Publicaciones 2002, 45-56.

[10] A.Lopes, J.Fiadeiro and M.Wermelinger, "Architectural Primitives for Distribu-
tion and Mobility", SIGSOFT 2002/FSE-10, ACM Press 2002, 41-50.

[11] M.Shaw, "Procedure Calls are the Assembly Language of Software Interconnec-
tion: Connectors Deserve First-Class Status", in D.A. Lamb (Ed.), Studies of
Software Design, LNCS 1078, Springer-Verlag 1996.

[12] M.Wermelinger and J.L.Fiadeiro, “Connectors for Mobile Programs”, IEEE
Transactions on Software Engineering 24(5), 1998, 331-341.

	Str:
	:261: 27
	:271: 28
	:281: 29
	:291: 30
	:301: 31
	:311: 32
	:321: 33
	:331: 34
	:341: 35
	:351: 36
	:361: 37

