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1 Introduction

Despite most of the information available in the Semantic Web (SW) is context depen-
dent, there is a lack of mechanism to qualify knowledge with the context in which it
is supposed to hold. In the current practice, contextual information is often crafted in
the ontology identifier or in the annotations, non of which affects reasoning. Extensions
of the SW languages with specific mechanisms that allow to qualify knowledge, e.g.,
w.r.t. its provenance [6] or w.r.t. time and events [17], were proposed. Among other
works that offer possible solutions [8, 22, 13], the most interesting are ALCALC [14]
and Metaview [24], however, a widely accepted approach has not yet been reached.

Instead of extending the current SW languages, we propose a shift of approach: to
adapt the theories of context proposed by McCarthy [18] and well studied in AI [7,
15, 3]. We adopt the context-as-a-box metaphor [3] to represent context, in which a
context is seen as a “box” containing knowledge in form of logical statements, whose
boundaries are determined with contextual attributes (called dimensions) qualifying the
knowledge inside the box. An example context representing knowledge about football
in Italy in year 2010 is depicted in Fig. 1. We will most often rely on three dimensions:
time, location and topic; but others were considered as well [15].

time = 2010, location = Italy, topic = football
Team v =22has player.Player
Player v 61plays for.Team
Team(Milan)
plays for(Cassano,Milan)
· · ·

Fig. 1. Italian national football league under the context as a box metaphor

To clarify the requirements for contextual representation in the SW, consider a sce-
nario from the domain of football. Knowledge will be qualified with time, location, and
the following topics: football (FB), FIFA world cups (FWC), national football leagues
(NFL), world news (WN), and national news (NN). Suppose that all information about
FWC and NFL should be included in FB, and for each nation all facts about its NFL
should be included in its NN. Also all information about FWC should be included in
WN. On the other hand, only a part of information about NFL should be included in WN
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(only that of worldwide interest). A well designed contextual representation formalism
should support the following requirements:

knowledge about context: knowledge about contexts such as contextual dimensions
and relations between contexts as for instance that one context is more specific
than some other, should be explicitly represented and reasoned about. For example,
we should be able to assert that the context of FWC in 2010 is more specific than
the context of FB and WN in the same year;

contextually bounded facts: in each context we should be able to state facts with local
effect that do not necessarily propagate everywhere, e.g., an axiom like “a player is
a member of only one team” should be true in some contexts (e.g., FWC, NFL, for
each year) but not in more general contexts like FB;

reuse/lifting of facts: be able to include “automatically” all the information contained
in more specific contexts. For example, facts in FWC should be lifted up into the
WN, and FB. This lifting should be done without spoiling locality of knowledge;

overlapping and varying domains: objects can be present in multiple contexts, but
not necessarily in all contexts, e.g., a player can exist in both the FWC context and
in the NFL contexts, but many players present in NFL will not be present in FWC;

inconsistency tolerance: two contexts may possibly contain contradicting facts. For
instance NN of Italy could assert that “Cassano is the best player of the world”,
while at the same time the world news report that “Rooney is the best player of the
world”, without making the whole system inconsistent;

complexity invariance: the qualification of knowledge by context should not increase
the complexity.

Based on these requirements, we propose a framework called Contextualized Knowl-
edge Repository (CKR), build on top of the expressive description logic SROIQ3 [10]
that is behind OWL 2 [26]. A CKR knowledge base is composed of DL knowledge
bases, called contexts, each qualified by a set of contextual attributes that specify the
boundaries within which the knowledge base is assumed to be true. Contexts are orga-
nized by a hierarchical coverage relation that regulates the propagation of knowledge
between them. The paper defines the syntax and semantics of CKR; shows that con-
cept satisfiability and subsumption are decidable with the complexity upper bound of
2NEXPTIME (i.e., same as for SROIQ); and finally it provides a sound and complete
Natural Deduction calculus that characterizes the propagation of knowledge between
contexts. Proofs of our statements are available in [21].

2 Contextualized Knowledge Repository

Logical representation of contextual knowledge is based on two classes of formulae:
one class to specify knowledge within contexts, and another to predicate about con-
texts. McCarthy [18] proposed to use a unique language for both types of knowledge,
namely quantified modal logic. While this is optimal from the representational perspec-
tive, it easily leads to undecidability. At the opposite extreme there are approaches such

3 Although we are able to represent any SROIQ axioms in CKR, to maintain decidability the
framework currently excludes reflexivity and role disjointness axioms. See [21] for discussion.
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as multi-context systems [7], distributed [4] or package-based description logics [2],
where context structure is fixed and it is not possible to specify knowledge about con-
texts, which limits their practical applicability. We therefore propose an intermediate
approach, by allowing to specify the context structure and properties in a (simple) log-
ical meta-language, but avoiding to mix it with the object-language used within each
context in order to maintain good computational properties.

The meta-language is used to specify context structure. It uses a meta-vocabulary Γ ,
a standard DL vocabulary that contains: (a) a set of individuals called context identifiers;
(b) a finite set of roles A = {A1, . . . , An} called dimensions; (c) for each dimension
A ∈ A a set of individualsDA called dimensional values and a role≺A called coverage
relation. The number of dimensions n = |A| is assumed to be a fixed constant. This
will be important in order not to introduce additional complexity blow up. Also, relevant
research on contextual dimensions suggests that their number is usually very limited
[16]. The meta-assertions of the form A(C, d) for a context identifier C and some d ∈
DA (e.g., time(c0, 2010)), state that the value of the dimension A of the context C is
d. The meta-assertions of the form d ≺A e (e.g., Italy ≺space Europe) state that the
value d of the dimensionsA is covered by the value e. Depending on the dimension, the
coverage relation has different intuitive meanings, e.g., if A is space then the coverage
relation is topological containment, if A is topic then it is topic specificity.

A (full) dimensional vector d is a set of assignments {A1:=dA1
, . . . , An:=dAn},

with dAi ∈ DAi for each 1 ≤ i ≤ n. Note that dAi (eAi , . . . ) denotes the actual value
that d (e, . . . ) assigns to the dimension Ai. DΓ is the set of all dimensional vectors of
Γ . For any B ⊆ A, dB = {B:=dB | B ∈ B} and if B ⊂ A, then dB is called partial
dimensional vector. Note that dA = d. Given two (partial) dimensional vectors dB and
eC, the completion of dB w.r.t. eC is dB+eC = dB ∪ {(A:=eA) ∈ eC | A /∈ B}.

The object-language is used to specify knowledge inside the contexts. It uses an
object-vocabulary, obtained from any standard DL vocabulary Σ (containing individ-
uals, concepts, and roles) by closing it w.r.t. what we call concept/role qualification.
That is, for every concept/role symbol X of Σ and every (partial) dimensional vec-
tor dB, a new concept/role symbol XdB

, called the qualification of X w.r.t. dB, is
added to Σ. Qualified symbols are necessary for cross context semantic reference,
e.g., the concept of “Italian professor” in the context of France will be formalized
by Professorlocation:=Italy. If not ambiguous we will omit the attribute name, using e.g.
ProfessorItaly instead of Professorlocation:=Italy.

Definition 1 (Context). A context C on the meta/object-vocabulary pair 〈Γ,Σ〉 is a
triple 〈id(C),dim(C),K(C)〉 where:

1. id(C) is a context identifier of Γ ;
2. dim(C) is a full dimensional vector of DΓ ;
3. K(C) is a DL knowledge base over Σ.

Note that while symbols appearing inside contexts can possibly be qualified with partial
dimensional vectors, dim(C), the dimensional vector of the context C, is never partial.
We use the notation Cd to denote a context with dim(C) = d.

Definition 2 (Contextualized Knowledge Repository). A contextualized knowledge
repository (CKR) on a meta/object-vocabulary pair 〈Γ,Σ〉 is a pair K = 〈M,C〉where:
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1. C is a set of contexts on 〈Γ,Σ〉, one for each context identifier of Γ ;
2. M, called meta-knowledge, is a DL knowledge base on Γ where

(a) every A ∈ A is a functional role;
(b) for every Cd ∈ C, and every A ∈ A, M |= A(id(Cd), dA);
(c) for every A ∈ A, the relation {d ≺A d′ | M |= ≺A(d, d′)} is a strict partial

order on DA.

For a CKR K, B ⊆ A, dimensional vectors d, e, and contexts C, C′ we say: (a) e
covers d w.r.t. B (denoted d ≺B e) if M |= ≺B(dB , eB) for everyB ∈ B; (b) e covers
d (denoted d ≺ e) if d ≺A e; (c) C′ covers C (denoted C ≺ C′) if dim(C) ≺ dim(C′).

If one context covers another it means that its perspective is broader. We will see that
this is reflected in the semantics and the domain of the broader context always contains
the domain of the narrower context. The coverage induces a hierarchical organization
of contexts in each CKR. For instance Fig. 2 depicts the context coverage induced from
the following coverage relations between dimensional values:

FWC ≺topic WN NFL ≺topic FB africa ≺space world
FWC ≺topic FB NFL ≺topic NN italy ≺space world

Fig. 2. Coverage relation between contexts

Besides for the coverage relation, which is explicitly expressed in CKR, there are
other relations between contexts [3]. We chose to represent the coverage relation be-
cause many other relations between contexts can be axiomatized on top of it. For in-
stance the temporal relation between contexts can be axiomatized via GCI axioms in
a broader context, e.g., to assert that everyone who is a professor in 2011 typically is
a professor also in 2012 (i.e., none of the years covers the other, but instead they are
consecutive), we can add the axiom Professor2011 v Professor2012 into some context
that covers both 2011 and 2012 (e.g., one associated with the decade 2011–2020).

A model of a CKR is composed of local models for each context that must satisfy
some additional restrictions. Given a CKR K, a model for a context Cd is a pair Id =〈
∆d, ·Id

〉
such that Id |= K(Cd) in the usual DL sense [10] with two exceptions: (a)

∆d may also be empty; (b) ·Id is not required to interpret individuals of Σ that do not
occur in K(C). In the rest of the paper, whenever we write φId for any expression φ, we
will also mean that Id is defined on all constants occurring in φ.

Definition 3 (CKR Model). A model of a CKR K is a family I = {Id}d∈DΓ of local
models such that for all d, e, and f , for every atomic concept A, atomic role R, atomic
concept/role X and individual a:

1. (>d)
If ⊆ (>e)

If if d ≺ e
2. (Af )

Id ⊆ (>f )
Id

3. (Rf )
Id ⊆ (>f )

Id × (>f )
Id
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4. aId = aIe , given d ≺ e, either if aId is defined,
or if aIe is defined and aIe ∈ ∆d

5. (XdB
)Ie = (XdB+e)

Ie

6. (Xd)
Ie = (Xd)

Id if d ≺ e
7. (Af )

Id = (Af )
Ie ∩∆d if d ≺ e

8. (Rf )
Id = (Rf )

Ie ∩ (∆d ×∆d) if d ≺ e
9. Id |= K(Cd)

The semantics takes care that local domains respect the coverage hierarchy (condi-
tion 1). Given contexts Cd ≺ Ce, if an individual a occurs in the narrower context then
it must be defined also in the broader context with the same meaning; if a only occurs in
the broader context however, it does not have to be defined in the narrower one (condi-
tion 4). The interpretation of any concept or role qualified with some f ∈ DΓ is always
roofed under (>f )

Id in any context Cd, i.e., in a sense >f represents the > of Cf inside
Cd (conditions 2 and 3). This is always true regardless of the relation between Cf and
Cd. If Cd ≺ Ce then the interpretation of any concept and roleXf in these contexts must
be equal modulo the domain of the narrower context (conditions 7 and 8). Treatment of
partially qualified symbols is done in condition 5: missing values are always taken from
the current context in which the symbol appears. Therefore in the end all symbols (even
those with empty qualifying vector) are treated as fully qualified by the semantics. Fi-
nally, for each CKR model we require that each local interpretation Id is a model of Cd
in the usual sense for DL (condition 9). Finally notice that ⊥d is always interpreted in
the empty set. Therefore we can simplify the notation by using just ⊥.

3 Reasoning in CKR

In the following we devise a proof theoretical characterization of CKR entailment in
the natural deduction (ND) style [20], with special focus on the rules for transferring
knowledge across contexts. We decide to characterize CKR entailment with ND, since
ND provides a clear intuition on how knowledge propagates across contexts. This al-
lows to show interesting properties of CKR reasoning like the fact that (a) in consistent
CKR, unconnected contexts do not interact (b) propagation always follows the coverage
relation, and other similar properties. ND formalisms also provide a first base for the
development of a forward reasoning algorithm, which constitutes a natural extension of
the forward local reasoning supported by OWLIM, the platform on top of which a first
version of CKR with limited expressive capacity of RDFS has been implemented [9].

We now briefly introduce ND, for more details see [20]. A ND calculus is a set of
inference rules of the form:

[Bn+1] [Bn+m]
α1 · · · αn αn+1 · · · αn+m

α
ρ (1)

with n,m ≥ 0, where αi and α are formulae and Bi are sets of formulae. The αi’s are
the premises of ρ, α is the conclusion and the Bi’s are the assumptions discharged by
ρ. A deduction of α depending on a set of formulae Φ is a tree rooted in α inductively
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constructed starting from a set of assumptions in Φ by applying the inference rules.
More formally: a formula α is a deduction of α depending on {α}; if for each 1 ≤
i ≤ n + m, Πi is a deduction of αi depending on Φi and the calculus contains a
rule of the form (1), then Π1···Πn+m

α is a deduction of α depending on (
⋃n
i=1 Φi) ∪(⋃n+m

i=n+1 (Φi \Bi)
)

. A formula α is derivable from Φ if there is a deduction of α
depending on a subset of Φ.

CKR reasoning tasks are, as in any DL, concept satisfiability and entailment; how-
ever in CKR these tasks are relativized w.r.t. a context. A CKR K is d-satisfiable (a con-
cept C is d-satisfiable w.r.t. K) if there exists a model I of K with ∆d 6= ∅ (CId 6= ∅).
A formula φ is d-entailed by K (denoted K |= d : φ) if Id |= φ in every model I of K.

Reasoning rules in the ND calculus for CKR allow to deduce conclusions in one of
the contexts based on evidence from other contexts, they are therefore a kind of bridge
rules [7]. As an example consider the following simple bridge rule:

d : A v B d ≺ e

e : Ad v Bd
(2)

It implies that whenever A v B is true in a context Cd such that d ≺ e, then Ad v Bd

should be true inCe. The rule is indeed sound thanks to conditions 5 and 6 of Definition
3 that impose that in any CKR model I the interpretation of A and B in Id coincide
respectively with the interpretations ofAd andBd in Ie. The rationale of rule (2) is that
a statement in a narrower context, can be embedded into a larger context, by applying a
transformation that preserves its semantics.

We generalize this idea by introducing the notion of embedding between DL knowl-
edge bases. An embedding is a function that translates expressions from one vocabulary
to another in a suitable manner. The input vocabulary Σ will be split into Σc (symbols
fully specified w.r.t. the current context) and Σe (symbols external to the current con-
text) and each of the sets of symbols will be translated differently. More formally: let
Σ and Σ′ be two DL alphabets, Σ = Σc ] Σe, > ∈ Σc. A DL embedding is a total
function f : Σ → Σ′ that maps individuals, atomic concepts, and atomic roles of Σ to
individuals, atomic concepts, and atomic roles of Σ′ respectively. For every embedding
f the extension f∗ that maps complex expressions and axioms over Σ into complex
expressions and axioms over Σ′ is recursively defined on top of f as given in Table 1.

Two DL-interpretations I and I ′ of Σ and Σ′ respectively are said to comply with
the DL embedding f if: (a) aI = f(a)I

′
for each individual a of Σ such that aI is

defined; (b) XI = f(X)I
′

for each concept/role X ∈ Σc; (c) AI = f(A)I
′ ∩ f(>)I′

for each concept A ∈ Σe; (d) RI = f(R)I
′ ∩ f(>)I′× f(>)I′ for each role R ∈ Σe.

Lemma 1. If I and I ′ comply with the DL-embedding f : Σ → Σ′ then: (a) for every
concept/role X , XI = (f∗(X))I

′
; (b) for every axiom φ, I |= φ iff I ′ |= f∗(φ).

The specific embedding that will be instrumental in order to characterize the logical
consequence in CKR is now introduced as the @d operator.

Definition 4 (@d operator). Given a CKR K over 〈Γ,Σ〉, for every d ∈ DΓ , the
operator (·)@d is defined as f∗d(·), using the embedding fd of Σ into itself such that:
(a) fd(a) = a for every individual a; (b) fd(Xd′B

) = Xd′B+d for every concept/role
Xd′B

∈ Σ; (c) Σc = {Xd′B
∈ Σ | d′B � dB}; (d) Σe = Σ \Σc.
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f∗(A) =

{
f(A) ifA ∈ Σc
f(>) u f(A) ifA ∈ Σe

f∗(R) =

{
f(R) ifR ∈ Σc
f(I ) ◦ f(R) ◦ f(I ) ifR ∈ Σe

f∗(¬C) = f(>) u ¬f∗(C)

f∗(∃R.C) =

{
∃f(R).f∗(C) ifR ∈ Σc
f(>) u ∃f(R).f∗(C) ifR ∈ Σe

f∗(∀R.C)=

{
f(>) u ∀f(R).f∗(C) ifR ∈ Σc
f(>) u ∀f(R).(¬f(>) t f∗(C)) ifR ∈ Σe

f∗(> nR.C) =

{
>nf(R).f∗(C) ifR ∈ Σc
f(>) u>nf(R).f∗(C) ifR ∈ Σe

f∗(∃R.Self) =

{
∃f(R).Self ifR ∈ Σc
f(>) u ∃f(R).Self ifR ∈ Σe

f∗(⊥) = ⊥
f∗(C uD) = f∗(C) u f∗(D)
f∗(C tD) = f∗(C) t f∗(D)
f∗({a}) = {f(a)}
f∗(6nR.C) = f(>) u6nf(R).f∗(C)

f∗(R−) = (f(R))−

f∗(R ◦ S) = f∗(R) ◦ f∗(S)
f∗(C(a)) = f∗(C)(f(a))
f∗(R(a, b)) = f(R)(f(a), f(b))
f∗(C v D) = f∗(C) v f∗(D)
f∗(R v S) = f∗(R) v f(S)
f∗(a = b) = f(a) = f(b)
f∗(a 6= b) = f(a) 6= f(b)

Table 1. DL-embedding on complex expressions and axioms; note: I is the identity role, which
can be easily added to SROIQ using the axioms > v ∃I .Self and > v 61I .>

For instance if the concept Team occurs in Cd with d = 〈FWC, 2010,Africa〉, it
belongs to Σc as d′B � dB for B = ∅. Hence Team@d = TeamFWC,2010,Africa. This
is natural, as in a context wider than Cd the concept TeamFWC,2010,Africa is fully de-
fined by Team in C〈FWC,2010,Africa〉. But NationalTeamFB /∈ Σc as FB 6� FWC. Hence
NationalTeamFB@〈FWC, 2010,Africa〉 = NationalTeamFB,2010,Africau>FWC,2010,Africa.
Intuitively, to embed NationalTeamFB from C〈FWC,2010,Africa〉 into a broader context one
must restrict it to >FWC,2010,Africa because its interpretation in the broader context may
be broader.

A ND system for a CKR K = 〈C,M〉 over 〈Γ,Σ〉 is shown in Table 2. Here αi
are either object-formulae of the form d : φ (d ∈ DΓ , φ is a DL formula over Σ) or
meta-formulae µ over Γ , while α and βi are always object-formulae. A formula d : φ
is derivable from K and Φ (denoted K, Φ ` d : φ) if it is derivable from Φ∪{d : φ | φ ∈
Cd,d ∈ DΓ } ∪ {µ |M |= µ} using the ND rules of Table 2. A shorthand K ` d : φ is
used for K, ∅ ` d : φ.

Theorem 1 (Soundness and Completeness). K ` d : φ if and only if K |= d : φ.

Let us show some example deductions in the CKR K with structure depicted in Fig 2.
Example 1 shows how knowledge is propagated from Cwc to Ci via the common super-
context Cf , and Example 2 shows how knowledge is propagated from Cwn to Cf via the
common sub-context Cwc. Finally Example 3 shows how contradicting knowledge can
coexist in different separated context.

Example 1. The following deduction shows how the subsumption wc : WChamp v
Player propagates from the FWC context Cwc to the Italian NFL context Ci. Notice
that the result of this deduction, i.e., i : WChampwc v Playerwc, in the context Ci is
weaker than the premise as it holds only on the set of players of the Italian National
League. In other words, the knowledge shifting from Cwc to Ci is limited by the domain
of interpretation of Ci.

(1) wc : WChamp v Player premise
(2) f : (WChamp v Player)@wc Pop, wc � f

(3) f : WChampwc v Playerwc by @

(4) f : WChampwc u >i v Playerwc u >i LReas

(5) f : (WChampwc v Playerwc)@i by @

(6) i : WChampwc v Playerwc Push, i � f
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d :φ1 . . . d :φn {φ1 . . . φn} |= φ

d :φ
LReas

d :⊥(a)
e :> v ⊥ Bot

d � e

f :Ad v >e

-
f : ∃Rd> v >d

-
f :> v ∀Rd>d

Top
[d : >(a)]
d : > v ⊥
d : > v ⊥ aE

e :φ@d e :>d(a1) · · · e :>d(an) d � e

d :φ
Push

d :φ d � e

e :φ@d
Pop

d :A tB(x)
[d :A(x)] [d :B(x)]

e :φ e :φ

e :φ
tE d : ∃R.A(x)

[d :R(x, y), d :A(y)]
e :φ

e :φ
∃E

d :>nR.A(x)
[d : yi 6= yj , d :R(x, yi), d :A(yi)]1≤i 6=j≤n

e :φ

e :φ
(>n)E

Restrictions : 1) LReas can be applied if every individual occurring in φ occurs in a φi for
some 1 ≤ i ≤ n; 2) in the Push rule a1, . . . , an are assumed to be all individuals occuring
in φ; 3) the individuals a, y, and yi, 1 ≤ i ≤ n, occuring in aE, ∃E, and (>n)E are new, not
occuring elsewhere in K and the proof apart from the assumptions discharded by these rules.

Table 2. CKR inference rules

Example 2. The following deduction shows how wn : Playerf v Pro (i.e., every foot-
ball player mentioned in the world news is a professional) propagates from Cwn to Cf ,
trough the common sub-context Cwc.

(1) wn : Playerf v Pro premise
(2) wn : (Playerf v Pro)@wn Pop, wn � wn

(3) wn : Playerf v Prown by @

(4) wn : Playerf u >wc v Prown u >wc by LReas

(5) wc : Playerf v Prown Push, wc � wn

(6) f : Playerf u >wc v Prown u >wc Pop, wc � f

(7) f : Playerf u >wc v Prown LReas

Notice that we did not infer that f : Playerf v Prown, i.e., that every Player of football
is a professional player in the world news, but the fact that this subsumption holds only
on the players of the FWC domain.

Example 3. Suppose that the Italian News context Cin contains the facts that Rooney
does not take part to the Italian league in 2010, i.e., ¬>i(Rooney), and that he is not
considered a good football player, i.e., ¬GoodPlayerf (Rooney). Suppose also that the
world news context Cwn contains the opposite evaluation, i.e. GoodPlayerf (Rooney).
In the CKR of Fig. 2, these two contradicting statements do not necessarily lead to in-
consistency. Indeed, to derive inconsistency one has to find a context where to combine
the two contradicting facts. However, to transfer the facts wn : GoodPlayerf (Rooney)
and in : ¬GoodPlayerf (Rooney) into a common context, one have to pass through Ci.
But the fact that Rooney is not an individual of Ci disables any inference about Rooney
in Ci. Model-theoretically we admit CKR models where RooneyIwn 6= RooneyIin .



Contextual Representation and Reasoning with Description Logics 9

4 Decidability and Complexity

Decidability of CKR entailment is proved indirectly by embedding a CKR into a single
DL knowledge base, we will again use DL-embeddings. Given a meta-vocabulary Γ
and an object-vocabulary Σ = NC ] NR ] NI, a DL-vocabulary #(Γ,Σ) = #NC ]
#NR ] #NI is defined as follows: #NC = {Ae

d | A ∈ NC ∧ d, e ∈ DΓ }; #NR =
{Re

d | R ∈ NR ∧ d, e ∈ DΓ }; #NI = {ae | a ∈ NI ∧ e ∈ DΓ }. An embedding of Cd
into #(Γ,Σ) is now done by the #d operator:

Definition 5 (#d operator). Given K = 〈C,M〉 over 〈Γ,Σ〉 and d ∈ DΓ , (·)#d is
defined as g∗d(·), where gd : Σ → #(Γ,Σ) is a DL-embedding defined as follows:
(a) gd(a) = ad for every individual a; (b) gd(Xd′B

) = Xd
d′B+d for every concept/role

Xd′B
; (c) Σc = Σ; (d) Σe = ∅.

Using the #d operator we now transform a CKR K over 〈Γ,Σ〉 into a DL theory
#(K) over #(Γ,Σ). For every individual a, concept C, roleR, concept/roleX , and for
every d, e, f ∈ DΓ , #(K) contains the following axioms (the gap in the numbering is
to maintain the correspondence with Definition 3):

1. >f
d v >f

e for d ≺ e;
2. Cd

e v >d
e ;

3. ∃Rd
e .> v >d

e and > v ∀Rd
e .>d

e ;
4. ad = ae, if d ≺ e;
6. Xd

d ≡ Xe
d, if d ≺ e;

7. Cd
f ≡ Ce

f u >d
d, if d ≺ e;

8. I dd ◦Re
f ◦ I dd v Rd

f and Rd
f v Re

f , if d ≺ e;
9. φ#d for all φ ∈ K(C) and d = dim(C).

Lemma 2. Given a CKR K, (a) if K is d-satisfiable then #(K) is satisfiable; (b) if there
is a d such that #(K) 6|= >d

d v ⊥, then K is d-satisfiable.

Reasoning in CKR is now reduced into reasoning in SROIQ. Subsumption is decid-
able for SROIQ KB that are --stratified [12]. Hence we can prove decidability only
for CKRs that are transformed into --stratified KBs. We say that a CKR is --stratified
if the set of RIA

⋃
d∈DΓ {(R v S)#d |R v S ∈ K(Cd)} is --stratified. The RIA in-

troduced in step 8 are not --stratified, but it suffices to add I dd ◦Re
f v S1, S1◦I dd v Rd

f ,
where S1 is a new role w.r.t. each pair Rd

f and Re
f . Hence if a K is --stratified, there is

a --stratified SROIQ KB equivalent to #(K), and hence subsumption is decidable.

Theorem 2. If K is --stratified, then checking if K |= d : C v D is decidable with the
complexity upper bound of 2NEXPTIME.

The complexity upper bound is established by the fact that the number of dimen-
sions (a fixed constant) and also the number of contexts are bounded. The number of
contexts n is always smaller than the size m of the knowledge base K because in order
to initialize a context we must add several axioms into M. Consecutive analysis of the
construction of #(K) shows that its size is bounded by k ×m × n2 for some constant
k, and therefore under O(m3). So the size of #(K) and the time required to generate it
is polynomial in the size of K.
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5 Related Work

Both aRDF [25] and Context Description Framework [13] extend RDF triples by an n-
tuple of qualification attributes with partially ordered domains. Apart from CKR being
based on SROIQ it differs from these approaches by qualifying whole theories and not
each formula separately. This approach is more compact as usually the context is shared
by a group of formulae. An extension of RDFS to cope with context was proposed by
[8] and further developed in [1]. A new predicate isin(c, φ) is used to assert that the
triple φ occurs in the context c. A set of operators to combine contexts (c1 ∧ c1, c1 ∨ c2,
¬c) and to relate contexts (c ⇒ c2, c → c2) is defined, making the approach particularly
suited for manipulating contexts. Unfortunately, no sound and complete axiomatization
or decision procedure was provided so far.

The contextual DL ALCALC [14] is a multi-modal extension of the ALC DL with
the contextual modal operator [C]rA representing “all objects of type A in all contexts
of type C reachable from the current context via relation r.” In bothALCALC and CKR
contextual structure is formalized in a meta-language separated from the domain lan-
guage used to describe the domain. The main difference is that CKR is more expressive
in the object-language (SROIQ vs. ALC) but less expressive in the contextual as-
sertions, allowing qualification of knowledge only w.r.t. individual contexts rather than
context classes as in ALCALC .

The Metaview approach [24] enriches OWL ontologies with logically treated an-
notations and it can be used to model contextual metadata similarly to CKR albeit on
per-axiom basis. The main difference is that in the Metaview approach the contextual
level has no implications on ontology reasoning. Instead, a contextually sensitive query
language MQL is provided.

CKR is also logically related to approaches such as multi-context systems [7], dis-
tributed description logics [4], and especially to package-based description logics [2]
and semantic imports [19]. While similar techniques are employed in CKR in order to
facilitate information reuse in between contexts, they are used to meet different goals.
The amount of information that is possibly “imported” from one context to another
by qualified symbols depends on the relation of these context in the CKR’s coverage
hierarchy, thus reflecting the underlaying ideas of the AI theories of context.

6 Conclusion

CKR is a novel framework for representing contextual knowledge in the SW. We have
provided a sound and complete axiomatization and we have shown that reasoning in
CKR is decidable at no additional complexity costs. After the recent introduction of
a tractable version of CKR built on top of RDFS [11] we plan to investigate on other
tractable local languages, e.g., OWL-Horst [23]. For the tractable version we have de-
veloped a prototype [9, 11] on top of the Sesame 2 RDF triple store, where contexts have
been naturally implemented with named graphs [5]. We also want to study a distributed
tableaux based reasoning technique for CKR.
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