
Using Metrics for Assessing the
Quality of ATL Model Transformations?

M.F. van Amstel, M.G.J. van den Brand

Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, The Netherlands

{M.F.v.Amstel|M.G.J.v.d.Brand}@tue.nl

Abstract. Model transformations play a pivotal role in model-driven
engineering. Since they are in many ways similar to traditional software
artifacts, they have to be treated similarly. Therefore, it is necessary to
assess their quality. We propose to use metrics to assess various quality
attributes of model transformations In this paper, we focus on model
transformations created using ATL, which ATL is currently one of the
most widely used model transformation formalisms. We have collected
metrics data from a heterogeneous collection of seven model transfor-
mations. The quality of the same transformations has been evaluated
manually by nineteen ATL experts. We assess whether the metrics are
appropriate predictors for the quality attributes by correlating the met-
rics data with the expert data. To support or refute the correlations, we
also acquired qualitative statements from the ATL experts. Although the
study was intended as a first exploration of the relation between metrics
and quality attributes, some significant correlations were found that are
supported by statements of the participants.

1 Introduction

Model transformation is one of the key components of model-driven engineer-
ing (MDE) [1]. Since MDE is gradually being adopted by industry [2], model
transformations become increasingly important. Model transformations are in
many ways similar to traditional artifacts, i.e., they have to be used by multiple
developers, have to be changed according to changing requirements and should
preferably be reused. Therefore, it is necessary to define and assess their quality.
Currently, one of the most widely used formalisms for performing model trans-
formation is ATL [3, 4]. Therefore we focus in this paper on the assessment of
the quality of ATL model transformations.

We propose the following six quality attributes for measuring the quality of
model transformations: understandability, modifiability, conciseness, complete-
ness, consistency, and reusability. Note that these quality attributes may not

?
This work has been carried out as part of the FALCON project under the responsibility of the
Embedded Systems Institute with Vanderlande Industries as the industrial partner. This project
is partially supported by the Netherlands Ministry of Economic Affairs under the Embedded
Systems Institute (BSIK03021) program.

be independent, e.g., understandability may influence reusability since a model
transformation needs to be understood, at least partially, before it can be reused.
Most of these quality attributes have already been defined earlier for software
artifacts in general [5]. However, they are relevant for model transformations
as well. In [6], we defined a number of metrics for measuring various aspects
of ATL model transformations. However, metrics alone are not enough for as-
sessing quality. They need to be related to the quality attributes. In this paper,
we present the preliminary results of an empirical study aimed at finding this
relation. Metrics data were automatically collected from a collection of seven
ATL model transformations with different characteristics. Quality attributes of
the same collection of transformations were quantitatively assessed by nineteen
ATL experts using a questionnaire. To establish a relation between the metrics
and the quality attributes, we analyzed the correlations between the metrics
data and the expert feedback. In addition to the quantitative evaluation task,
we used the questionnaire to obtain qualitative statements from the experts.
These qualitative statements were used to support or refute the results of the
quantitative analysis. This study provides initial insights regarding the appropri-
ateness of using the automatically collected metrics as predictors for the quality
attributes.

The remainder of this paper is structured as follows. In Section 2, a subset
of the metrics we defined to predict the quality attributes are described. Sec-
tion 3 describes the results of our empirical study. In Section 4, related work is
described. Conclusions and directions for further research are given in Section 5.

2 Metrics

In this section, we present a subset of the metrics we have defined for measuring
characteristics of ATL model transformations. For an overview of all the metrics
we defined, the reader is referred to [6]. We do not consider all those metrics here,
because some of them are too detailed for the purpose of the study presented
in this paper. For a more in-depth study or for different quality attributes, they
may be relevant.

The metrics can be divided into four categories, viz., rule metrics, helper
metrics, dependency metrics, and miscellaneous metrics. In the remainder of this
section, we will address each of these categories and elaborate on the metrics
belonging to them.

2.1 Rule Metrics

A measure for the size of a model transformation is the number of transformation
rules it encompasses. In ATL, there are different types of rules, viz., matched
rules, lazy matched rules, and called rules. We have defined metrics for measuring
the number of rules of every type.

Matched rules are scheduled by the ATL virtual machine, hence they do not
have to be invoked explicitly. Lazy matched rules and called rules do need to

CEUR Workshop Proceedings 21

be invoked explicitly. Therefore, it may be the case that there are lazy matched
rules or called rules in an ATL model transformation that are never invoked.
This can have a number of reasons, e.g., the rule has been replaced by another
rule. To detect this form of dead code, we propose to measure the number of
unused lazy matched rules and the number of unused called rules.

We have also defined a number of metrics on the input and output patterns of
rules. The metrics number of elements per input pattern and number of elements
per output pattern measure the size of the input and the output pattern of
rules respectively. For an example, see Listing 1.1. In this example a rule is
shown that has one input pattern element and two output pattern elements.
To initialize target model elements, an output pattern has bindings that are
typically initialized with attributes and references derived from elements in the
input pattern (this is also shown in Listing 1.1). We propose to measure the
number of unused input pattern elements to detect input pattern elements that
are never referred to in any of the bindings and may therefore be obsolete. A
related metric is the metric number of direct copies. This metric measures the
number of rules that copy (part of) an input model element to an output model
element without changing any of the attributes. Note that this only occurs when
the input metamodel and the output metamodel are the same. Called rules do
not have an input pattern. Therefore, the metric number of elements per input
pattern does not include called rules. Instead, for called rules we measure the
number of parameters per called rule. It may be the case that some of these
parameters are never used. To detect this, we propose to measure the number of
unused parameters per called rule.

rule In2Out {
from in_1 : InMetamodel!MetaClassA
to out_1 : OutMetamodel!Metaclass1

binding_1 <- in_1.AttributeA ,
binding_2 <- in_1.ReferenceA

),

out_2 : OutMetamodel!Metaclass2
binding_1 <- in_1.AttributeB

)
}

Listing 1.1. Example transformation rule

The input pattern of a matched rule can be constrained by means of a fil-
ter condition. The metric number of rules with a filter condition measures the
amount of rules that have such an input pattern. Using such filter conditions,
a rule matches only on a subset of the model elements defined by the input
pattern. Therefore, it may be the case that there are multiple matched rules
that match on the same input model elements. We defined the metric number of
matched rules per input pattern to measure this. Note that it is required, except

22 MtATL 2011

in case of rule inheritance, to have a filter condition on the input pattern since
ATL does not allow multiple rules to match on the same input pattern.

Transformation rules can have local variables to provide separation of con-
cerns, i.e., to split the calculation of certain output bindings in orderly parts.
To measure the use of local variables in rules, we defined the metric number of
rules with local variables.

ATL allows the definition of imperative code in rules in a do section. This
can be used to perform calculations that do not fit the preferred declarative style
of programming. To measure the use of imperative code in a transformation, we
defined the metric number of rules with a do section.

2.2 Helper Metrics

Besides transformation rules, an ATL transformation also consists of helpers.
Therefore, the size of a model transformation is also influenced by the number
of helpers it includes. ATL allows defining helpers in separate units, or libraries
as they are called in ATL terminology. Therefore, we also measure the number
of helpers per unit. This gives an idea of the division of helpers among units.

Similarly to lazy matched rules and called rules, helpers need to be invoked
explicitly. Therefore, again, it may be the case there are some helpers present in
a model transformation that are never invoked. To detect such unused helpers,
we propose to measure number of unused helpers.

Helpers are identified by their name, context, and, in case of operation
helpers, parameters. It is possible to overload helpers, i.e., define helpers with
the same name but with a different context. To measure this kind of overloading
we propose to measure number of helpers per helper name.

Conditions are often used in helpers. The metric helper cyclomatic complexity
is related to McCabe’s cyclomatic complexity [7], it measures the amount of
decision points in a helper. Currently, only if statements are considered as
decision points. In the future, it could be extended to take into consideration
other constructs that influence the flow of control, such as the for loop. Also the
complexity of OCL expressions could be taken into account when measuring the
complexity of a helper [8]. Similar to rules, helpers also allow the definition of
local variables. We define the metric number of variables per helper to measure
the use of variables in helpers.

2.3 Dependency Metrics

An ATL model transformation can consist of multiple units that depend on
each other. For measuring this dependency, we defined four metrics. The metrics
number of imported units and number of times a unit is imported are used to
measure the import dependencies of units. To measure how the internals of units
depend on each other, we defined the metrics unit fan-in and unit fan-out.

On a lower level, transformation rules and helpers also depend on each other.
Transformation rules can invoke (other) lazy matched rules, called rules, and

CEUR Workshop Proceedings 23

helpers. Helpers can invoke (other) helpers and called rules. These dependen-
cies are measured using the metrics rule fan-out, helper fan-out, lazy rule fan-in,
called rule fan-in, and helper fan-in. Rules can also refer to each other in an
implicit way, i.e., using a resolveTemp() expression. This dependency is mea-
sured using the metrics number of calls to resolveTemp() and number of calls
to resolveTemp() per rule.

2.4 Miscellaneous Metrics

We defined more metrics that do not fit the discussed categories. The metric
number of units measures the number of units that make up a model transfor-
mation. This metric can provide insight in the size and modularity of a model
transformation.

The last two metrics provide insight in the context of the model transforma-
tion. It is to be expected that model transformations involving more models are
more complex. Therefore, we propose to measure the number of input models
and the number of output models.

3 Empirical Study

The quality of a model transformation is not measurable directly. Therefore, we
resort to metrics, which can be measured directly. Before these metrics can be
used for assessing the quality of model transformations, we have to establish
a relation between the metrics and quality attributes relevant for model trans-
formations. To explore this relation, we conducted an empirical study. In the
empirical study we used a collection of seven ATL model transformations with
different characteristics. For each of these transformations, metrics data were
collected using the metrics collection tool presented in [6]. Quality attributes of
the same collection of transformations were quantitatively assessed by nineteen
ATL experts using a questionnaire. To establish a relation between the metrics
and the quality attributes, we analyzed the correlations between the metrics
data and the expert feedback. In this section, we describe the design and results
of the empirical study.

3.1 Objects

The objects of our empirical study are seven ATL model transformations. To
diversify the object set, we selected transformations from various sources created
by different developers. The transformations differ in size, style, structure and
functionality.

The first transformation is used to perform some type checking and refer-
ence resolving of a PicoJava program. PicoJava is a subset of the full Java lan-
guage [9]. The transformation was developed in a research project. The second
transformation generates a relational database model taking as input a UML
class model. It also generates a trace model specifying links between source and

24 MtATL 2011

target model elements. Transformation users can configure the transformation
behavior by means of a configuration model. The transformation has been used
as a case study in a research project [10]. The third transformation has been
used for educational purposes. Students were asked to develop a transformation
that generates code from a simple state machine language. The purpose of the
fourth transformation is to transform an R2ML model into an XML model with
R2ML syntax elements. The Rule Markup Language (R2ML) is a general web
rule markup language used to enable sharing rules between different rule lan-
guages. The transformation language is part of the ATL transformation zoo [11].
The fifth transformation copies a UML2 model. The transformation is part of
a collection of MDE case studies [12]. The sixth transformation is part of a
chain of refining model transformations presented in [13]. The purpose of the
transformation is to enable reliable communication over a lossy channel between
two communicating objects. It was developed as part of a research project. The
last transformation is the transformation used for conducting the experiment
presented in this paper. It takes an ATL model transformation and extracts
the metrics presented in Section 2 from it. Table 1 provides an overview of the
objects of our empirical study along with some of their characteristics.

No. Transformation LOC # Rules # Helpers Purpose

1. PicoJavaType 227 12 14 PicoJava type checking and reference resolving

2. R2ML2XML 1125 55 1 Generate an XML document of an R2ML model

3. SM2NQC 158 13 1 Generate NQC code from state machines

4. UML2DB 5152 84 76 Generate a relational database model from a UML
class model

5. UML2Copy 4158 199 1 Copy a UML 2 model

6. Lossy2Lossless 1003 37 2 Enable reliable communication over an unreliable
channel

7. ATL2Metrics 2110 93 28 Extract metrics from ATL transformations

Table 1. Characteristics of the analyzed model transformations

3.2 Participants

The participants in the study were nineteen experienced users of ATL with
various backgrounds. Some of them are part of the ATL development team,
whereas others use ATL only occasionally. None of the authors participated in
the study. The developers of some of the transformations presented in Section 3.1
were among the participants. In order to avoid biased results, measures were
taken such that the participants did not evaluate a model transformation they
developed themselves.

3.3 Task

The task of the participants was to quantitatively evaluate the quality of one
or more of the objects, i.e., ATL model transformations. They were asked to fill

CEUR Workshop Proceedings 25

out a questionnaire consisting of 21 questions each addressing one of the quality
attributes. To enable checking the consistency of the answers provided by partic-
ipants, the questionnaire contained at least three similar, but different questions
for every quality attribute. For instance, in one of the questions the participants
were asked to rate the understandability of the model transformation and in
another one they were asked to indicate how much effort it would cost them to
comprehend the model transformation. In each question, the participants had to
indicate their evaluation on a seven-point Likert scale. For all objects, the same
questionnaire was used.

It was likely that the participants had no previous knowledge of the trans-
formations they needed to evaluate. To give them an idea about the purpose
of the transformation under study, they were provided with a brief description
explaining that purpose. Moreover, the input and output metamodels of the
transformation were provided, such that they could run the transformation if
desired. The participants could use as much time for the evaluation task as they
needed.

In addition to the quantitative evaluation task, we used the questionnaire
to obtain qualitative statements from the participants. They were requested to
indicate what characteristics of an ATL model transformation in their opinion
influences each of the quality attributes.

In total, nineteen participants participated in the empirical study. All partic-
ipants evaluated at least one of the transformations. There were two participants
that evaluated three transformations. This leads to a total of 22 evaluations.

3.4 Relating Metrics to Quality Attributes

To establish a relation between metrics and quality attributes, we analyzed the
correlation between them. The data acquired from the questionnaire is ordinal.
Therefore, we use a non-parametric rank correlation test [14]. Since the data set
is small and we expect a number of tied ranks, we use Kendall’s τb rank corre-
lation test [15]. This test returns two values, viz. a correlation coefficient and a
significance value. The correlation coefficient indicates the strength and direction
of the correlation. A positive correlation coefficient means that there is a positive
relation between metric and quality attribute and a negative correlation coeffi-
cient implies a negative relation. The significance indicates the probability that
there is no correlation between metric and quality attribute even though one is
reported, i.e., the probability for a coincidence. Note that correlation does not in-
dicate a causal relation between metric and quality attribute. Table 2 shows the
correlations that were acquired. The significant correlations are marked. Since
we are performing an exploratory study and not an in-depth study, we accept a
significance level of 0,10.

The number of input and output models that a transformation takes corre-
lates in a negative way with the quality attributes understandability, modifiabil-
ity, and completeness. When a transformation takes multiple models as input and
generates multiple output models, it is to be expected that the transformation
rules of that transformation are more complex, and thereby less understandable

26 MtATL 2011

U
n

d
er

st
a

n
d

a
b

il
it

y

M
o

d
ifi

a
b

il
it

y

C
o

m
p

le
te

n
es

s

C
o

n
si

st
en

cy

C
o

n
ci

se
n

es
s

R
eu

sa
b

il
it

y

Metric C.C. Sig. C.C. Sig. C.C. Sig. C.C. Sig. C.C. Sig. C.C. Sig.

Input models -,407 ,029 -,407 ,029 -,391 ,038 -,122 ,524 -,345 ,066 -,218 ,249

Output models -,407 ,029 -,407 ,029 -,391 ,038 -,122 ,524 -,345 ,066 -,218 ,249

Units -,407 ,029 -,407 ,029 -,391 ,038 -,122 ,524 -,345 ,066 -,218 ,249

Transformation rules ,024 ,885 -,086 ,604 -,082 ,623 -,364 ,031 -,273 ,099 -,092 ,582

Non-lazy matched rules ,014 ,931 ,000 1,000 ,034 ,839 -,029 ,861 -,129 ,435 -,383 ,022

Lazy matched rules -,081 ,633 ,041 ,812 -,201 ,243 -,058 ,741 ,051 ,765 ,239 ,168

Called rules -,128 ,482 -,263 ,149 -,158 ,389 -,308 ,098 -,365 ,046 -,347 ,060

Rules with filter -,005 ,977 -,038 ,818 -,005 ,977 -,049 ,771 -,129 ,435 -,402 ,016

Rules with do-section ,000 1,000 -,153 ,385 -,057 ,747 ,018 ,922 -,108 ,540 -,173 ,332

Direct copies ,227 ,197 ,040 ,822 ,322 ,070 -,059 ,745 -,125 ,478 -,196 ,271

Rules with local variables -,013 ,944 -,051 ,780 ,032 ,861 -,137 ,460 -,178 ,328 ,302 ,100

Helpers -,178 ,296 -,229 ,180 -,201 ,243 -,047 ,786 -,246 ,152 ,187 ,281

Unused helpers -,407 ,029 -,407 ,029 -,391 ,038 -,122 ,524 -,345 ,066 -,218 ,249

Unused lazy matched rules -,025 ,893 ,138 ,460 -,152 ,419 ,026 ,892 ,076 ,687 ,217 ,251

Unused called rules -,128 ,482 -,263 ,149 -,158 ,389 -,308 ,098 -,365 ,046 -,347 ,060

Calls to resolveTemp() -,352 ,049 -,358 ,045 -,159 ,380 -,088 ,632 -,236 ,189 -,179 ,323

Elements per output pattern -,375 ,026 -,215 ,202 -,228 ,180 ,124 ,472 -,146 ,389 -,122 ,474

Rules per input pattern -,109 ,507 -,114 ,489 -,130 ,434 ,029 ,861 -,014 ,931 ,315 ,059

Unused input pattern elements -,032 ,854 ,059 ,737 -,033 ,854 -,056 ,758 ,033 ,854 ,297 ,097

Parameters per called rule -,407 ,029 -,407 ,029 -,391 ,038 -,122 ,524 -,345 ,066 -,218 ,249

Unused parameters per called rule -,407 ,029 -,407 ,029 -,391 ,038 -,122 ,524 -,345 ,066 -,218 ,249

Helpers per helper name (overloadings) -,033 ,855 -,066 ,714 -,054 ,769 ,220 ,237 ,060 ,741 ,007 ,971

Helper cyclomatic complexity -,248 ,142 -,154 ,364 -,357 ,037 -,026 ,882 -,175 ,304 ,126 ,461

Variables per helper ,006 ,972 ,063 ,727 ,013 ,944 -,111 ,550 ,178 ,328 ,328 ,074

Variables per rule -,038 ,834 -,076 ,676 ,070 ,700 -,111 ,550 -,242 ,184 ,225 ,220

Imported units -,252 ,164 -,080 ,661 -,323 ,078 ,110 ,554 -,027 ,883 -,223 ,225

Times a unit is imported -,318 ,088 -,138 ,459 -,379 ,045 ,086 ,654 -,084 ,656 -,247 ,192

Lazy rule fan-in -,356 ,037 -,143 ,404 -,397 ,021 ,005 ,976 -,021 ,905 -,062 ,719

Called rule fan-in -,407 ,029 -,407 ,029 -,391 ,038 -,122 ,524 -,345 ,066 -,218 ,249

Helper fan-in ,138 ,402 ,000 1,000 -,024 ,885 -,236 ,162 -,196 ,236 -,005 ,977

Rule fan-out -,223 ,175 -,124 ,453 -,333 ,046 -,157 ,351 -,235 ,157 ,024 ,885

Helper fan-out ,020 ,907 ,183 ,278 -,105 ,537 ,302 ,081 ,264 ,120 ,136 ,426

Helpers per unit -,178 ,296 -,229 ,180 -,201 ,243 -,047 ,786 -,246 ,152 ,187 ,281

Unit fan-in -,407 ,029 -,407 ,029 -,391 ,038 -,122 ,524 -,345 ,066 -,218 ,249

Unit fan-out -,407 ,029 -,407 ,029 -,391 ,038 -,122 ,524 -,345 ,066 -,218 ,249

Calls to resolveTemp per rule -,326 ,068 -,306 ,087 -,106 ,558 -,061 ,741 -,236 ,189 -,153 ,399

C.C.: Correlation coefficient
Sig. : Significance (two-tailed)

Table 2. Kendall’s τb correlations

and modifiable, since information from multiple sources needs to be combined
and assigned to the correct targets. The data partially support this. A signifi-
cant, positive correlation exists between the metrics number of output models

CEUR Workshop Proceedings 27

and number of elements per output pattern. Since the transformations in our
study all have one element per input pattern, no correlation can be found be-
tween this metric and the metric number of input models. In the qualitative
part of the empirical study, the participants indicated that the number as well
as the complexity of the involved metamodels has a negative effect on under-
standability, modifiability and also completeness. The reason for this is that the
metamodels need to be understood before the transformation can be understood
and modified. Moreover, it is hard to detect incompletions in a transformation
if the metamodels and their interrelations are not fully understood.

We conducted a similar empirical study for model transformations developed
using the ASF+SDF term rewriting system [16]. In that study we found that the
size of a transformation expressed in terms of the number of transformation func-
tions correlates negatively with understandability and modifiability. Therefore,
we expect to find similar correlations for ATL as well. In Table 2 it is shown that
no significant correlation is found between the metrics that measure the amount
of transformation rules and helpers, and the quality attributes understandability
and modifiability. However, the participants indicated in the qualitative part of
the empirical study that they see size as a negative influence on both the un-
derstandability and modifiability of an ATL model transformation. Most of the
participants indicated that the amount of called rules in particular has a neg-
ative impact on understandability and modifiability. The correlation coefficient
between the metric number of called rules and understandability and modifi-
ability is negative, however insignificant. A reason that was mentioned by the
participants for this negative influence is that called rules (and also do-sections)
are resorted to when a specific solution to part of a transformation problem is
required. This is also addressed as a reason for low reusability of called rules.
Table 2 shows that significant negative correlations have been found between
the metrics called rule fan-in and lazy rule fan-in and a number of quality at-
tributes. The participants mentioned that the use of, specifically, called rules
leads to more complex rule interaction and coupling between rules. Although
this argument holds for lazy matched rules as well, it is mentioned less often.

ATL allows defining helpers in separate units, or libraries as they are called in
ATL terminology. Table 2 shows that the metric number of units correlates nega-
tively with the quality attributes understandability, modifiability, completeness,
and conciseness. Modularizing software is generally considered to be beneficial
for its quality. Therefore, a positive correlation would have been expected here.
It must be noted that the participants mentioned the use of libraries as an in-
fluence on quality only with respect to conciseness and reusability. However, no
significant correlation has been found between the metric number of units and
reusability. In Table 2 it is also shown that some other metrics related to the
use of libraries, viz., unit fan-in, and unit fan-out correlate in a negative way
with the quality attributes understandability, modifiability, completeness, and
conciseness. A high value for unit fan-in and fan-out indicates a high coupling
between the units that comprise a model transformation. In traditional software
development, it is considered to be desirable to have low coupling between mod-

28 MtATL 2011

ules [17]. A reason for this is that having less interconnections between units
reduces the time needed by developers to understand the details of other units.
Moreover, a change in a unit can cause a ripple effect, i.e., the effect of the change
is not local to the unit. Similarly, an error in one unit can affect other units.
The metrics number of imported units and number of times a unit is imported
also relate to the use of libraries. However, they correlate less with the quality
attributes.

The participants mentioned that simple transformations with one-on-one
mappings tend to be the most complete. The number of direct copies measures
one-on-one copies. This metric correlates positively with completeness, support-
ing the claim of the participants. Having simple, or small, transformations was
mentioned as having a positive influence on reusability as well. Some of the
participants indicated that model transformations should be split up in a chain
of smaller transformations, because this increases reusability and, as mentioned
before, also understandability. A negative influence on reusability and also mod-
ifiability that was mentioned is the use of the resolveTemp() expression. The
correlations presented in Table 2 partly support this. The reason that was men-
tioned for this influence is that the use of resolveTemp() expressions increases
coupling between rules. This is also an explanation for the negative correlation
that was found between understandability and the metrics number of calls to
resolveTemp() and number of calls to resolveTemp() per rule.

Unused elements are usually not beneficial for the understandability and
modifiability of a transformation because they clutter it. Since unused elements
are in principal superfluous, they have an obvious negative effect on conciseness.
For the metrics number of unused helpers, number of unused called rules, and
number of unused parameters of called rules such correlations have been found.
However, no significant correlations can be found for the metrics number of
unused lazy rules and number of unused input pattern elements.

In the qualitative part of the empirical study, more feedback was acquired
regarding the quality of ATL model transformations of which some cannot be re-
lated to metrics directly. The participants indicated that lay-out of the code of a
model transformation, as well as the use of proper naming for rules, helpers, and
variables will increase the understandability and modifiability of the transforma-
tion. Enforcing proper naming by means of a coding convention was mentioned
as a positive influence on consistency as well. Proper comments and additional
documentation of the requirements and design of the transformation were men-
tioned as positive influences on completeness and, again, understandability. Ac-
cording to the participants, the use of helpers has a positive influence on almost
all quality attributes, albeit that they should not become too complex. Helpers
prevent duplication of code, which increases consistency and conciseness. It was
mentioned that navigation of the source model should be delegated to helpers
rather than implementing it as part of a rule. Besides being beneficial for the
quality attributes considered in this paper, experiments have shown that this
has a positive effect on performance as well [18]. Rule inheritance has, according
to the participants, a positive influence on the quality attributes understandabil-

CEUR Workshop Proceedings 29

ity, conciseness, and consistency. The use of rule inheritance can lead to rules
that are more concise and have a common pattern, which are in general more
understandable. Although, a deep inheritance tree should be avoided, since it de-
creases understandability again. Similarly to what holds for inheritance trees in
object-oriented software, a rule deeper in the rule inheritance tree may be more
fault-prone because it inherits a number of properties from its ancestors [19].
Moreover, in deep hierarchies it is often unclear from which rule a new rule
should inherit from.

3.5 Threats to Validity

When conducting empirical studies, there are always threats to the validity of
the results of the study [20]. Here, we address the potential threats to validity
we identified for the empirical study we performed.

The objects used in the study are seven ATL model transformations that have
been developed and applied for various purposes. Therefore, they have different
characteristics. It must be noted, however, that there is only one transformation
that is largely imperative, i.e., 57 of the 84 transformation rules of the UML2DB
transformation are called rules and all of the 84 rules have a do-section. In
Figure 1, a scatter plot is depicted of the data concerning the number of called
rules in the transformations and their reusability. Since almost all data points
are on the left side of the graph, the significant negative correlation that has been
found between the number of called rules and reusability is mainly explained by
the two outlying data points that originate from the UML2DB transformation.
Even though we use a ranked correlation test to reduce the influence of outlying
values, these correlation would not have been found if this transformation would
not have been in the object set. Therefore, we cannot base our conclusions solely
on the correlations we found. To address this threat to validity, we also collected
qualitative data. The participants were requested to indicate the characteristics
of an ATL model transformation that in their opinion influences each of the
quality attributes. These qualitative statements were used to support or refute
the results of the quantitative analysis.

The participants in our study have different backgrounds. Some of them are
part of the ATL development team, whereas others use ATL only occasionally.
In the questionnaire, the participants were requested to rate their knowledge
of ATL. Most of the participants rated their knowledge as high or very high.
Therefore, we do not consider the experience of the participants as a threat to
the validity of this study.

The task the participants had to perform was evaluating different quality
attributes of model transformations. Evaluating model transformations is not a
typical task for a model transformation developer. Moreover, participants are
not always the most careful readers [21]. Both these issues may decrease the
validity of the data. To address both threats to validity, we posed for each of
the quality attributes at least three similar but different questions. The results
showed that the responses provided by the participants to each of the similar

30 MtATL 2011

Number of called rules

6050403020100

R
e
u

s
a
b

il
it

y

7,00

6,00

5,00

4,00

3,00

2,00

1,00

Fig. 1. Relating the number of called rules to reusability

questions were relatively consistent. Also the answers among the participants
were relatively consistent. Therefore, we minimized these threats to validity.

4 Related Work

In [16], we presented the results of an empirical study similar to the one presented
here. In that paper we focused on model transformations developed using the
ASF+SDF term rewriting system. Like the study presented here, that study had
an exploratory character as well. Since the number of active users of ASF+SDF
is rather small, the number of participants in that study was low. However, for
most of the quality attributes we found metrics that correlate with them.

The metrics presented in this paper are specific for ATL. However, concep-
tually similar metrics can be defined for other model transformation formalisms
as well. We have defined metric sets for measuring characteristics of QVT opera-
tional mappings and Xtend. In [22], we compare these metrics sets and the met-
rics set for ATL to find overlap and differences among them. Although we would
like to do so, no empirical study has been performed yet to validate whether the
metric sets for QVTO and Xtend are valid predictors for the quality attributes.

Kapová et al. have defined a set of metrics for evaluating maintainability of
model transformations created with QVT Relations [23]. Most of the 24 met-
rics they defined are similar to the metrics we have defined. Their extraction
process of 21 of their metrics has been automated by means of a tool in a sim-
ilar way as we have done for ATL [6]. They have applied their tool to three
different transformations to demonstrate how to judge the maintainability of a
model transformation using their metrics. This judgment is based on expecta-
tions rather than empirical evidence. Performing empirical validation is a point
they indicate for future work.

Empirical studies have been performed for other types of software artifacts.
Basili et al. performed an empirical study to assess whether a set of metrics for

CEUR Workshop Proceedings 31

measuring characteristics of object-oriented systems are suitable quality predic-
tors [19]. The participants in their study, eight groups of three students each,
had to develop a medium-sized system. Metrics were extracted from the source
code of the various developed systems at the end of the implementation phase.
Data was also collected on faults detected during the testing phase. Correlations
between the metrics data and the fault data were analyzed to assess whether
the metrics can be used to detect fault-prone classes. A similar study for model
transformations can give valuable insights into the causes for faults in model
transformations, and thereby on the influences on their quality. Based on the
result of such a study, guidelines can be formulated aimed at decreasing the
probability for faults. Lange presents a number of empirical studies aimed at
assessing and improving the quality of UML models [24]. In one of the stud-
ies, industrial UML models were analyzed for defects. Based on this study, two
follow-up studies were conducted to assess whether respectively modeling con-
ventions and the use of visualization techniques can reduce the number of defects
in UML models.

5 Conclusions and Future Work

We addressed the necessity for a methodology to assess the quality of model
transformations. In software engineering, metrics are frequently used for this
purpose. However, metrics alone do not suffice. They have to be related to quality
attributes in order to establish whether they serve as valid predictors for these
quality attributes. We presented the results of an empirical study in which we
try to find relations between metrics that can be automatically derived from a
set of ATL model transformations and a quantitative quality evaluation of the
same set of transformations by a group of ATL experts. In this study, we also
requested the participants to state what in their opinion influences the different
quality attributes of an ATL model transformation. Although the study was
intended as a first exploration of this relation, some significant correlations were
found that are supported by statements of the participants.

To acquire more insights into the relation between metrics and quality at-
tributes, additional empirical studies are required. One type of empirical study
that could be considered is one in which the task of the participants is similar
to a typical task of a transformation developer in practice, i.e., developing and
maintaining model transformations. Although such a study can provide insights
that can really help improving the quality of model transformations, finding
enough qualified participants for it is hard.

Quality is a subjective concept, i.e., everybody has his or her own perspective
on it. Therefore, it is necessary to develop some consensus about quality of, in
this case, model transformations. Performing empirical studies to determine this
consensus and to validate means for assessing quality are therefore invaluable.

32 MtATL 2011

Acknowledgements

We would like to thank all the participants of our empirical study for their time
to fill out the questionnaire and the valuable feedback.

We would also like to thank Jan Stoop for his help with the statistical part
of this work.

References

1. Schmidt, D.C.: Model-Driven Engineering. Computer 39(2) (February 2006) 25–31
2. Mohagheghi, P., Fernandez, M.A., Martell, J.A., Fritzsche, M., Gilani, W.: MDE

Adoption in Industry: Challenges and Success Criteria. In Chaudron, M.R.V.,
ed.: Models in Software Engineering: Workshops and Symposia at MoDELS 2008
Reports and Revised Selected Papers. Volume 5095 of Lecture Notes in Computer
Science., Toulouse, France, Springer (Sept./Oct. 2008) 54–59

3. Jouault, F., Kurtev, I.: Transforming Models with ATL. In Bruel, J.M., ed.: MoD-
ELS 2005 Satellite Events. Number 3844 in Lecture Notes in Computer Science,
Montego Bay, Jamaica, Springer (October 2005) 128–138

4. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2) (June 2008) 31–39 Special Issue
on Second issue of experimental software and toolkits (EST).

5. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., Macleod, G.J., Merrit, M.J.:
Characteristics of Software Quality. Volume 1 of TRW Series of Software Technol-
ogy. North-Holland (1978)

6. van Amstel, M.F., van den Brand, M.G.J.: Quality Assessment of ATL Model
Transformations using Metrics. In: Proceedings of the Second International Work-
shop on Model Transformation with ATL (MtATL 2010). CEUR Workshop Pro-
ceedings, Málaga, Spain (June 2010) To appear.

7. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering
2(4) (December 1976) 308 – 320

8. Cabot, J., Teniente, E.: A metric for measuring the complexity of ocl expressions.
In: Workshop on Model Size Metrics (co-located with MODELS 2006), Genova,
Italy, month = oct, (2006)

9. : PicoJava Checker. http://jastadd.org/jastadd-tutorial-examples/picojava-
checker

10. Muñoz, J., Llacer, M., Bonet, B.: Configuring ATL transformations in MOSKitt.
In: Proceedings of the Second International Workshop on Model Transformation
with ATL (MtATL 2010). CEUR Workshop Proceedings, Málaga, Spain (June
2010) To appear.

11. : ATL transformations. http://www.eclipse.org/m2m/atl/atlTransformations/
12. Wagelaar, D.: MDE Case Studies. http://soft.vub.ac.be/soft/research/mdd:casestudies
13. van Amstel, M.F., van den Brand, M.G.J., Engelen, L.J.P.: An Exercise in Iterative

Domain-Specific Language Design. In Capiluppi, A., Cleve, A., Moha, N., eds.:
Proceedings of the Joint ERCIM Workshop on Software Evolution and Interna-
tional Workshop on Principles of Software Evolution (IWPSE-EVOL 2010). ACM
International Conference Proceeding Series, Antwerp, Belgium, ACM (September
2010) 48–57

14. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous & Practical Approach.
Second edn. PWS Publishing Co. (1996)

CEUR Workshop Proceedings 33

15. Field, A.: Discovering Statistics using SPSS. Second edn. Sage (2005)
16. van Amstel, M.F., Lange, C.F.J., van den Brand, M.G.J.: Using Metrics for As-

sessing the Quality of ASF+SDF Model Transformations. In Paige, R.F., ed.: Pro-
ceedings of the Second International Conference on Model Transformation (ICMT
2009). Volume 5563 of Lecture Notes in Computer Science., Zurich, Switzerland,
Springer (June 2009) 239–248

17. Page-Jones, M.: The practical guide to structured systems design. Second edn.
Yourdon Press (1980)

18. van Amstel, M., Bosems, S., Kurtev, I., Pires, L.F.: Performance in Model Trans-
formations: Experiments with ATL and QVT. In Visser, E., Cabot, J., eds.: Pro-
ceedings of the Fourth International Conference on Model Transformation (ICMT
2011). Lecture Notes in Computer Science, Zurich, Switzerland, Springer (June
2011) To appear.

19. Basili, V.R., Briand, L.C., Melo, W.L.: A Validation of Object-Oriented Design
Metrics as Quality Indicators. IEEE Transactions on Software Engineering 22(10)
(1996) 751 – 761

20. Yin, R.K.: Case Study Research: Design and Methods. Fourth edn. Volume 5 of
Applied Social Research Methods Series. Sage (2009)

21. Oppenheimer, D.M., Meyvis, T., Davidenko, N.: Instructional manipulation checks:
Detecting satisficing to increase statistical power. Journal of Experimental Psy-
chology 45(4) (July 2009) 867–872

22. van Amstel, M.F., van den Brand, M.G.J., Nguyen, P.H.: Metrics for model trans-
formations. In: Proceedings of the Ninth Belgian-Netherlands Software Evolution
Workshop (BENEVOL 2010), Lille, France (December 2010)

23. Kapová, L., Goldschmidt, T., Becker, S., Henss, J.: Evaluating Maintainability
with Code Metrics for Model-to-Model Transformations. In Heineman, G., Kofron,
J., Plasil, F., eds.: Proceedings of the Sixth International Conference on the Quality
of Software Architectures (QoSA 2010). Volume 6093 of Lecture Notes in Computer
Science., Springer (2010) 151–166

24. Lange, C.F.J.: Assessing and Improving the Quality of Modeling: A Series of Em-
pirical Studies about the UML. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands (2007)

34 MtATL 2011

