
Hybrid Publish-Subscribe: A Compromise
Approach for Large-Scale

Roman Szarowski

Czech Technical University in Prague,
Karlovo náměst́ı 13, Prague 2, 121 35, Czech Republic

xszarows@fel.cvut.cz,
http://cs.felk.cvut.cz/~xszarows/

Abstract. The purpose of this article is to propose a scalable, topo-
logically and traffic-wise self-adapting approach to a publish/subscribe
paradigm for supporting event-based applications on a wide-area net-
work. Large event systems requiring an efficient group communication
as well as anonymity of particular peers tend to be fully decoupled. The
publish/subscribe paradigm provides this requirement which enlarges
a range of dimensions involving such system. There are two main ap-
proaches, namely topic-based and content-based publish/subscribe. The
advantages and disadvantages of the approaches are often complemen-
tary one to another. This article presents a method of improving ef-
ficiency of large-scale systems while preserving scalability by involving
cooperation of topic-based and content-based techniques.

1 The Publish/Subscribe Paradigm

The publish/subscribe paradigm is a loose communication scheme for modelling
the autonomous interaction among participants in event systems and introduces
a powerful mechanism for distributed and mobile architectures. On the contrary
to the classic interaction models like request/reply, publish/subscribe provides
three levels of decoupling: time, space and data flow. The publish/subscribe
interaction scheme is represented by three types of participants: a publisher,
a subscriber and a broker. Whereas the first two are notification providers or
consumers (clients), the last one is a mediator (server) assuring data storage
and delivery. A typical publish/subscribe system consists of a number of bro-
kers linked together into a general graph. Publishers register their interest to
notify about events (by sending advertisements) to their own broker as well
as subscribers register their interest (by sending subscriptions) to be notified
about events. It is upon particular broker to effectively disseminate appropri-
ate notifications across the whole network of brokers on the basis of received
subscriptions/advertisements. The basic system model for publish/subscribe in-
teraction is illustrated in Figure 1. For detail description we refer to [1].

Subscribers usually register their interest in particular events, rather than in
all events. The different approaches to handle the events with respect to sub-
scriptions/advertisements have led to define two characteristic event schemes,



Publisher

Publish

Unadvertise
Subscriber

Notify()
Unsubscribe

SubscribeAdvertise

Notify

Subscriber

Notify()

Subscriber

Notify()

Publish()

Publisher

Publish()

Publisher

Publish()

Unsubscribe()Unadvertise()

Publish()

Event Service

Subscribe()Advertise()

Notify()

Storage and
management of

notifications

Storage and
management of

subscriptions

Fig. 1. A simple object-based publish/subscribe system

namely topic-based and content-based publish/subscribe.
The topic-based interaction model is based on the notion of topics. Every

publisher or subscriber interested in publishing or receiving events related to
particular topic basically joins a group. Hence, subscribing to a topic T means
to become a member of a group GT and consequently members of GT com-
municate along the subscription channel CHT . Commercial publish/subscribe
systems are implemented broadly on the basis of this approach, e.g. [2].

The content-based publish/subscribe model gives more flexibility to the ap-
plication by removing limitations on topics. Subscribers can register their indi-
vidual interests by specifying the properties of the event notifications they are
interested in. Typical representatives of this scheme are Gryphon [3, 4] and Siena
[5]. Thanks to expressiveness of this approach the dissemination of redundant
messages can be avoided. It also brings a better scalability with respect to num-
ber of brokers, because notifications are disseminated incrementally. Every single
broker cares just about its direct neighbors and ignore the others.

2 The Hybrid Publish/Subscribe

If a topic-based system grows up to a large network of interconnected brokers, a
particular subscription channel spreads along this network. As a consequence, a
subscription group can: 1. contain too many brokers to handle its consistent state
in reasonable time interval because group state changes become too frequent; 2.
become a very sparse set of interested brokers in such a manner that an average
network distance between two brokers within the group become intolerably high
according to a number of physical network hosts on the path between them.

In content-based publish/subscribe, exchange of subscriptions and advertise-
ment are very effectively distributed, so the problem with consistence of the
system disappears. However, there is other difficulty to consider. Every event
transfer is based on a store/forward or store/filter/forward technique (according
to the content-based scheme in [5]). Although filter mechanisms give a routing



freedom to brokers, every event has to pass through all the brokers (hosts) on a
path between the source and the most distant interested broker.

The hybrid publish/subscribe approach comes from the requirements on a
good scalability and using sophisticated group communication techniques in
cases where it is possible and suitable. The basic principle is the following.

When the system starts, every active broker works as a common peer of a
content-based system with ability to manage subscriptions/advertisements, to
filter and to route events. For simplicity, we adopt basics of Siena’s routing
strategies [5]. Since Siena’s broadcasting of subscriptions/advertisements is not
intended to be used in general P2P networks, we would have to use some mech-
anisms to avoid cycles, e.g. timestamping of requests.

After some time, our system can reach a state where an event E will be just
forwarded among several brokers without any filtering operation. If it continues
for a longer period of time, it will induce a good opportunity to make a rout-
ing optimization. These brokers transferring particular events among themselves
create a group. On the basis of this heuristics, the brokers within this group can
use more sophisticated group communication techniques to transfer data than a
simple store/forward, e.g. IP multicast. As a consequence, we create a channel
similar to channels in the topic-based publish/subscribe. We can call it a local
channel. A number of members in the group can increase if some other members
join the group or decrease if some of them leave the group. Furthermore, there
may exist several local channels separately, transferring the same events in the
system. Two groups may join together as well. Figure 2 illustrates this concept.

There are three types of brokers in Figure 2. Brokers represented by squares
are interested in receiving event E1. Brokers represented by triangles are inter-
ested in event E2. Circles are the brokers without any relation neither to E1 nor
to E2. There are also two types of lines interconnecting a pair of brokers, each
of them symbolizes a different network throughput.

4

1 2

3

5
6

7

2

5

7

4

3

6

1

Group G 1.1

Group G 2

Group G1Group G1.2

Group G 2.1 Group G 2.2

Brokers attempting
 to join the group 1

Brokers attempting
 to join the group 2 Other brokers

Various speed
of connections

Fig. 2. Hybrid publish/subscribe scheme



On the left part of the figure we observe that several squared brokers created
two groups: G1.1 and G1.2. Though both of them are interested in the same
event, a low throughput between brokers 2 and 3 do not allow them to be a part
of a single group. On the other hand, triangled brokers create a single group G2.
Note that there are many other brokers, both squared and triangled, which do
not participate in groups at all.

After unspecified time interval, the state of our system can vary insofar, that
the groups sharing particular events will need to be rearranged. So the consid-
ered groups G1 and G2 can look like these on the right part of the Figure 2. As
we can see, group G1.1 and G1.2 merged into the single group G1 on the contrary
to the group G2, which split into two groups G2.1 and G2.2. The reason why the
first happened can be e.g. increased throughput of the network between brokers
2 and 3. Splitting of the group G2 may occur e.g. due to high traffic between the
brokers 5, 6 and 7. Note that no change in throughput between brokers 5, 6, 7
happened (represented by the same thickness of edges).

Some brokers joined one of the groups, e.g. broker 4 joined the group G1, but
some of them left their group, e.g. 1, 3 and 6. An important fact to comment on
is that joining or leaving a group G is not conditioned by a direct connection
between members of the group G. It comes from the fact that members within a
group may interchange notifications using a low-level network protocols and do
not depend on an application-level interaction that is required e.g. in Siena [5].

3 Conclusions and Future Work

The goal of this paper was to propose a compromise publish/subscribe scheme
approach having advantages of both widely used schemes. The main principle of
this approach is to maintain local groups of brokers on the basis of a heuristics, in
order to increase a data transfer performance among the members within these
groups. The cost of the approach is a higher implementation complexity accord-
ing to the basic schemes. The future work related to the hybrid publish/subscribe
will be concentrated on empirical methods to prove correctness of the concept.

References

1. P. Eugster, P. Felber, R. Guerraoui, A. Kermarrec. The Many Faces of Pub-
lish/Subscribe. Technical Report, Micosoft Research Cambridge, UK, 2001.

2. Sun Microsystems: Java Message ServiceTM. JMS (version 1.0.2b), June, 2001.
http://java.sun.com/products/jms/

3. M. Aguilera, R. Strom, et al. Matching Events in a Content-based Subscription
System. In Proceedings of the ACM Symposium on Principles of Distributed Com-
puting, pp. 53-61, 1999. http://www.research.ibm.com/gryphon

4. G. Banavar, et al. An Efficient Multicast Protocol for Content-Based Publish-
Subscribe Systems. In Proceedings of the 19th Int. Conference on Distributed
Computing Systems, MIT, Boston, 1999. http://www.research.ibm.com/gryphon

5. A. Carzaniga. Architectures for an Event Notification Service Scalable to Wide-area
Networks. PhD Thesis, Technical University in Milano, Italy, 1998.


	Str: 
	:2401: 241
	:2411: 242
	:2421: 243
	:2431: 244



