
Exp-DB: Fast Development of Information
Systems for Experiment Tracking

Nomair A. Naeem1, Stéphane Raymond2, Anne Poupon3, Miroslaw Cygler2,
and Bettina Kemme1

1 School of Computer Science, McGill University, Montreal, Canada
2 Macromol., Structure Group, NRC Biotechnology Research Inst., Montreal, Canada

3 Lab. d’Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France

Abstract. Bioinformatics research groups require information systems
keeping track of experiments and their results. However, current solutions
are often ad-hoc, difficult to maintain, extend, or use in different context.
This paper presents Exp-DB, an infrastructure for the fast development
of information systems for experiment tracking. Exp-DB provides a basic,
extensible database design, modular components for accessing the data,
and a web-based interface. It allows for fast implementation of an initial
system even by non IT-experts which can then be extended step-by-step.

1 Introduction

Bioinformatics research is driven by experiments. Typically, experiments are ex-
ecuted in form of a workflow: related experiments are executed in a predefined
order and might depend on each other. We refer to a set of such related exper-
iments as experiment workflow. With the introduction of new technology, more
and more experiments are automated leading to an explosion in the number of
experiments and a need for computer supported analysis of conducted exper-
iments. As a result, many research groups have started to develop web-based
information systems that keep track of their experiments, e.g., [2, 5, 6]. The ini-
tial investment in building such systems can be quite high. Since these systems
are seldomly built by computer scientists, the team members first have to learn
the essentials of the technology. Due to fuzzy requirements, time pressure and
lack of experience, the developed systems often lack modularity and extensibility,
and are only usable in very specific context.

Exp-DB attempts to address these issues. It is a multi-tier infrastructure
intended to help small scientific research groups to develop their own information
system for experiment tracking. The development of Exp-DB was motivated by
two goals. Firstly, the design, architecture, and infrastructure must be simple
enough to be understood in reasonably short time by people without extensive
computer skills. This is needed to have a first running system in short time.
Secondly, the system must provide sufficient modularity and flexibility such that
it can be extended, adjusted and optimized in many different ways (although
this might require more computer science knowledge than the first step).

The architecture of Exp-DB follows a strict separation of tasks: data stor-
age, application logic, and presentation logic are implemented in separate com-
ponents. Within each of the components, different concepts are implemented



separately from each other in different modules. The architecture is based on
Java Technology and uses Apache/Tomcat as its execution environment.

A research group develops its own system based on Exp-DB in the following
steps. Exp-DB provides an initial, quite simple relational data model. Relying
on the basic structure of the Exp-DB data model, attributes have to be added
to existing tables, and new tables have to be created reflecting the particular
research conducted. For instance, for each type of experiment, typically one ad-
ditional table has to be added to the database plus some indication how this
experiment type is related to other experiment types. For each newly created
table, one small application logic program has to be generated. No further work
is required to get a first running system. Web-pages are automatically gener-
ated from the entered information. The tasks to be performed require moderate
knowledge in relational database design, and basics in Java programming.

There exist several databases keeping track of scientific experiments, e.g.,
[5, 6, 3]. General laboratory systems are e.g., [4, 7, 1, 8]. However, none of these
system provides the general functionality and simplicity of our system.

2 Experiments and Workflows

Our system design was motivated by the existing information system of the
Macromolecular Structure Group at the Biotechnology Research Center, Na-
tional Research Council, Canada. This group is engaged in finding the structure
of proteins mainly through x-ray crystallography. Their suite of experiments fol-
lows a typical pattern. A workflow starts with (1) selecting a set of genes or
subsequences of genes as promising targets. For each selected target the further
steps include (2) cloning, (3) protein production, (4) purification, (5) crystal-
lization, (6) X-ray crystallography, and (7) structure analysis. (8) An alternative
method following step (5) is NMR (nuclear magnetic resonance) spectrometry.
(9) Optional quality testing occurs after the purification step (4). (10) Also, if
steps (5) to (8) are unsuccessful, fragmentation splits the proteins retrieved in
step (4) into smaller fragments that might be easier to crystallize. Steps (2) to
(4) might be skipped if the proteins are provided by other labs.

From this description, we can introduce the following definitions. An exper-
iment type describes a specific form of experiment, e.g., Cloning, Purification,
etc. An experiment is an instance of an experiment type. An experiment
workflow is a directed graph. Each node depicts an experiment. An edge from
experiment E1 to experiment E2 indicates that E1 was performed before E2
and its output served as input for E2. Experiments are not randomly combined
to experiment workflows but usually follow standard workflow patterns. That
is, an experiment of type T1 might typically follow an experiment of type T2
(e.g, Purification → Crystallization). Some patterns, however, are impossible
(e.g., Crystallization → Purification). This means, we have to restrict experi-
ment workflows to only allow meaningful transitions between experiment types.
A workflow model a directed graph where nodes are experiment types. An ar-
row from experiment type T1 to experiment type T2 indicates that the output of



an experiment of type T1 can (but need not) be input of an experiment of type
T2. From there, a legal workflow is an experiment workflow such that for each
arrow from experiment E1 of type T1 to E2 of type T2 in the workflow graph,
the workflow model graph has an arrow from T1 to T2. A workflow can have
one-to-many and many-to-one relationships. That is, experiment E1 of type T1
can have edges to experiments E21 and E22 both of type T2 as long as there is
an arrow from T1 to T2 in the model (one purification experiment is input for
many crystallization experiments). In a similar way, many experiments of the
same type can be input to one further experiment (e.g. the results of many x-ray
crystallography experiments can be input for a single structure analysis).

3 Database Design

Exp-DB distinguishes different types of information. Access control information
is needed to restrict access to the system. Special information is very specific
to a given research environment, e.g., information about genes and proteins.
Meta information keeps track of the structure of the tables and their attributes.
This is needed for presenting data correctly and for type checking. Experimental
information is the backbone of the schema. The Experiment table contains
general information about each experiment independent of the experiment type.
Type dependent information is stored in separate tables, one for each type.
The table Workflow is used to store information about conducted workflows by
indicating parent and child experiments. The workflow model graph is encoded
into the Workflow Model table. Whenever a user wants to enter a record into
the Workflow table, the system checks in the Workflow Model table whether
such an experiment flow is legal.

4 Architecture and Implementation

The system has a three-tier architecture and follows standard software develop-
ment guidelines. Users (client tier) interact with the system through a standard
browser. The middle tier is responsible for the presentation and business logic,
and uses an Apache Tomcat web-server. The system is based on the the MVC
(Model View Controller) architecture. This helps to provide a clean separation
between the presentation and the processing of data. The presentation logic
generates the webpages using JavaServer Pages (JSP). The JSPs represent the
”View” that the users receive from the system. The application logic is imple-
mented as a combination of Servlets and JavaBeans. The JavaBeans encapsulate
the data access to the database system and represent the data in an abstract in-
terface to JSPs and Servlets. They implement the ”Model”. Finally, the Servlets
”control” how the user interacts with the system, and how the different compo-
nents should be called. The backend tier can be any relational database system.

The system consists of several modules. Each module consists of a set of JSPs
and JavaBeans that implement a specific functionality: users can enter new infor-
mation (e.g., new experiments), search the database, or access specific existing



entries in the database. All requests are filtered through a controller servlet that
forwards it to the corresponding module. The non-experiment module is respon-
sible for entering individual entries to non experimental tables. It has a single
JSP that is valid for all tables, and a JavaBean for each table. It is completely
hidden from the JSP how the data is internally stored since all data access is
passed through the JavaBean. The experiment module is more complex since the
addition of an experiment requires entries into several tables and the experiment
must be linked to a specific workflow. The user is guided through a sequence of
web-pages to enter all relevant information. Correctness checks are performed to
guarantee that only legal workflows are allowed. The query module provides a set
of predefined queries that are typical for experimental databases. Furthermore,
the user can ask more complex queries in form of SQL queries or through a query
wizard. The record module provides the functionality to view, modify, and delete
an individual existing record. For each of these methods, there exists one single
JSP (independently of the table). This JSP calls the corresponding JavaBean
of the table to retrieve or store the data, and then dynamically generates the
webpage. Furthermore, this module provides navigation through an experiment
workflow. Starting with the view of an experiment, the user can navigate to the
child experiments or parent experiments.

Exp-DB only provides the basic framework and must be extended to become
operational. The most typical extension will be the addition of new experiment
types and the specification of the workflow model. This can be done very easily by
adding new tables to the database and creating a few JavaBeans (templates are
provided). Special extensions are possible due to Exp-DB’s modular structure.

References

1. G. Alonso, C. Hagen: Geo-Opera: Workflow Concepts for Spatial Processes, Int.
Conference on Scientific and Statistical Database Management, 1997.

2. J. Frew, R.Bose: Earth System Science Workbench: A Data Management Infrastruc-
ture of Earth Science Products, Int. Conference on Scientific and Statistical Database
Management, 2001.

3. G. L. Gilliland, M. Tung, J. Ladner: The Biological Macromolecule Crystallization
Database and NASA Protein Crystal Growth Archive, Journal of Research of the
National Institute of Standards and Technology, 101(3), 1996.

4. N. Goodman, S. Rozen, L. D. Stein, A.G. Smith: The LabBase system for data
management in large scale biology research laboratories. Bioinformatics, 14, 562-574.

5. P. W. Haebel, V. L. Arcus, E. N. Baker and P. Metcalf: LISA: an intranet-based
flexible database for protein crystallography project management, Acta Crystallo-
graphica D57, 1341-1343, 2001.

6. M. Harris and T. Alwyin: Xtrack – a web-based crystallographic notebook, Acta
Crystallographica D58, 1889-1891, 2002.

7. Y. Ioannidis, M. Livny, S. Gupta, N. Ponnekanti: ZOO: A Desktop Experiment
Management Environment. Int. Conference on Very Large Databases, 1996.

8. J. Meidanis, G. Vossen, M. Weske: Using Workflow Management in DNA Sequenc-
ing. Int. Conference on Cooperative Information Systems, 1996.


	Str: 
	:1241: 125
	:1251: 126
	:1261: 127
	:1271: 128



