Conceptual Modelling of Mobile Object
Systems: Some Language Constructs

Peter Ahlbrecht, Silke Eckstein, and Karl Neumann

Technical University Braunschweig, Information Systems Group,
P.O.box 3329, D-38023 Braunschweig, Germany,
{p.ahlbrecht | s.eckstein | k.neumann }@tu-bs.de,
WWW home page: http://www.cs.tu-bs.de/idb/welcome_e.html

Abstract. Mobile hardware and software gain wide acceptance, and a
couple of corresponding specification and modelling languages have been
developed alongside. As these languages so far do not allow to distinguish
between the ever-mobile units and the stationary subsystems forming
their context—which is an essential distinction for many scenarios—in
this article we present some suitable constructs as an extension of an
already existing specification language.

1 Approaches to the Specification of Mobile Systems

Mobility has numerous effects influencing both hardware and software, and sev-
eral languages have been developed to specify and model these effects. As the
currently most widespread semi-formal specification language, already the “ba-
sic” version of the Unified Modeling Language (UML) provides sufficient means
to model mobile objects with its <become>> stereotype Additionally, several
extensions to the UML have been proposed to make the language more suitable
for specifying mobile agent systems, as, e.g., in [1]. Numerous formal meth-
ods that treat the concept of mobility explicitly are process algebras, with the
m-Calculus [2] being its most well-known representative. It adopts a notion of
mobility that the area of movement is the space of linked processes in which the
moving entities are the links. Instead of movement of processes the w-Calculus is
rather concerned with the movement of access to processes. A frequently men-
tioned argument in favour of mobile agents, however, is that in case a computa-
tion is expected to work on a large amount of data, it will be more efficient to
move the computation to the data than to transfer the input to the computation
and evaluate it locally [3]. This argument may be extended to mobile systems
in general: if performance of a system depends on its location, then a model
which captures mobility by movement of access may not be adequate. To rep-
resent such scenarios the Ambient Calculus [4] or the Algebra of Itineraries [5]
seem to be better suited. An ambient is a bounded named place where computa-
tion takes place. The boundary captures location-dependent qualities. Location
is also explicitly represented in [5], which concentrates on providing means to
model itineraries of movement in a flat structure of places. In contrast to this

89

ambients can be nested. They may access each other when they are nested at
the same level within the same super-ambient, and movement can be expressed
by capabilities which allow them to enter, exit, and open another ambient if its
name is known. Just like Mobile Maude [6], the Distributed Join-Calculus [7] fo-
cuses on mobile agents. Like the enriched m;-Calculus [8], in addition to offering
means for specifying location-dependent qualities the Distributed Join-Calculus
also offers constructs for modelling failure of locations. Mobile Unity [9], too, pro-
vides means to explicitly represent location. In contrast to the other approaches
this is achieved via a location attribute and constructs which reflect location
dependency in communication, namely transient variable sharing and transient
action synchronisation, which allow entities to share data and synchronise ac-
tions when in close proximity. A strict separation between mobile and stationary
units, together with the possibility of grouping them, is thus so far not available.
As declarative languages are considered to be especially suited for developing
programs from the results of the requirements analysis [6], it was reasonable
to take the declarative object-oriented specification language TROLL [10] devel-
oped at our group and extend it with constructs which facilitate making such a
distinction.

2 Modelling Mobile Object Systems

The object-oriented language TROLL has been developed for specifying informa-
tion systems at a high level of abstraction. In this approach information systems
are regarded as being communities of concurrent, interacting (complex) objects.
Objects are units of structure and behaviour. They have their own state spaces
and life cycles, which are sequences of events. A TROLL specification is called
object system and consists of a set of object class and datatype specifications, a
number of object declarations, and the definition of global interaction relation-
ships. Module concepts facilitate structuring system specifications by treating
classes and objects having a common task or a common field of functions as a
logical unit [11]. Such structured specifications may be regarded as trees whose
internal nodes represent complex subsystems, which in turn may contain other
subsystems and their interaction relationships. The leaves—apart from specially
marked interfaces—represent the base classes and objects. According to [12],
spatial configurations, too, can be represented as trees, and mobility can then
be expressed as the time-dependent variation of these configurations. Our pro-
posal seizes these two utilisations of trees and allows to distinguish between the
mobile and stationary parts of a complex system by means of providing language
constructs allowing to combine stationary and mobile parts. Furthermore, it also
permits to describe how communication links between such units are established
and released. The distinction between the ever-mobile units and those which
provide the fixed subsystem as the context for the mobile entities is reflected
syntactically in the way that a stationary part may contain additional station-
ary as well as mobile parts, whereas a mobile part may only contain other mobile
parts:

<mobiSpec> ::= mobile <ident>
(<mobiSpec> | <subSpec>)

90

{ ‘% <mobiSpec> | <subSpec> |<mobilnstanceDecl> }
[onEntering { <linkDef> ;" } [<actionTerm>] end]
[onExiting { <unlinkDef> ‘;’ } [<actionTerm>] end |
end_mobile

<statSpec> ::= stationary <ident>
(<statSpec> | <mobiSpec> | <subSpec>)
{* <statSpec> | <mobiSpec> | <subSpec> |
<statInstanceDecl> | <mobilnstanceDecl> }
[onEntry { <linkDef> ¢’ } [<actionTerm>] end]
[onExit { <unlinkDef> ‘;’ } [<actionTerm>] end]
end_stationary

<subSpec> ::= [<offerSpec> { ;’ <offerSpec> } |
[<requestSpec> { ‘; <requestSpec> }]
[<specItem> { ;> <specltem> } ;]

On the one hand, the <subSpec> production allows to state object decla-
rations, datatype and object class specifications by resolving the non-terminal
<specltem>. On the other hand, interface objects can be declared offering ser-
vices and information to other subsystems (<offerSpec>) or requesting such
services and information (<requestSpec>). For that purpose action signatures
are specified inside these objects, which can then be used within the <IlinkDef>
/<unlinkDef> productions of the onEntering/onExiting/onEntry/onExit
clauses to describe how communication links are established or released:

<unlinkDef> ::= unlink <ident> ‘.’ { <ident> ‘.’ } <actionSignature>
<actionSignature> ::= <ident> [‘(’<parameter> {‘,” <parameter> })’]

In case of a mobile unit migrating into another mobile or stationary subsystem

it has to be checked if both provide action signatures with an equal number of
corresponding types of parameters. If this is the case, then the link is consid-
ered to be established. Similarly it has to be specified how the incorporating
and the moving entity respond to “emigration”. A link that is not specified to
be released (by means of an appropriate <unlinkDef> specifications of the
participating subsystems) persists migration. The number of the subsystems
surrounding them—and thus effectively lying in between them—indicates the
increasing complexity of a communication link. The asymmetry of communica-
tion between mobile and stationary components is described directly by the two
types of subsystems. The initial configuration of the system is given by the dec-
larations of the object classes and the mobile and stationary subsystems. The
migration of a mobile unit—and therefore the next configuration—is specified
by the <movement> production:

<movement> ::= if <pFormula> moveTo < target>

where <pFormula> is a proposition which can be composed of formulas using
the usual logical connectives. If this proposition is evaluated to true, the unit
enclosing this object migrates into the subsystem specified by <target>.

3 Future Work

In order to provide the formal semantics, the behavioural part of a specification
in the unextended TROLL is mapped to formulae of a distributed temporal logic.

91

An action rule, e.g., defines the effect an occuring action has on an object.
A precondition for an action may be specified after the keyword onlyIf, and
the expression enclosed between do and od can be regarded as a postcondition.
Intuitively, an action call can be understood as a simultaneous execution of
the calling and called action, where the former provides the actual values for
the input parameters of the latter as well as pairwise disjoint variables for its
output parameters. Action rules are built on top of data terms and propositions,
which are also mapped to formulae of the logic. As satisfaction of an action
rule is considered from the point of view of the state immediately following the
action call, the mappings are performed relating to the immediately preceeding
state. An essential task is now to provide the formal semantics for the new
constructs which we only introduced syntactically. In doing so, we have to analyse
to what extend the distributed temporal logic that so far constitutes a part of
TROLL’s semantical foundations can be used or suitably extended. In addition,
the usability of the language constructs should be put to the test in application
development, for example in the realisation of a system for information transfer
from web services to mobile devices.

References

1. Klein, C., Rausch, A., Sihling, M., Wen, Z.: Extension of the Unified Modeling Lan-
guage for Mobile Agents. In Siau, K., Halpin, T., eds.: Unified Modeling Language:
System Analysis, Design and Development Issues. (2001) 116-128

2. Milner, R.: Communicating and Mobile Systems: the m-Calculus. 2nd edn. Cam-
bridge University Press (2001)

3. Lange, D., Oshima, M.: Seven Good Reasons for Mobile Agents. Communications
of the ACM 42 (1999) 88-89

4. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Proc. 1st Int. Conf., FoSSaCS
’98. LNCS 1378 (1998) 140-155

5. Loke, SS'W., Schmidt, H., Zaslavsky, A.: Programming the Mobility Behaviour of
Agents by Composing Itineraries. In: Proc. 5th Asian Computing Science Conf.
LNCS 1742 (1999) 214-226

6. Durdn, F., Eker, S., Lincoln, P., Meseguer, J.: Principles of Mobile Maude. In: 4th
Int. Symp. on Mobile Agents, ASA/MA 2000. LNCS 1882 (2000) 73-85

7. Fournet, C., Gonthier, G., Lévy, J., Maranget, L., Rémy, D.: A Calculus of Mobile
Agents. In: CONCUR ’96: Proc. 7th Int. Conf. LNCS 1119 (1996) 406-421

8. Amadio, R.M.: An Asynchronous Model of Locality, Failure, and Process Mobility.
In: Proc. 2nd Int. Conf., COORDINATION ’97. LNCS 1282 (1997) 374-391

9. Roman, G.C., McCann, P.J., Plun, P.J.: Mobile UNITY: Reasoning and Specifi-
cation in Mobile Computing. In: ACM ToSEM 6. Volume 3. (1997) 250282

10. Hartel, P., Denker, G., Kowsari, M., Krone, M., Ehrich, H.D.: Information systems
modelling with TROLL — formal methods at work. Inf. Sys. 22 (1997) 79-99

11. Eckstein, S.: Modules for Distributed Object Systems—Concepts for Structuring
and Reusing Object-Oriented Specifications. infix-Verlag, (2001) In german.

12. Cardelli, L., Gordon, A.: Anytime, Anywhere. Modal Logics for Mobile Ambients.
In: Proc. 27th ACM Symp. on Principles of Programming Languages. (2000)

92

	Str:
	:881: 89
	:891: 90
	:901: 91
	:911: 92

