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Abstract. This paper presents an algorithm for termination static analysis of 
active rules with prioriti es. Active rules termination is an undecidable 
problem. Several recent works have suggested proving termination by using 
the concept of triggering graph. We propose here a refinement of these 
works, exploiting the prioriti es defined between rules.  

1 Introduction 

We are here interested in the active rules termination problem. The active rules are 
structured according to paradigm Event-Condition-Action. The active rules 
termination is an undecidable problem. The majority of works on active rules 
termination exploit the concept of triggering graph [4] ; the nodes of the graph are 
rules. Two rules r1 and r2 are connected by a oriented edge from r1 to r2 if the 
action of r1 can provoke a triggering event of r2. The presence of cycles in a such 
graph means a risk of non-termination of the rules set. The absence of cycles in the 
triggering graph guarantees the termination of the rules set. Some works refine the 
triggering graph analysis, taking into account the influence of rules conditions [1, 
3, 7, 8], the influence of composite events [5, 9], the modular rules design [2, 6]. 
Our work is based on the following observation : priorities between rules can be 
used to refine termination analysis. We show in this paper that much more 
termination cases can be detected using the priorities between rules.  

2 Path Sets 

We introduce here the notions of path set of a rule and path set of a path. The path 
set serves for replacing the notion of cycle, used in the previous termination 
algorithms. We suppose that each rule is defined with a numeric priority and that 
the rules process is the following: 
  
 1.  Choose a rule instance with the strongest priority in the set of triggered rules instances. 
 2.  Remove the chosen rule instance from the set of the triggered rule instances. 



 

 

 3.  Evaluate the condition. 
 4.  If the condition is false : go to step 1. 
 5.  If the condition is true, execute the action. 
 6. Update the set of triggered rules instances. 
 7. Go to step 1. 

2.1 Path Set of a Rule

We first recall the notion of triggering graph: the nodes of the triggering graph are 
the active rules; there is an oriented edge from a rule R1 to a rule R2 if the rule R1 
can trigger the rule R2.  
 Let G be a triggering graph. We first precise the notion of path. Let N1 , N2... 
Ni... Nn be n nodes (not necessaril y all different) of G, such as there is a oriented 
edge since Ni+1 towards Ni. The tuple (N1 , N2... Nn)  constitutes a path. We adopt 
the following notation : Nn → Nn-1 → ... → Ni → ... → N1. N1 is called the last node 
of the path. Nn is called the first node of the path.  
 The path set of the rule R Path_Set(R ; G) is the set of the paths Path of G 
which satisfy the following properties: (i) the last rule of the path Path is R; (ii ) the 
path Path does not contain twice the same node; (iii ) the path Path is not included 
in a path which satisfies the properties (i) and (ii ) (except itself).  
 The path set of R is built performing a "depth search" in the opposite direction 
of the edges.  

2.2 Path Set of a Path 

We generali ze now the notion of path set, defining the path set of a path. Let us 
consider a path Path = Nn→Nn-1→...→Ni→...N2→N1. Let us suppose that 
Path_Set(Nn ; G) = { Path1 , Path2 ,… , Pathp } . The path set of the path Path is 
Path_Set(Path ; G) = { (Path1→Nn-1→...→N1), (Path2→Nn-1→...→N1), …, 
(Pathp→Nn-1→...→N1)} . 

2.3 Priority of a Path / Priority of a Path Set 

We introduce here the notion of priority of a path. The priority of a path is the 
weakest priority of the rules of the path. We use the notion of priority of a path to 
define now the minimal priority of a path set: this is the weakest priority of the 
paths of the path set. We adopt the following notation: m_p(Path_Set(Entity ; G)). 
(Entity is a path or a rule). We also define the maximal priority of a path set: this is 
the stronger priority of the paths of the paths set. We adopt the following notation: 
M_p(Path_Set(Entity ; G)). 

 



 

 

3 Reduction of the Triggering Graph

3.1 Destabilizing Set of a Path 

In order to refine the deactivation of a path, we introduce the notion of 
destabilizing set. The utilit y of this notion is to li st the rules which can oppose the 
deactivation of the path.  
 
Definition. Let Path be a path of the triggering graph G. Let R1 , R2, …, Rs be s 
rules of G. We say that the set  { R1, R2, ... , Rs } is a destabilizing set of Path iff the 
following property holds for each rules process P:  
(A finite number of instances of the rules R1 , R2, …, …, Rs occur during P) ⇒ 
(There is only a finite number of occurrences of Path during P).  
 For a destabili zing set, we will use the following notation: Desta_Set(Path ; G).  

3.2 Reduction of the Triggering Graph 

We can reduce the triggering graph thanks to the four following considerations: 
(1) The rule R can be removed from the triggering graph if R has no incoming 
edge. Indeed, R will be just triggered a finite number of times. 
(2) Let R be a rule. Let Pathj be a path of Path_Set(R ; G). We can remove Pathj 
from Path_Set(R ; G) if ∅ is a destabili zing set of Pathj. Indeed, in this case, it is 
impossible for the rules process to go through the path Pathj an infinite number of 
times. 
(3) The rule R can be removed from the triggering graph if Path_Set(R ; G) = ∅. 
Indeed, in this case, it is impossible for the rules process to reach the rule R an 
infinite number of times, since all the paths which lead to R are deactivated after a 
finite time. 
(4) Let us consider now a destabili zing set { R1, R2, … , Rs} of the path Path. If we 
observe one of the following properties : (i) the maximal priority of Path_Set(Path ; 
G) is strictly smaller than the minimal priority of Path_Set(Ri ; G) or (ii ) the 
maximal priority of Path_Set(Ri; G) is strictly smaller than the minimal priority of 
Path_Set(Path ; G), then the rule Ri can be removed from the destabili zing set { R1, 
R2, … , Rs} . 

3.3 Termination Algorithm  

We can now sketch the termination algorithm. The termination algorithm captures 
the four properties which we have shown above : 
(1) We can remove a rule from the current graph if the rule has no incoming edge. 
(2) We can remove a path Path from a path set if ∅ is a destabili zing set of Path.  



 

 

(3) We can remove a rule from the current graph if the path set of the rule is empty.  
(4) We can remove a rule from a destabilizing set depending on the priorities. 
 If the final triggering graph is empty, termination is guaranteed. Else, the 
remaining rules can possibly be triggered an infinite number of times.  

4 Conclusion 

We have presented a significant improvement of the termination analysis of the 
active rules defined with priorities. We have developed the notions of path set of a 
rule, path set of a path, destabilizing set of a path. We can then reduce the 
destabilizing set of a path thanks to the priorities of the path sets. When the 
destabilizing set of a path is empty, the path can be removed from the path set of a 
rule. When the path set of a rule is empty, the rule can be removed from the 
triggering graph. So, the triggering graph can be reduced thanks to considerations 
about the priorities of the rules. In the future, we plan to conceive an algorithm 
which proposes priorities between rules, when the termination can not be 
guaranteed.  
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