

Improving Termination Analysis of
Active Rules with Priorities

Alain Couchot

Laboratoire Cedric-Isid,
Conservatoire National des Arts et Métiers, France

couchot-a@wanadoo.fr

Abstract. This paper presents an algorithm for termination static analysis of
active rules with prioriti es. Active rules termination is an undecidable
problem. Several recent works have suggested proving termination by using
the concept of triggering graph. We propose here a refinement of these
works, exploiting the prioriti es defined between rules.

1 Introduction

We are here interested in the active rules termination problem. The active rules are
structured according to paradigm Event-Condition-Action. The active rules
termination is an undecidable problem. The majority of works on active rules
termination exploit the concept of triggering graph [4] ; the nodes of the graph are
rules. Two rules r1 and r2 are connected by a oriented edge from r1 to r2 if the
action of r1 can provoke a triggering event of r2. The presence of cycles in a such
graph means a risk of non-termination of the rules set. The absence of cycles in the
triggering graph guarantees the termination of the rules set. Some works refine the
triggering graph analysis, taking into account the influence of rules conditions [1,
3, 7, 8], the influence of composite events [5, 9], the modular rules design [2, 6].
Our work is based on the following observation : priorities between rules can be
used to refine termination analysis. We show in this paper that much more
termination cases can be detected using the priorities between rules.

2 Path Sets

We introduce here the notions of path set of a rule and path set of a path. The path
set serves for replacing the notion of cycle, used in the previous termination
algorithms. We suppose that each rule is defined with a numeric priority and that
the rules process is the following:

 1. Choose a rule instance with the strongest priority in the set of triggered rules instances.
 2. Remove the chosen rule instance from the set of the triggered rule instances.

 3. Evaluate the condition.
 4. If the condition is false : go to step 1.
 5. If the condition is true, execute the action.
 6. Update the set of triggered rules instances.
 7. Go to step 1.

2.1 Path Set of a Rule

We first recall the notion of triggering graph: the nodes of the triggering graph are
the active rules; there is an oriented edge from a rule R1 to a rule R2 if the rule R1
can trigger the rule R2.
 Let G be a triggering graph. We first precise the notion of path. Let N1 , N2...
Ni... Nn be n nodes (not necessaril y all different) of G, such as there is a oriented
edge since Ni+1 towards Ni. The tuple (N1 , N2... Nn) constitutes a path. We adopt
the following notation : Nn → Nn-1 → ... → Ni → ... → N1. N1 is called the last node
of the path. Nn is called the first node of the path.
 The path set of the rule R Path_Set(R ; G) is the set of the paths Path of G
which satisfy the following properties: (i) the last rule of the path Path is R; (ii) the
path Path does not contain twice the same node; (iii) the path Path is not included
in a path which satisfies the properties (i) and (ii) (except itself).
 The path set of R is built performing a "depth search" in the opposite direction
of the edges.

2.2 Path Set of a Path

We generali ze now the notion of path set, defining the path set of a path. Let us
consider a path Path = Nn→Nn-1→...→Ni→...N2→N1. Let us suppose that
Path_Set(Nn ; G) = { Path1 , Path2 ,… , Pathp } . The path set of the path Path is
Path_Set(Path ; G) = { (Path1→Nn-1→...→N1), (Path2→Nn-1→...→N1), …,
(Pathp→Nn-1→...→N1)} .

2.3 Priority of a Path / Priority of a Path Set

We introduce here the notion of priority of a path. The priority of a path is the
weakest priority of the rules of the path. We use the notion of priority of a path to
define now the minimal priority of a path set: this is the weakest priority of the
paths of the path set. We adopt the following notation: m_p(Path_Set(Entity ; G)).
(Entity is a path or a rule). We also define the maximal priority of a path set: this is
the stronger priority of the paths of the paths set. We adopt the following notation:
M_p(Path_Set(Entity ; G)).

3 Reduction of the Triggering Graph

3.1 Destabilizing Set of a Path

In order to refine the deactivation of a path, we introduce the notion of
destabilizing set. The utilit y of this notion is to li st the rules which can oppose the
deactivation of the path.

Definition. Let Path be a path of the triggering graph G. Let R1 , R2, …, Rs be s
rules of G. We say that the set { R1, R2, ... , Rs } is a destabilizing set of Path iff the
following property holds for each rules process P:
(A finite number of instances of the rules R1 , R2, …, …, Rs occur during P) ⇒
(There is only a finite number of occurrences of Path during P).
 For a destabili zing set, we will use the following notation: Desta_Set(Path ; G).

3.2 Reduction of the Triggering Graph

We can reduce the triggering graph thanks to the four following considerations:
(1) The rule R can be removed from the triggering graph if R has no incoming
edge. Indeed, R will be just triggered a finite number of times.
(2) Let R be a rule. Let Pathj be a path of Path_Set(R ; G). We can remove Pathj
from Path_Set(R ; G) if ∅ is a destabili zing set of Pathj. Indeed, in this case, it is
impossible for the rules process to go through the path Pathj an infinite number of
times.
(3) The rule R can be removed from the triggering graph if Path_Set(R ; G) = ∅.
Indeed, in this case, it is impossible for the rules process to reach the rule R an
infinite number of times, since all the paths which lead to R are deactivated after a
finite time.
(4) Let us consider now a destabili zing set { R1, R2, … , Rs} of the path Path. If we
observe one of the following properties : (i) the maximal priority of Path_Set(Path ;
G) is strictly smaller than the minimal priority of Path_Set(Ri ; G) or (ii) the
maximal priority of Path_Set(Ri; G) is strictly smaller than the minimal priority of
Path_Set(Path ; G), then the rule Ri can be removed from the destabili zing set { R1,
R2, … , Rs} .

3.3 Termination Algorithm

We can now sketch the termination algorithm. The termination algorithm captures
the four properties which we have shown above :
(1) We can remove a rule from the current graph if the rule has no incoming edge.
(2) We can remove a path Path from a path set if ∅ is a destabili zing set of Path.

(3) We can remove a rule from the current graph if the path set of the rule is empty.
(4) We can remove a rule from a destabilizing set depending on the priorities.
 If the final triggering graph is empty, termination is guaranteed. Else, the
remaining rules can possibly be triggered an infinite number of times.

4 Conclusion

We have presented a significant improvement of the termination analysis of the
active rules defined with priorities. We have developed the notions of path set of a
rule, path set of a path, destabilizing set of a path. We can then reduce the
destabilizing set of a path thanks to the priorities of the path sets. When the
destabilizing set of a path is empty, the path can be removed from the path set of a
rule. When the path set of a rule is empty, the rule can be removed from the
triggering graph. So, the triggering graph can be reduced thanks to considerations
about the priorities of the rules. In the future, we plan to conceive an algorithm
which proposes priorities between rules, when the termination can not be
guaranteed.

References

1. E. Baralis, S. Ceri, S. Paraboschi. Improved Rule Analysis by Means of Triggering and
Activation Graphs. In Proc. Int’ l Workshop Rules in Database Systems (RIDS), Athens,
Greece, 1995.

2. E. Baralis, S. Ceri, S. Paraboschi. Modularization Techniques for Active Rules Design.
In ACM Transactions on Database Systems, (TODS), 21(1), 1996.

3. E. Baralis, S. Ceri, S. Paraboschi. Compile-Time and Run-Time Analysis of Active
Behaviors. In IEEE Transactions on Knowledge and Data Engineering, 10 (3), 1998.

4. S. Ceri, J. Widom. Deriving Production Rules for Constraint Maintenance. In Proc. Int’ l
Conf. on Very Large Databases (VLDB), Brisbane, Queensland, Australia, 1990.

5. A. Couchot. Improving Termination Analysis of Active Rules with Composite Events. In
Proc. Int' l Conf. on Database and Expert Systems Appli cations (DEXA), Munich,
Germany, 2001.

6. A. Couchot. Termination Analysis of Active Rules Modular Sets. In Proc. Int' l Conf. on
Information and Knowledge Management (CIKM), Atlanta, Georgia, USA, 2001.

7. A. Couchot. Improving the Refined Triggering Graph Method for Active Rules
Termination Analysis. In Proc. Briti sh National Conf. on Databases (BNCOD),
Sheffield, United Kingdom, 2002.

8. A.P. Karadimce, S.D. Urban. Refined Triggering Graphs : a Logic-Based Approach to
Termination Analysis in an Active Object-Oriented Database. In Proc. Int’ l Conf. on
Data Engineering (ICDE), New-Orleans, Louisiana, 1996.

9. A. Vaduva, S. Gatziu, K.R. Dittrich. Investigating Termination in Active Database
Systems with Expressive Rule Languages. In Proc. Int’ l Workshop on Rules in Database
Systems, Skoevde, Sweden, 1997.

	Str:
	:361: 37
	:371: 38
	:381: 39
	:391: 40

