
Heuristic data modeling in information systems

© Martin Davtyan

Bauman Moscow State Technical University
martin.davtyan@gmail.com

Abstract

The paper describes research-in-progress work
on information systems that store semi-
structured data and use heuristics to make
hypotheses about possible data structure. Such
systems are intended to be more user-friendly
as data formalization is performed by
answering simple questions.
Academic supervisor: Yuri Gapanyuk,
gapyu@yandex.ru.

1 Introduction

As the information technology spreads over the globe,
more and more people become involved in tasks of
storing and exchanging information. Most of these
people have no skills or time for programming or
installing database software, neither these people can do
data formalization needed. Blogging systems made it
convenient for every person to share textual information
or multimedia content. In some cases, like notes or
shopping lists, the textual data representation is enough.
But in other cases, people also need to structure their
information somehow, to make it convenient to
understand or share, for example, when storing small
shop catalogues or club participant lists. There are also
search benefits to that point, as having some data
structure allows us to make search queries more
meaningful than the full-text search queries. There are
no tools allowing a non-professional user to set up a
system to store and exchange semi-structured data. The
requirements for such a system would be:

• Users should be able to store information and
share it with other users.

• It should have a user-friendly interface for data
structuring.

• It should also have a convenient search tool
making use of the structure created.

In this article we propose an approach to constructing
such a system.

Such a system would allow users with no
preliminary knowledge of data structures or logic take
full advantage of structured data, such as convenient

navigation and powerful search. It would also free users
from data formalization attempts when there is not
enough data to formalize, but it still needs to be
published.

The main challenge here is setting up the data
structure. Making up a ‘schema’ implies proper
formalization of the data, which is not always possible
due to inability of a user. Formalization is also difficult
if it is impossible to predict, what kind of properties or
variables are about to be stored, before we get enough
data to analyze.

This paper proposes a new approach for building
user-friendly information system, letting a user store
data in terms of objects of no predefined structure, and
to simplify formalization of the stored data. Making
propositions about a possible structure of data and
asking user simple questions about it, we can use
provided answers to construct a semantic-aware search
in addition to a full-text search. Our hypothesis about
‘schema’ that fits the stored data can be also used for
effective visual representation of this data on the Web,
allowing more convenient way to share it. That way we
can make use of data structure without forcing user to
explicitly set it up for us.

2 Existing systems

There are two ways to build an information system
required that people use now. The first way is to store
information in tables. There is a variety of convenient
spreadsheet software products providing intuitive way
of data formalization, and there is no problem with
adding new columns if we encounter new fields. The
problems here are:

• The formalism user provides when setting up
the column names is not used for searching, the
search is still full-text. If there are ways to use
complex queries in particular spreadsheet
software system (i.e. queries that use the
‘schema’ provided by user), they are way too
complicated for an average computer user to
understand.

• Sharing is complicated, as users often end up
emailing spreadsheet files to each other,
copying rows from one table to another.

The second way of solving the problem is to invite
programmers and data modelers to build a website. The
user explains how exactly the data he intends to store
looks like, and data modelers make up a database, in

Proceedings of the Spring Young Researcher's
Colloquium On Database and Information Systems
SYRCoDIS, Moscow, Russia, 2011

most cases a relational one, that is capable of storing
that data. Programmers then add a web application that
allows user to create, edit and share that data on the
Web. The problems of this approach are:

• Programmers and data modelers’ work requires
money and time.

• Any change in a data scheme will require
calling programmers and data modelers again.

3 System overview and motivating example

In this section we propose a model of an information
system that meets the requirements stated in
Introduction.

The simplest and fastest way to share information
with someone is to use the Internet, so we propose a
system to have a website interface. User should be able
to create objects – named key-value mappings of no
predefined structure (as mentioned above) – and store
them in a personal set. To illustrate the related
workflow, let us consider an example.

Suppose the user intends to store car rental data and
share it with current and prospective clients. There is
only one basic action a user can perform when starting
to work with the system – create an object. The user
describes a car in terms of properties: {‘transmission’ :
’manual’, ‘mileage’ : ’30000km’, ‘horsepower’ :
‘101’}. He also gives the object a name – ‘Skoda
Octavia I Tour’ – and saves it. After saving the object,
he is offered to create another one with the same
property names, so he now only needs to fill in property
values. As the quantity of user’s objects increase, user
gets exposed to the first question. The system outputs a
number of objects (most likely with the same property
set) and asks a user if it is possible to give all these
objects a common name. The user’s answer, if positive
(e.g. ‘Vehicle’), is used as a name of a new class. This
is how classes are created.

Classes emerge in the system as the user inputs
information. Suppose we have two classes registered –
‘Vehicle’ and ‘Truck’, only differentiating in a ‘cargo
weight’ property the ‘Truck’ class has. The system
outputs a number of objects of both classes and asks
whether all ‘Truck’s are ‘Vehicle’s. If user confirms,
the corresponding subclass relationship is registered.

By the time the user has published enough
information, he is also being asked, whether the
‘horsepower’ property is always a number. If true, this
property is registered to be of a certain data type.

All the data structure information the system gets
from user’s answers is used for user interface
optimization. Being given an object classification, the
navigation through user’s objects is arranged
accordingly. User also gets organized shortcuts for
creating objects of registered classes. Data type
information allows validation of newly created objects
if they belong to a registered class.

The example shows how the system takes advantage
of formal data structure without forcing user to do the
formalization. Asking simple questions and providing
related object examples to assist answering, data

structure is exposed to the extent that is usable for
crucial interface and search improvements.

4 System architecture and workflow

4.1 Input data and storage

As questions of building user interface and developing
web applications are not in the scope of this paper, we
shall make assumptions about what data we get from
user. We assume that user provides objects, i.e. lists of
key-value pairs, where key values are called property
names, and values are called property values. We can
state the data we store is semi-structured [1].

An intuitive solution for storing objects discussed
above is a document-oriented database, such as
CouchDB or MongoDB, as the structure of ‘object’
described above strictly corresponds to the structure of
‘document’. In addition, using document-oriented
database will make it easy to store data in a cloud
storage. Another solution could be an XML database.

4.2 Workflow

We have no data model predefined when user starts to
push data into the system, and, accordingly, our
database has no schema. But as the user inputs some
data, we make hypotheses about its structure, which we
then check by asking the user simple yes/no questions.

One can think of information about data structure
we get from user as a schema [2]. As schema in
relational database systems is defined before storing
actual data, and should be supported by DBMS, we
propose a term ‘heuristic schema’ for data model
information that is built according to data. Heuristic
schema can emerge only after the data is stored, and it
is only supported on application level.

4.3 Making hypotheses

Suppose we have a number of objects of in our
database, and consider different hypotheses can be
made when analyzing their structure. The names
examples of such hypotheses are given below:

• Heuristic class. If a number of objects have
exactly the same property names, they are
probably in the same class. The problem of
finding classes is discussed below.

• Heuristic subclass. If heuristic class A has
property names P1, P2, P3 … Pn, and class B has
property names P1, P2, P3, … Pn, … Pm, heuristic
class B is a subclass of heuristic class A.

• Heuristic data type. If property values stored
under property name N are always numbers,
property N is probably numerical. The same idea
can be used with any popular data types, as
strings or URLs. In general case one can think of
any constraint that applies to values of N
property as a data type [3].

Each of these hypotheses triggers asking user a
corresponding question, as his answer causes refutation
or confirmation. If a hypothesis is confirmed, user is

also asked to give a new heuristic data structure a name,
to make it usable in further data input or search queries.

4.4 Using string distance for class hypotheses

Making heuristic class hypotheses only in case of exact
match of all the object property names is useless in case
of user’s misspellings. This problem can be solved
using string distances for property names.

As two objects belong to the same class only having
the equal number of properties and property values have
no impact on making class hypothesis, let us consider
the sets of N property name strings. Dealing with
misspelling problem, we use Damerau–Levenshtein
distance for measuring difference between the strings.
Damerau–Levenshtein distance is a string metric given
by counting minimal amount of insertions, deletions or
transpositions to transform one string to another. These
operations correspond to more than 80 percent of
human misspellings [4].

With distance between individual property name
strings defined, we now need to define a similarity
measure between string sets, which represent objects.
Let us consider two sets A = {a1, a2, …, aN} and B =
{b1, b2, …, bN} and Damerau–Levenshtein distance
function d(ai, bj). Given a particular mapping F: A → B,
similarity between two sets can be calculated as
follows:

 � = ��(�� ,�(��))
�

���

 (1)

As objects having the same property names belong

to the same class regardless of the order in which
properties are listed, we need to find the least possible
distance between two sets. The problem of finding a
mapping function F so that S is minimized is known as
an assignment problem [5], which can be effectively
solved by Munkres algorithm [6]. After using the
algorithm to determine F, we use the corresponding S as
a similarity measure. Setting up a threshold value for
this measure will determine whether the class
hypothesis should be made.

4.5 Using heuristic schema

These are the most important benefits of having schema
in semi-structured data storage:

• Better user interface. After making user
passively define a class and give it a name, we are able
to create a template for this class. User now just has to
choose a class for an object, instead of manually
inputting property names.

• Classes can be also used for the Web
representation of the stored data, with class hierarchy
acting like a catalogue tree for navigation through site.

• Heuristic classes and data types can be used
for data search using semantics, not only full-text
search. For example, search query can set constraints
on a certain heuristic field (e.g. number field), or certain
class.

5 Related work

Ideas discussed in this paper are connected with
Semantic Web technologies in a way they also intend to
add some additional structure to the weakly structured
data sets [7]. Semantic Web has a great stack of
technologies for storing and exchanging semantic data,
like OWL, RDF and others, that can be used as a formal
representation of heuristic schema.

6 Future work

We are currently working on a prototype of the
described system. It is planned to:

• Use semantic web standards for schema
representation.

• Use current research results in automated
ontology construction for heuristics.

However, the main direction of our research is
associated with cluster analysis. It is planned to define
similarity on the whole object set, regardless of property
amount. This will enable using clustering algorithms,
which are useful for hypothesis construction:

• Hierarchical clustering results in a
dendrogram, which can be used to build a
taxonomy hypothesis.

• Validation within unclassified object set –
error hypothesis proposed for objects not
belonging to any existing cluster.

7 Conclusion

The described system acts like a compromise between
easy and convenient text storage and powerful and
searchable fixed schema databases. It allows user to
publish data as soon as possible, and it also has all
benefits of a structured data storage.

References

[1] Peter Buneman. Semi-structured data. Tutorial,
PODS '97
http://www.cis.upenn.edu/~db/abstracts/semistructu
red.html

[2] http://en.wikipedia.org/wiki/Database_schema
Database schema - Wikipedia, the free
encyclopedia, February 2011

[3] Luca Cardelli, Peter Wegner. On Understanding
Types, Data Abstraction, and Polymorphism, 1985

[4] Fred J. Damerau, A technique for computer
detection and correction of spelling errors,
Communications of the ACM, 1964

[5] http://en.wikipedia.org/wiki/Assignment_problem
Assignment problem - Wikipedia, the free
encyclopedia, April 2011

[6] Geoffrey C. Fox, Roy D. Williams, Guiseppe C.
Messina, Parallel Computing Works, 1994

[7] Pascal Hitzler, Markus Krötzsch, Sebastian
Rudolph. Foundations of Semantic Web
Technologies, 2009

