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Abstract 

While many researchers attempt to build up 

different kinds of ontologies by means of 

Wikipedia, the possibility of deriving high-

quality domain specific subset of Wikipedia 

using its own category structure still remains 

undervalued. We prove the necessity of such 

processing in this paper and also propose an 

appropriate technique. As a result, the size of 

knowledge base for our text processing 

framework has been reduced by more than 

order, while the precision of disambiguating 

musical metadata (ID3 tags) has decreased 

from 98% to 64%. 

1 Introduction 

There's no need to introduce Wikipedia as a world's 

largest and most rapidly expanding source of 

information on many domains in almost every 

language. At the time of drafting this paper, there are 

279 Wikipedias in different languages, with more than 

17,870,000 articles, 1,920,000 uploaded images, and 

27,540,000 registered users [1]. 39 Wikipedias contain 

more than 100,000 articles each. The English edition 

remains the largest Wikipedia, over three times as large 

as the second largest edition, the German Wikipedia. 

That's why it is reasonable to start investigating new 

possibilities with English Wikipedia as a most 

comprehensive source. 

By now, Wikipedia has already got a lot of colorful 

detailed descriptions. Conventional features of 

Wikipedia are well-known and discussed widely 

in [2, 25]. They include concept identification by ID or 

URL, multiple and dense link structure, and category 

system which is edited and maintained by Wikipedia 

users as well as articles. 

Researching community has proved more than once 

that structure and content of Wikipedia are very 

peculiar and valuable domains to study. One of the most 

promising directions is automated ontology building 

which may be accomplished by extracting well-defined 

concepts and relations among them from Wikipedia. 

The latest efforts in this field are DBpedia [3], the work 

of Ponzetto et al. [4], YAGO [5], etc. All these 

approaches mainly exploit the data derived from 

infoboxes and category structure. Due to continuous 

enriching these techniques with better algorithms and 

data sources, the quality of resulting ontologies 

becomes remarkable. 

Despite these successes in automated upper-level 

ontology building, most of domain specific ontologies 

(for instance, UMLS [6]) are still assembled manually. 

Needless to say, they are often costly to build and to 

keep them up to date. 

In this paper, we consider the possibility of loosely 

supervised extraction of domain specific ontologies 

from upper-level ones. This is becoming feasible in 

recent years as high-quality upper-level ontologies grow 

more versatile and involve the knowledge of many new 

domains. Moreover, many field experts from all around 

the world often tend to pay their efforts to expand 

existing widespread ontologies, rather than to create 

their own or refine domain specific ones. 

Our interest in this research is caused by necessity 

of reducing the knowledge base for our text processing 

framework Texterra
1
. This base comprises a number of 

textual indices produced by our Wikipedia parser. 

These indices are loaded into RAM during the 

initialization of Texterra server and take roughly 4.5 Gb 

of disk space and 2 Gb of RAM. Such a consumption is 

acceptable for workstations, but not for mobile devices 

with restricted amount of memory. Thus, if one would 

attempt to build a standalone mobile application 

                                                           
1 http://modis.ispras.ru/texterra 
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intended for text processing, then its data structures 

simply would not fit in the RAM. Obviously, such 

applications - if developed - would be highly demanded 

to date. 

The disambiguation
2
 of musical metadata (i.e., ID3 

tags of MP3 files) is an important part of Texterra 

functionality. These algorithms are well-tuned by the 

moment and show the precision of 98% on our test set. 

But it's obvious that only a narrow range of Wikipedia 

dictionary is utilized during processing ID3 tags of MP3 

files. There are mostly named entities, such as musical 

compositions, song writers, singers, etc. Generally 

speaking, the amount of knowledge required to perform 

such a disambiguation is likely much less than that 

available from the entire knowledge base. 

Making the knowledge base more specialized by 

removing concepts which are unimportant for this task 

is what comes to mind first in this case. So, we've 

implemented a system intended to produce Wikipedia 

subsets covering the knowledge of the given domain. 

We decided not to narrow the scope of our research to 

Wikipedia derivates (such as YAGO). But, although the 

algorithms have been evaluated with Wikipedia only, 

they are applicable to any ontology with well-defined 

polyhierarchical taxonomy. 

Of many interesting aspects of Wikipedia, here we 

take into account only categorization and linkage within 

its content. The category system in Wikipedia plays the 

role of a taxonomy and provides the function to search 

articles by narrowing down categories. Given this, the 

task of deriving domain specific concepts from 

Wikipedia dictionary seems to be solvable by mining 

the category system for the list of concepts tightly 

connected with the given base categories. However, it 

is impossible to simply determine all concepts 

belonging to a particular category. The reason is that the 

category system of Wikipedia is organized into network 

structure, not a perfect tree structure. Furthermore, the 

lists of parent categories for many articles are redundant 

and contradictory. Thus, they don’t allow detecting the 

most relevant categories for a given page without 

analyzing the neighbour pages. 

Therefore, we utilized concept vectorization method 

specialized for the category system in Wikipedia, with 

several additional expansion methods, as proposed 

in [2]. The authors express affiliation relations among 

concepts as category-based concept vectors. Each 

element (dimension) of a concept vector represents not 

only binary affiliation information (whether the concept 

belongs to a certain category or not), but also the degree 

of affiliation (called belonging degree in the rest of this 

paper). After applying different cutting techniques to 

the obtained concept vectors, the list of domain specific 

concept IDs is outputted. This list is further applied to 

Texterra knowledge base resulting in the reduced 

                                                           
2 Word sense disambiguation is an open problem of natural 

language processing, which governs the process of identifying 

which sense of a word (i.e. meaning) is used in a sentence, 

when the word has multiple meanings (polysemy). 

domain specific version of the latter. The explanation of 

our approach is given in Section 4. 

Section 2 contains the review of related work. The 

key features of Wikipedia category structure are 

discussed in Section 3. 

Having a fast access to any point of Wikipedia 

category structure was one of the crucial tasks for our 

research. After a number of unsuccessful tries to reuse 

the existing graph libraries, we've coded our own 

implementation, named WikiGraph. See Section 5 for 

details. 

Given a set of specialized versions of the knowledge 

base, we conducted a series of experiments in order to 

learn how the reducing of Texterra knowledge base 

affects the accuracy of results. Refer to Section 6 for 

evaluation methodology. Section 7 contains 

experimental results and discussion. 

We conclude in Section 8 with our research findings 

and discussion about possible improvements. 

2 Related work 

2.1 Automated ontology building 

The field of automated ontology learning usually acts 

by taking textual input and transforming it into a 

taxonomy or a proper ontology. The texts are usually 

obtained from printed sources (books, magazines, 

newspapers) and Internet (online media, blogposts, 

results of querying search engines). However, the 

learned ontologies are small and hard-to-update; in 

addition, evaluations have revealed a rather poor 

performance [7]. 

As mentioned before, the most accurate and, thus, 

valuable non-human assembled ontologies are now built 

by automatically deriving explicit facts from Wikipedia. 

One of the early attempts was the work of Gregorowicz 

and Kramer [8]. They focused on deriving a term-

concept map which consists of terms, concepts, and 

relationships between them. Only articles, redirects, and 

disambiguation pages are considered. Ponzetto and 

Strube [4] were deriving a taxonomy from the entire 

Wikipedia category structure. Despite their successes, 

the resulted taxonomy is rather simple (supports only 

is-a and not-is-a relations) and domain independent. 

The work described in [9] enhances this taxonomy with 

instance and class information for each node. Cui et 

al. [10] introduce even more sophisticated approach to 

building the ontology of concepts by making use of 

infobox structures, definition sentences, and category 

labels. Finally, YAGO2 [11] is probably the most 

complete and accurate semantic knowledge base 

derived automatically from Wikipedia and other 

sources. The information extraction technique for 

YAGO2 assumes varied utilization of infoboxes, 

category structure, redirects, and other data within 

Wikipedia. Furthermore, the quality check is performed 

to find possible mistakes. As a result, the quality of 

extracted ontology is sufficient for the majority of IR- 

and NLP-related tasks. 



Notwithstanding the foregoing, newly emerging 

research fields often require well-structured and 

comprehensive domain specific ontologies. Researchers 

don't need a huge knowledge base, but an extensible 

corpus of specific concepts with good coverage of 

domain knowledge. If such ontologies were built in a 

completely automated way, then this would avoid the 

necessity of assembling them from scratch manually. 

We believe that Wikipedia contains enough information 

for this task to be completed. Below is the description 

of approaches we've applied to narrowing Wikipedia 

dictionary to domain specific subset. 

2.2 Computing semantic relatedness 

We consider the key problem of our study as the 

computation of semantic relatedness between base top-

level categories and underlying articles. According to 

Budanitsky and Hirst [12], semantic relatedness is 

defined to cover any kind of lexical or functional 

association that may exist between two words. This 

definition suits us more than semantic similarity, which 

is typically defined via the lexical relations of 

synonymy and hypernymy. 

There were many approaches proposed for 

estimation of semantic relatedness between concepts in 

Wordnet (Rada et al., Leacock and Chodorow, Wu and 

Palmer, Resnik, Jiang and Conrath, Lin) and between 

Wikipedia articles [13] (Dice, Jaccard, SimRank). 

Among them are purely graph-based measures and 

those involving information content. In this paper, we 

consider only graph-based approaches. 

Since a significant part of Wikipedia knowledge is 

encoded in its graph-like link structure, it seems 

reasonable to apply existing graph-based methods or 

introduce new ones. Zesch and Gurevych [14] proved 

that many Wordnet-based semantic similarity measures 

are applicable to Wikipedia with minor changes. 

Obviously, it’s also attractive to estimate the 

strength of ties between different levels of taxonomy 

(between base categories and its articles, in our case). In 

this context, the links among articles appear not so 

important. Therefore, new category-based semantic 

relatedness measures are emerging. 

Chernov et al. [15] measured semantic relatedness 

between categories, not between concepts and 

categories, as it's required for our task. Nonetheless, 

they proposed several very useful and applicable 

techniques. 

Strube and Ponzetto [16] employed Wikipedia, 

Wordnet, and Google for computing semantic 

relatedness between concepts. For two Wikipedia 

articles being compared, they extracted two categories 

lists. Given the category lists, for each category pair 

they performed a depth-limited search of maximum 

depth of 4 for a least common ancestor. As they 

noticed, limiting the search improves the results. But 

this is obviously inappropriate for computing 

relatedness between top-level category and articles from 

all its subcategories. 

2.3 Identifying domain specific concepts 

Syed et al. [17] tried to predict the topic of textual 

documents by matching them against Wikipedia articles 

based on cosine similarity
3
. Then, they extracted 

categories of found articles and scored them based on 

different scoring schemes with or without spreading 

activation
4
. The proposed approach implies scoring the 

links with many categories for each given Wikipedia 

article using bottom-up traversing of category structure. 

This is acceptable for a small set of articles, but not for 

our task. 

To the best of our knowledge, Cui et al. [18] were 

the first who introduced an approach to deriving domain 

specific corpus from Wikipedia. The main idea is to 

generate a domain hierarchy from the hyperlinked pages 

of Wikipedia. Then, only articles strongly linked to this 

hierarchy are selected. They build a so-called 

Classification Tree by traversing down the directed 

graph of Wikipedia category structure starting from the 

root node. This tree includes both categories and 

articles and in fact is merely a connected branch of 

Wikipedia classification graph with a specified root 

node. Then, the Classification Tree is traversed with a 

simple adaption of breadth-first search algorithm. 

During the traversal, each node is given a score on the 

relevance to the specific domain. Once the traversal is 

completed, the terminal nodes (article pages) are ranked 

according to the domain relevance scores. Pages over a 

certain threshold are considered domain relevant. The 

node score can consider either ingoing or outgoing 

edges. Despite the proposed technique is quite simple, 

the results are remarkable. 

A more sophisticated algorithm has been proposed 

later by Shirakawa et al. [2]. The concept vectorization 

method is introduced for finding concepts which are 

highly correlated with the base category (refer to 

Section 1 for brief explanation). The main assumption 

there is that the relatedness between categories gets 

lower as the number of traversed pages (i.e., hopcount) 

increases. In addition to the number of links for each 

node, they also take into account the number of paths 

between the concept and the base category, as well as 

hopcounts of these paths. As it seems to us, this 

understanding reflects the nature of Wikipedia 

classification approach much more precisely than ever 

before. Several heuristics are suggested for estimation 

of semantic relatedness by counting paths properties in 

the subgraph of desired base category. However, 

authors didn't compute these scores for thousands of 

                                                           
3 Cosine similarity is a measure of similarity between two 

vectors by measuring the cosine of the angle between them. 

Calculating the cosine of the angle between two vectors thus 

determines whether two vectors are pointing in roughly the 

same direction. This is often used to compare documents in 

text mining. 
4 Spreading activation is a method for searching associative 

networks, neural networks, or semantic networks. The search 

process is initiated by labelling a set of source nodes with 

weights or "activation" and then iteratively propagating or 

"spreading" that activation out to other nodes linked to the 

source nodes. 



articles with hundreds of paths for each of them at a 

time, as it's required in this research. Moreover, the 

efficiency of both approaches described in [2] and [18] 

has not been evaluated in real tasks. In both cases, the 

evaluation was performed by comparing the results of 

algorithms with answers of experts knowledgeable in 

certain fields. This looks persuasively when proving the 

theoretical applicability, but is not enough for 

unconditional embedding into the real system. 

In this work, we mainly exploited the ideas 

formulated in [2] and [18]. Our main goal was to 

estimate the scalability and practical applicability of 

these approaches for real tasks which imply processing 

of large amount of data. 

3 Features of Wikipedia category structure 

The advantages of Wikipedia category structure were 

studied by authors of [14] and many others. Here we 

summarize only those features needed for better 

understanding of our approach. 

 

 
 

Figure 1. Sample XML structure of categorized 

Wikipedia article page 

 

Categories of Wikipedia can be organized in a 

graph, where the nodes are categories and the edges are 

hyperlinks. In this work we also add articles to this 

graph. However, we still name it the Wikipedia 

category graph (WCG in the rest of the paper). 

The links expressing which concept belongs to what 

categories are called category links. We call them 

belonging links or belonged links according to their 

direction. In this paper, we only consider the belonging 

links, i.e. links from articles or subcategories to upper-

level categories. The English version of Wikipedia, as 

of September 2010, contains ~13 million category links. 

The typical code of categorized article page is 

shown at Figure 1. It combines XML and Wiki markup. 

The list of belonging categories is situated at the 

bottom. Categories have their own pages similar to 

articles. Category links at these pages also express 

which category belongs to what categories. 

Categorization is a useful tool to group articles for 

ease of navigation, and correlating similar information. 

However, not every verifiable fact (or the intersection 

of two or more such facts) in an article requires an 

associated category. For lengthy articles, this could 

potentially result in hundreds of categories, most of 

which aren't particularly relevant. This may also make it 

more difficult to find any particular category for a 

specific article. Such overcategorization is also known 

as "category clutter" [19]. 

For these reasons, the WCG has an extremely 

complex nature.  It is directed and has not a strong 

hierarchical structure as some may expect. Any 

category may branch into subcategories, and it is 

possible for a category to be a subcategory of more than 

one parent [20]. Upon closer inspection, the WCG is 

rather a polyhierarchy, or even a net (Figure 2). 

 

 
 

Figure 2. A fragment of Wikipedia category structure 

 

The figure has been produced by CatGraph  [21]. 

This tool draws a cloud of links for the desired 

category. Each rectangle represents a category. Each 

arrow connecting two rectangles denotes a "belongs-to" 

relation, that is, the destination category is a 

subcategory of the initial one (an example of belonging 

link). The cloud shown in the figure is for "Recorded 

music" category (bolded). 

It's worth noting here that not every Wikipedia page 

is categorized. According to statistics [22, 23], there are 

thousands of uncategorized articles and categories. 

Moreover, certain categories are assigned 

incorrectly [24]. We suggest considering these facts as a 

possible drawbacks for any category-based algorithm. 

In addition, automated categorizing (i.e., determining a 

topic of an uncategorized page) seems to be a 

challenging task. This can be done with certain 

accuracy by processing page title and text with specific 



NLP techniques and finding appropriate categories in 

WCG. 

4 Deriving a domain specific subsets 

The developed system consists of three main parts: 

1. Link Filter produces a ready-for-load textual 

representation of WCG; 

2. Topic Deriver performs the main processing; 

3. Reducer produces a domain specific version of 

the Texterra knowledge base
5
. 

All algorithms evaluated in this paper were 

implemented in the Java programming language. 

4.1 Link Filter 

The input for Link Filter is Wikipedia links file 

containing information about all links between 

Wikipedia pages, along with their type and direction. 

The result is category links file that contains only links 

forming the WCG. Every line of this file denotes the 

affiliation of belonging between two pages and sets the 

type of the belonging page. For example, 

 

12 780754 0 

 

means that page with ID 12 ("Anarchism") is belonging 

to the category with ID 780754 

("Category:Anarchism"). Moreover, the belonging page 

("Anarchism") is an article because the last field is "0" 

("1" would mean that the belonging page is a category). 

Thus, category links file is a complete textual 

representation of the WCG and contains no unwanted 

data such as page titles and link types. Furthermore, 

unlike the authors of [18], we’ve also removed pages of 

certain types: lists, classifications, portals, redirects, 

disambiguation pages, and user pages. This helped us to 

make the WCG more lightweight without loss of any 

meaningful concepts. As a result, category links file 

contains 13,001,687 links between 593,796 categories 

and 3,156,822 articles. 

4.2 Topic Deriver 

Topic Deriver loads category links file on start and fills 

in the internal structures of WikiGraph (refer to Section 

5 for details). The workflow for this stage is shown at 

the Figure 3. Here we touch on only the main steps. 

For our analysis, we denote   as a set of concepts, 

  as a set of categories, and    as a set of belonging 

links. Then, the category system in Wikipedia is 

expressed as a directed graph          . A path is a 

sequence of edges that connects one node with another. 

The path length (hopcount) is the number of edges 

along that path. 

The key task of Topic Deriver is to obtain the list of 

concepts connected semantically with certain domain. 

Herewith, this connection should be the tightest one, 

that is, these concepts should be more relevant to the 

                                                           
5 The Texterra knowledge base for this research has been 

obtained by parsing the dump of English Wikipedia, as of 

September 2010. 

desired domain than to others. As this task is 

computationally complex and, thus, supposed to be run 

rarely, it’s allowably to choose the base categories 

manually for experiments. We’ve selected 3 base 

categories that likely cover the majority of concepts 

required for disambiguating musical metadata: 

 Category:Musical compositions 

 Category:Recorded music 

 Category:Music-related lists 

For each of selected base categories, a separate 

subgraph is built. This subgraph is almost the same as 

Classification Tree in [18]. The base category serves as 

a root node, and a tree-like structure of underlying 

pages is obtained from WCG. The only difference from 

approach proposed in [18] is that we use depth-first 

search (DFS), not breadth-first search (BFS). The 

reason for this is that the resulting subgraphs are often 

large enough, thus, it’s inappropriate to waste the 

memory for storing the FIFO queue required for BFS 

traversal [26]. Moreover, as depth-first tree is expected 

to contain back edges and cross edges, the list of visited 

nodes has been added to avoid repetitive visiting and 

loops. 

A concept vector in our research specifies the degree 

of affiliation between the base category and each of 

articles reachable by traversing down the subgraph of 

the base category starting from its root node. As 

mentioned, the heuristics for building concept vectors 

have been borrowed from [2] with some modifications. 

We describe them briefly below, for more detailed 

information refer to the source paper. 

BVG (Basic Vector Generation method) generates 

concept vectors by tracking back parent categories in 

the category system and calculating the belonging 

degree to each concept. 

The belonging degree          from concept    to 

category    is defined by the following equation: 

           
 

     
     

                            

Here,     denotes a set of paths from    to   ,    

denotes the hopcount of path   ,   denotes a 

monotonically increasing function on the hopcount of 

path    (given as    ). 

It’s noteworthy that in the original method [2] paths 

with a hopcount of more than 4 were ignored. We asked 

the authors for the reasons of this. The response was 

―Because long paths scarcely affect values in concept 

vectors in most cases. Of course, sometimes long paths 

affect the values‖. We’ve decided to remove this 

constraint in our experiments, that is, we consider all 

paths between two nodes. 

As a result, processing time may become too large 

for base categories from high levels of the WCG 

hierarchy. The reason for such behaviour is an exclusive 

computational complexity of finding all paths between 

two arbitrary nodes in the graph. It's well-known that 

this task is NP-complete in general case. 

 



 
 

Figure 3. Overall architecture of Topic Deriver 
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Since WCG contains millions of edges, the maximal 

path length may reach hundreds of edges, leading to 

impetuous increase of processing time when trying to 

process top-level categories. This is exactly why we've 

picked up a "safe" set of categories, which are 

processed relatively fast and cover the knowledge of 

field we've chosen for experiments. 

Notwithstanding, we believe that taking all existing 

paths between two nodes into account allows to 

estimate the belonging degree more precisely. However, 

we didn’t confirm this assumption experimentally. 

To reduce the complexity of finding all paths 

between two arbitrary nodes, we tried to re-use one of 

existing techniques [27-29]. Finally, the APAC 

algorithm [29] has been chosen. This algorithm does not 

need to keep track of all visited vertices and only stores 

the feasible paths. 

For domain specific areas where categories are 

excessively segmentalized, the BVG method cannot 

extract accurately concept vectors due to the increase in 

hopcount. To solve this problem, the Single Parent 

Integration (SPI) method is proposed. The authors 

confirmed from their experiences that a part in the 

category system which corresponds to (excessively 

segmentalized) categories for a domain specific area 

forms almost a tree structure. Based on this fact, when a 

concept or a category has only one (onehop/multihop) 

belonging link, the SPI method shortens the belonging 

link. This is based on the idea that the characteristic is 

not dispersed even when parent categories are tracked 

back if the concept or category has only one (onehop or 

multihop) belonging link. 

In the SPI method, if there is only one belonging 

link    from node    (or   ) to    , the path length of 

   is accounted as 0, which results in reformation of   

to   , and then the BVG method is applied to    
        . 

VVG (Variance-based Vector Generation 

method) considers the weight of each category link. 

This method is based on the idea that the belonging 

degree from a certain category (concept) to parent 

categories depends on the number of parent categories, 

thus the weight of each category link is inversely 

proportional to the number of parent categories. 

Thus, the weight of a category link becomes 1 if the 

category has only one parent category. That’s why the 

authors argue that the VVG method contains the same 

feature as the SPI method. Therefore, they didn’t 

combined VVG with SPI. We, on the other hand, tried 

both BVG + SPI and VVG + SPI combinations and 

confirmed that VVG + SPI performs slightly better than 

VVG itself (see Section 7 for details). 

In the VVG method, weights are set to all belonging 

links, and the belonging degree from concept    to 

category    is calculated according to the weights. 

When the number of belonging links from node    (or 

  ) to category     is  , weight       of each of the 

belonging links    is defined as follows: 

      
 

 
                                        

Then, given all paths                from    to 

  , belonging degree          from concept    to 

category    is defined as follows: 

               

   

                         

      is the weight of path   , calculated by the 

following equation: 

                                        

     

 

Here,                 denotes a set of all 

belonging links forming path    and    denotes a 

belonging link. 

After the vector is built and sorted in descending 

order of belonging degree, it's time to apply cutting 

technique to it and get the list of IDs most relevant to 

the base category. We've tried out two approaches: 

1. belonging degree threshold – concepts with 

belonging degrees less than the mean value of 

belonging degree for each vector are filtered; 

2. percent threshold - 25% of concepts with the 

lowest belonging degrees are filtered. 

Finally, Topic Deriver produces domain concepts 

file that contains IDs of derived concepts. 

4.3 Reducer 

Reducer is the final part of the system. It takes domain 

concepts file as input, applies the concepts' list to 

complete Texterra knowledge base, and produces the 

reduced domain specific version of the latter. It contains 

not only concept IDs, but also full information about 

each of them, including the part of category structure 

that covers selected concepts. Therefore, the domain 

specific version is consistent and ready for loading into 

Texterra.  

5 An approach to storing Wikipedia 

category graph 

As showed above, fast access to any point of Wikipedia 

category structure is necessary for efficiency of all 

described computations. In particular, VVG method 

requires both entire WCG and subgraph of current base 

category to be available simultaneously. 

Chernov et al. [15] studied semantic relationships 

between Wikipedia categories. They exported the 

dataset of about 670 thousands pages into a MySQL 

database. The data size was ~1.2 Gb. But, like many 

other researchers, they picked just a small sample of 

pages for processing (few thousands). For such small-

scale approaches, even a usual on-disk relational DB is 

fast enough. 

But our goal was to create a technique for fast 

iterative traversing through even a top-level categories 

with millions pages. Thus, we resorted to in-memory 

storage of WCG. 

5.1 Evaluation results for known graph libraries 

We've tried out two third-party libraries for storing the 

WCG in the JVM's memory. First of them, JUNG [30], 



showed satisfying performance results on small-scale 

subgraphs. But the entire WCG was impetuously 

expanding while loading and didn’t fit in the RAM of 

the test machine (8 Gb). Second one, JGraphT [31], 

demonstrated almost the same behaviour: the WCG 

consumed a bit less amount of memory, but still too 

much. These observations hinder to utilize these 

libraries as a solution for WCG storing. 

But there are a number of other libraries for graph 

storage which provide handy interface to stored data. 

We've found neo4j [32] and WebGraph [33] libraries. 

They may appear useful during the further research. 

5.2 WikiGraph 

The common shortcoming of all Java graph 

implementations we've tested seemed to be the 

redundancy of data stored in the RAM. Thus, the right 

way is to change the data storage manner. We put this 

into practice in WikiGraph. 

All the prominent features of WikiGraph are due to 

the fact that it's intended to store WCG: 

1. It is directed (as category links have a direction); 

2. It introduces the notions of category and article 

and provides a powerful tooling to store and 

maintain the data on affiliations between them; 

3. Only IDs and types of pages are stored. Each 

vertex is presented as a map consisting of [ID, 

isCategory] entries. This allows to store page type 

as a Boolean variable (TRUE is for category, 

FALSE is for article). All page data are saved as 

primitive variables, not an objects; 

4. Incidence list has been chosen as a main data 

structure (along with vertices and edges lists). This 

is particularly important as the WCG is quite 

dense: 
               

                  
 

 

 
. The incidence list 

is organized into a set of [vertex, [list of incident 

edges]] entries. Each list is sorted in ascending 

order of edges IDs just after the loading. This 

avoids the need to look over the entire incidence 

list to get all the edges incident to an arbitrary 

vertex. Moreover, due to sorting of the lists, it's 

allowed to interrupt the search over them after the 

edge with greatest expected ID is found; 

5. All kinks (self-to-self links) are removed; 

6. Initial capacity of the incidence list is beforehand 

set to approximate amount of vertices in WCG 

(3,500,000 for this case). This saves some memory 

allocation costs while loading; 

7. A set of helper methods is developed also (for 

instance, a method for deriving a subgraph of a 

given base category). This set provides usable and 

fast interface to the WCG data. 

After the described features were implemented, they 

allowed us to fit WCG entirely in the RAM (~4 Gb 

needed) and lead to significant speed-up of loading and 

processing. 

6 Evaluation methodology 

Obviously, a domain specific subset of Wikipedia 

should have a good coverage of domain knowledge. But 

there is no easy direct way to evaluate quality of such a 

subset. The reason is that we must evaluate the 

completeness of knowledge available from Wikipedia's 

articles in resulting subset compared to that of specific 

domain. It's clear that this is rather difficult. In addition, 

the quality of link structure in the resulting subset 

should be also evaluated. 

Therefore, we applied so called in vivo approach for 

evaluation. To estimate the quality of proposed 

methods, we studied how applying of the extracted 

subsets affects the performance of Texterra as a whole. 

As mentioned before, one of Texterra parts is the 

system that enriches ID3 tags for musical recordings 

with links to corresponding articles of Wikipedia. This 

system utilizes graph structure to compute semantic 

relatedness between Wikipedia pages [13]. Then, 

semantic relatedness is exploited by word sense 

disambiguation algorithm. The latter is intended to 

choose the most relevant Wikipedia page from several 

homonymic variants. 

We assume that each page of Wikipedia describes 

one possible meaning. WSD algorithm selects the most 

consistent combination of meanings that correspond to 

input ID3 tags. For sequence of input tags, it computes 

similarity between all pairs of meanings. The weight of 

a sequence is a sum of weights of all its pairs. Then, the 

algorithm detects a sequence with greatest weight. 

To show good results, the derived subset should 

include as much as possible Wikipedia articles 

associated with a specific domain. In additional, link 

structure should be good enough for relatedness 

computation. Therefore, this approach allows evaluating 

both the quality of dictionary content and the quality of 

link structure. 

For testing purpose, we derived several music-

related subsets of Wikipedia by running different 

combinations of heuristics and used these subsets for 

described system. Then, we consequentially loaded 

these domain specific versions of knowledge base into 

Texterra and ran the tests. We used a small corpus of 20 

random musical compositions and 49 different tags. 

Then, we estimated the precision of automated 

disambiguation by comparing the results of algorithm 

with manually disambiguated tags. 

7 Experimental results 

The configuration of test workstation was as follows: 

Intel Core 2 Duo CPU (3.16 GHz), 8 Gb RAM, 

Windows 7 Enterprise 64 bit, Java SE 6 Development 

Kit 1.6.0.20. 

Sample vectors for different combinations of 

heuristics are provided in Tables 1-4. Each sample 

vector comprises three concepts with highest belonging 



degree and three concepts with lowest values. The base 

category is Category:Musical compositions. It’s 

noteworthy that BVG vector differs significantly from 

VVG one. Furthermore, enabling SPI affects both 

vectors. 

The results of the experiments with different 

combinations of vector generation methods and cutting 

techniques are presented in Table 5. Contents of all 3 

base categories listed in Section 4.2 are included. 

Ground truth row corresponds to original Texterra 

knowledge base. As can be seen, it is huge, but ensures 

the best accuracy of disambiguation. 

No threshold is for case when no cutting technique 

is applied to the concept vectors. In other words, this set 

of IDs exactly matches the set of all articles from 

subgraphs of all base categories. This version is much 

smaller, but the precision gets lower also. This precision 

drop (when no threshold is applied yet) is only due to 

imperfect choice of base categories. They merely don't 

cover all concepts required for precise disambiguation. 

It's also obvious that all comparisons of heuristics 

results should be done with no threshold results, not 

with ground truth. 

 

Table 1. Sample vector produced by the BVG method 

ID Title 
Belonging 

degree 

1784928 Candle in the 

Wind 1997 

0.54 

1523941 Axel F 0.50 

1728643 Jeremy (song) 0.49 

3720518 Ludwig 

Streicher 

2.44 * 

10-4 

2175948 Ian Bousfield 2.44 * 

10-4 

875344 Willi 

Boskovsky 

2.44 * 

10-4 

 

Table 2. Sample vector produced by the VVG method 

ID Title 
Belonging 

degree 

27684606 Niagara Falls 

Suite 

0.50 

20053503 Kumikyoku Nico 

Nico Douga 

0.50 

2501716 Megamix 0.50 

14054430 Oh, by the Way 6.02 * 

10
-7 

454136 A Collection 

of Great Dance 

Songs 

6.02 * 

10-7 

361654 Echoes: The 

Best of Pink 

Floyd 

6.02 * 

10-7 

 

As one can see, BVG performs a bit better than 

VVG. The most accurate combinations of heuristics are 

BVG + percent threshold and BVG + SPI + percent 

threshold. Enabling SPI for VVG slightly increases the 

precision of disambiguation. Percent threshold is 

definitely better than belonging degree threshold. 

What's important here is that the size of Texterra 

knowledge base (both on disk and in RAM) depends 

linearly on the number of concepts. Thus, the challenge 

is to find a compromise between the precision of 

disambiguation and the size (and contents) of the 

knowledge base. 

The conducted experiment was just our first effort of 

this kind. Implemented algorithms allowed us to reduce 

the size of Texterra knowledge base by more than order, 

while the precision of disambiguating musical metadata 

has decreased from 98% to 64%. We believe that these 

results prove the applicability of proposed approach for 

deriving domain specific subset of Wikipedia. 

Certainly, there're still many things to improve. 

 

Table 3. Sample vector produced by the BVG method 

with SPI enabled 

ID Title 
Belonging 

degree 

1523941 Axel F 5.53 

1815726 I Will Always 

Love You 

3.88 

923235 My Heart Will 

Go On 

3.50 

9010 Dance Dance 

Revolution 

0.00 

4527 Béla Bartók 0.00 

1370 Ambrose 0.00 

 

Table 4. Sample vector produced by the VVG method 

with SPI enabled 

ID Title 
Belonging 

degree 

27684606 Niagara Falls 

Suite 

0.50 

20053503 Kumikyoku Nico 

Nico Douga 

0.50 

2501716 Megamix 0.50 

9010 Dance Dance 

Revolution 

0.00 

4527 Béla Bartók 0.00 

1370 Ambrose 0.00 

8 Conclusion and future work 

According to the results of this study, we outline the 

following: 

 Wikipedia categories network may be utilized 

for domain specific subset of Wikipedia; 

 Using concept vectors seems to be appropriate 

way to represent the affiliations of belonging 

between Wikipedia pages; 

 BVG performs a bit better than VVG; 

 SPI often improves the results; 

 Percent threshold showed the best results as a 

cutting technique. 

Possible directions of future work include: 

1. As noted by the authors of [18], the selection of 



the root node is vital to the quality of the domain 

specific corpus. Thus, it’s reasonable to 

introduce some heuristics for automated 

identifying of the most appropriate base category 

given just a set of specific keywords. Moreover, 

there can be several base categories with either 

manually or automatically set relevance levels. 

For example, to perform the search for 

"Musicians of World War II" a user should 

provide 2 base categories as an input: 

Category:Musicians with relevance level of 0.9 

and Category:World_War_II with relevance 

level of 0.5; 

2. Try other cutting techniques for concept vectors 

(i.e., attempt to detect the distribution of 

belonging degrees and utilize it); 

3. Detect and remove meaningless pages from the 

WCG (i.e., pages from administrative section of 

Wikipedia [4]); 

4. Distinguishing between classes and instances 

among categories [9] may help to prune and/or 

reorganize the WCG; 

5. Add a facility for storing the results of semantic 

relatedness computation to boost the further 

processing; 

6. Develop the approximation algorithm for finding 

all paths between two arbitrary nodes in the 

WCG. 

In this work, we’ve demonstrated the possible 

benefits of automated building of the domain specific 

ontologies. Also, we’ve tested different heuristics while 

implementing the system for such processing. An 

original approach to storing WCG in the RAM has been 

proposed, along with specific evaluation methodology. 

The described approach can be applied to any 

ontology with well-defined polyhierarchical taxonomy 

(for instance, YAGO2). As it seems to us, weighting the 

existing semantic connections is always a challenging 

task while building any more or less large ontology. 

This may be helpful for any domain dependent 

Wikipedia-related research [34, 35]. 

 

 

Table 5. Experimental results 

 
SPI 

enabled 
Threshold 

Number of 

IDs 
Size, Mb Precision, % 

Basic Vector 

Generation 

yes 
belonging degree 334,575 112,3 45,10 

percent 574,810 251,2 62,75 

no 
belonging degree 434,229 159,2 45,10 

percent 574,940 251,8 64,71 

Variance-based 

Vector Generation 

yes 
belonging degree 420,302 154,8 49,02 

percent 549,791 244,5 60,78 

no 
belonging degree 418,998 150,1 41,18 

percent 549,639 245,5 56,86 

No threshold — — 675,228 311,5 72,55 

Ground truth — — 8,476,942 4528,3 98,04 
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