
A Category-Driven Approach to

Deriving Domain Specific Subset of Wikipedia

© Anton Korshunov, Denis Turdakov

ISPRAS

{korshunov, turdakov}

@ispras.ru

Jinguk Jeong, Minho Lee, Changsung Moon

Convergence Solution Team,

DMC R&D Center,

Samsung Electronics Co., Ltd.

{jinguk.jeong, minho03.lee, albert.moon}

@samsung.com

Abstract

While many researchers attempt to build up

different kinds of ontologies by means of

Wikipedia, the possibility of deriving high-

quality domain specific subset of Wikipedia

using its own category structure still remains

undervalued. We prove the necessity of such

processing in this paper and also propose an

appropriate technique. As a result, the size of

knowledge base for our text processing

framework has been reduced by more than

order, while the precision of disambiguating

musical metadata (ID3 tags) has decreased

from 98% to 64%.

1 Introduction

There's no need to introduce Wikipedia as a world's

largest and most rapidly expanding source of

information on many domains in almost every

language. At the time of drafting this paper, there are

279 Wikipedias in different languages, with more than

17,870,000 articles, 1,920,000 uploaded images, and

27,540,000 registered users [1]. 39 Wikipedias contain

more than 100,000 articles each. The English edition

remains the largest Wikipedia, over three times as large

as the second largest edition, the German Wikipedia.

That's why it is reasonable to start investigating new

possibilities with English Wikipedia as a most

comprehensive source.

By now, Wikipedia has already got a lot of colorful

detailed descriptions. Conventional features of

Wikipedia are well-known and discussed widely

in [2, 25]. They include concept identification by ID or

URL, multiple and dense link structure, and category

system which is edited and maintained by Wikipedia

users as well as articles.

Researching community has proved more than once

that structure and content of Wikipedia are very

peculiar and valuable domains to study. One of the most

promising directions is automated ontology building

which may be accomplished by extracting well-defined

concepts and relations among them from Wikipedia.

The latest efforts in this field are DBpedia [3], the work

of Ponzetto et al. [4], YAGO [5], etc. All these

approaches mainly exploit the data derived from

infoboxes and category structure. Due to continuous

enriching these techniques with better algorithms and

data sources, the quality of resulting ontologies

becomes remarkable.

Despite these successes in automated upper-level

ontology building, most of domain specific ontologies

(for instance, UMLS [6]) are still assembled manually.

Needless to say, they are often costly to build and to

keep them up to date.

In this paper, we consider the possibility of loosely

supervised extraction of domain specific ontologies

from upper-level ones. This is becoming feasible in

recent years as high-quality upper-level ontologies grow

more versatile and involve the knowledge of many new

domains. Moreover, many field experts from all around

the world often tend to pay their efforts to expand

existing widespread ontologies, rather than to create

their own or refine domain specific ones.

Our interest in this research is caused by necessity

of reducing the knowledge base for our text processing

framework Texterra
1
. This base comprises a number of

textual indices produced by our Wikipedia parser.

These indices are loaded into RAM during the

initialization of Texterra server and take roughly 4.5 Gb

of disk space and 2 Gb of RAM. Such a consumption is

acceptable for workstations, but not for mobile devices

with restricted amount of memory. Thus, if one would

attempt to build a standalone mobile application

1 http://modis.ispras.ru/texterra

 This research was collaborated with and supported by

the Samsung Electronics Co., Ltd. DMC R&D Center

Convergence Solution Team.

Proceedings of the Spring Young Researcher's

Colloquium On Database and Information Systems

SYRCoDIS, Moscow, Russia, 2011

mailto:korshunov@ispras.ru
mailto:korshunov@ispras.ru

intended for text processing, then its data structures

simply would not fit in the RAM. Obviously, such

applications - if developed - would be highly demanded

to date.

The disambiguation
2
 of musical metadata (i.e., ID3

tags of MP3 files) is an important part of Texterra

functionality. These algorithms are well-tuned by the

moment and show the precision of 98% on our test set.

But it's obvious that only a narrow range of Wikipedia

dictionary is utilized during processing ID3 tags of MP3

files. There are mostly named entities, such as musical

compositions, song writers, singers, etc. Generally

speaking, the amount of knowledge required to perform

such a disambiguation is likely much less than that

available from the entire knowledge base.

Making the knowledge base more specialized by

removing concepts which are unimportant for this task

is what comes to mind first in this case. So, we've

implemented a system intended to produce Wikipedia

subsets covering the knowledge of the given domain.

We decided not to narrow the scope of our research to

Wikipedia derivates (such as YAGO). But, although the

algorithms have been evaluated with Wikipedia only,

they are applicable to any ontology with well-defined

polyhierarchical taxonomy.

Of many interesting aspects of Wikipedia, here we

take into account only categorization and linkage within

its content. The category system in Wikipedia plays the

role of a taxonomy and provides the function to search

articles by narrowing down categories. Given this, the

task of deriving domain specific concepts from

Wikipedia dictionary seems to be solvable by mining

the category system for the list of concepts tightly

connected with the given base categories. However, it

is impossible to simply determine all concepts

belonging to a particular category. The reason is that the

category system of Wikipedia is organized into network

structure, not a perfect tree structure. Furthermore, the

lists of parent categories for many articles are redundant

and contradictory. Thus, they don’t allow detecting the

most relevant categories for a given page without

analyzing the neighbour pages.

Therefore, we utilized concept vectorization method

specialized for the category system in Wikipedia, with

several additional expansion methods, as proposed

in [2]. The authors express affiliation relations among

concepts as category-based concept vectors. Each

element (dimension) of a concept vector represents not

only binary affiliation information (whether the concept

belongs to a certain category or not), but also the degree

of affiliation (called belonging degree in the rest of this

paper). After applying different cutting techniques to

the obtained concept vectors, the list of domain specific

concept IDs is outputted. This list is further applied to

Texterra knowledge base resulting in the reduced

2 Word sense disambiguation is an open problem of natural

language processing, which governs the process of identifying

which sense of a word (i.e. meaning) is used in a sentence,

when the word has multiple meanings (polysemy).

domain specific version of the latter. The explanation of

our approach is given in Section 4.

Section 2 contains the review of related work. The

key features of Wikipedia category structure are

discussed in Section 3.

Having a fast access to any point of Wikipedia

category structure was one of the crucial tasks for our

research. After a number of unsuccessful tries to reuse

the existing graph libraries, we've coded our own

implementation, named WikiGraph. See Section 5 for

details.

Given a set of specialized versions of the knowledge

base, we conducted a series of experiments in order to

learn how the reducing of Texterra knowledge base

affects the accuracy of results. Refer to Section 6 for

evaluation methodology. Section 7 contains

experimental results and discussion.

We conclude in Section 8 with our research findings

and discussion about possible improvements.

2 Related work

2.1 Automated ontology building

The field of automated ontology learning usually acts

by taking textual input and transforming it into a

taxonomy or a proper ontology. The texts are usually

obtained from printed sources (books, magazines,

newspapers) and Internet (online media, blogposts,

results of querying search engines). However, the

learned ontologies are small and hard-to-update; in

addition, evaluations have revealed a rather poor

performance [7].

As mentioned before, the most accurate and, thus,

valuable non-human assembled ontologies are now built

by automatically deriving explicit facts from Wikipedia.

One of the early attempts was the work of Gregorowicz

and Kramer [8]. They focused on deriving a term-

concept map which consists of terms, concepts, and

relationships between them. Only articles, redirects, and

disambiguation pages are considered. Ponzetto and

Strube [4] were deriving a taxonomy from the entire

Wikipedia category structure. Despite their successes,

the resulted taxonomy is rather simple (supports only

is-a and not-is-a relations) and domain independent.

The work described in [9] enhances this taxonomy with

instance and class information for each node. Cui et

al. [10] introduce even more sophisticated approach to

building the ontology of concepts by making use of

infobox structures, definition sentences, and category

labels. Finally, YAGO2 [11] is probably the most

complete and accurate semantic knowledge base

derived automatically from Wikipedia and other

sources. The information extraction technique for

YAGO2 assumes varied utilization of infoboxes,

category structure, redirects, and other data within

Wikipedia. Furthermore, the quality check is performed

to find possible mistakes. As a result, the quality of

extracted ontology is sufficient for the majority of IR-

and NLP-related tasks.

Notwithstanding the foregoing, newly emerging

research fields often require well-structured and

comprehensive domain specific ontologies. Researchers

don't need a huge knowledge base, but an extensible

corpus of specific concepts with good coverage of

domain knowledge. If such ontologies were built in a

completely automated way, then this would avoid the

necessity of assembling them from scratch manually.

We believe that Wikipedia contains enough information

for this task to be completed. Below is the description

of approaches we've applied to narrowing Wikipedia

dictionary to domain specific subset.

2.2 Computing semantic relatedness

We consider the key problem of our study as the

computation of semantic relatedness between base top-

level categories and underlying articles. According to

Budanitsky and Hirst [12], semantic relatedness is

defined to cover any kind of lexical or functional

association that may exist between two words. This

definition suits us more than semantic similarity, which

is typically defined via the lexical relations of

synonymy and hypernymy.

There were many approaches proposed for

estimation of semantic relatedness between concepts in

Wordnet (Rada et al., Leacock and Chodorow, Wu and

Palmer, Resnik, Jiang and Conrath, Lin) and between

Wikipedia articles [13] (Dice, Jaccard, SimRank).

Among them are purely graph-based measures and

those involving information content. In this paper, we

consider only graph-based approaches.

Since a significant part of Wikipedia knowledge is

encoded in its graph-like link structure, it seems

reasonable to apply existing graph-based methods or

introduce new ones. Zesch and Gurevych [14] proved

that many Wordnet-based semantic similarity measures

are applicable to Wikipedia with minor changes.

Obviously, it’s also attractive to estimate the

strength of ties between different levels of taxonomy

(between base categories and its articles, in our case). In

this context, the links among articles appear not so

important. Therefore, new category-based semantic

relatedness measures are emerging.

Chernov et al. [15] measured semantic relatedness

between categories, not between concepts and

categories, as it's required for our task. Nonetheless,

they proposed several very useful and applicable

techniques.

Strube and Ponzetto [16] employed Wikipedia,

Wordnet, and Google for computing semantic

relatedness between concepts. For two Wikipedia

articles being compared, they extracted two categories

lists. Given the category lists, for each category pair

they performed a depth-limited search of maximum

depth of 4 for a least common ancestor. As they

noticed, limiting the search improves the results. But

this is obviously inappropriate for computing

relatedness between top-level category and articles from

all its subcategories.

2.3 Identifying domain specific concepts

Syed et al. [17] tried to predict the topic of textual

documents by matching them against Wikipedia articles

based on cosine similarity
3
. Then, they extracted

categories of found articles and scored them based on

different scoring schemes with or without spreading

activation
4
. The proposed approach implies scoring the

links with many categories for each given Wikipedia

article using bottom-up traversing of category structure.

This is acceptable for a small set of articles, but not for

our task.

To the best of our knowledge, Cui et al. [18] were

the first who introduced an approach to deriving domain

specific corpus from Wikipedia. The main idea is to

generate a domain hierarchy from the hyperlinked pages

of Wikipedia. Then, only articles strongly linked to this

hierarchy are selected. They build a so-called

Classification Tree by traversing down the directed

graph of Wikipedia category structure starting from the

root node. This tree includes both categories and

articles and in fact is merely a connected branch of

Wikipedia classification graph with a specified root

node. Then, the Classification Tree is traversed with a

simple adaption of breadth-first search algorithm.

During the traversal, each node is given a score on the

relevance to the specific domain. Once the traversal is

completed, the terminal nodes (article pages) are ranked

according to the domain relevance scores. Pages over a

certain threshold are considered domain relevant. The

node score can consider either ingoing or outgoing

edges. Despite the proposed technique is quite simple,

the results are remarkable.

A more sophisticated algorithm has been proposed

later by Shirakawa et al. [2]. The concept vectorization

method is introduced for finding concepts which are

highly correlated with the base category (refer to

Section 1 for brief explanation). The main assumption

there is that the relatedness between categories gets

lower as the number of traversed pages (i.e., hopcount)

increases. In addition to the number of links for each

node, they also take into account the number of paths

between the concept and the base category, as well as

hopcounts of these paths. As it seems to us, this

understanding reflects the nature of Wikipedia

classification approach much more precisely than ever

before. Several heuristics are suggested for estimation

of semantic relatedness by counting paths properties in

the subgraph of desired base category. However,

authors didn't compute these scores for thousands of

3 Cosine similarity is a measure of similarity between two

vectors by measuring the cosine of the angle between them.

Calculating the cosine of the angle between two vectors thus

determines whether two vectors are pointing in roughly the

same direction. This is often used to compare documents in

text mining.
4 Spreading activation is a method for searching associative

networks, neural networks, or semantic networks. The search

process is initiated by labelling a set of source nodes with

weights or "activation" and then iteratively propagating or

"spreading" that activation out to other nodes linked to the

source nodes.

articles with hundreds of paths for each of them at a

time, as it's required in this research. Moreover, the

efficiency of both approaches described in [2] and [18]

has not been evaluated in real tasks. In both cases, the

evaluation was performed by comparing the results of

algorithms with answers of experts knowledgeable in

certain fields. This looks persuasively when proving the

theoretical applicability, but is not enough for

unconditional embedding into the real system.

In this work, we mainly exploited the ideas

formulated in [2] and [18]. Our main goal was to

estimate the scalability and practical applicability of

these approaches for real tasks which imply processing

of large amount of data.

3 Features of Wikipedia category structure

The advantages of Wikipedia category structure were

studied by authors of [14] and many others. Here we

summarize only those features needed for better

understanding of our approach.

Figure 1. Sample XML structure of categorized

Wikipedia article page

Categories of Wikipedia can be organized in a

graph, where the nodes are categories and the edges are

hyperlinks. In this work we also add articles to this

graph. However, we still name it the Wikipedia

category graph (WCG in the rest of the paper).

The links expressing which concept belongs to what

categories are called category links. We call them

belonging links or belonged links according to their

direction. In this paper, we only consider the belonging

links, i.e. links from articles or subcategories to upper-

level categories. The English version of Wikipedia, as

of September 2010, contains ~13 million category links.

The typical code of categorized article page is

shown at Figure 1. It combines XML and Wiki markup.

The list of belonging categories is situated at the

bottom. Categories have their own pages similar to

articles. Category links at these pages also express

which category belongs to what categories.

Categorization is a useful tool to group articles for

ease of navigation, and correlating similar information.

However, not every verifiable fact (or the intersection

of two or more such facts) in an article requires an

associated category. For lengthy articles, this could

potentially result in hundreds of categories, most of

which aren't particularly relevant. This may also make it

more difficult to find any particular category for a

specific article. Such overcategorization is also known

as "category clutter" [19].

For these reasons, the WCG has an extremely

complex nature. It is directed and has not a strong

hierarchical structure as some may expect. Any

category may branch into subcategories, and it is

possible for a category to be a subcategory of more than

one parent [20]. Upon closer inspection, the WCG is

rather a polyhierarchy, or even a net (Figure 2).

Figure 2. A fragment of Wikipedia category structure

The figure has been produced by CatGraph [21].

This tool draws a cloud of links for the desired

category. Each rectangle represents a category. Each

arrow connecting two rectangles denotes a "belongs-to"

relation, that is, the destination category is a

subcategory of the initial one (an example of belonging

link). The cloud shown in the figure is for "Recorded

music" category (bolded).

It's worth noting here that not every Wikipedia page

is categorized. According to statistics [22, 23], there are

thousands of uncategorized articles and categories.

Moreover, certain categories are assigned

incorrectly [24]. We suggest considering these facts as a

possible drawbacks for any category-based algorithm.

In addition, automated categorizing (i.e., determining a

topic of an uncategorized page) seems to be a

challenging task. This can be done with certain

accuracy by processing page title and text with specific

NLP techniques and finding appropriate categories in

WCG.

4 Deriving a domain specific subsets

The developed system consists of three main parts:

1. Link Filter produces a ready-for-load textual

representation of WCG;

2. Topic Deriver performs the main processing;

3. Reducer produces a domain specific version of

the Texterra knowledge base
5
.

All algorithms evaluated in this paper were

implemented in the Java programming language.

4.1 Link Filter

The input for Link Filter is Wikipedia links file

containing information about all links between

Wikipedia pages, along with their type and direction.

The result is category links file that contains only links

forming the WCG. Every line of this file denotes the

affiliation of belonging between two pages and sets the

type of the belonging page. For example,

12 780754 0

means that page with ID 12 ("Anarchism") is belonging

to the category with ID 780754

("Category:Anarchism"). Moreover, the belonging page

("Anarchism") is an article because the last field is "0"

("1" would mean that the belonging page is a category).

Thus, category links file is a complete textual

representation of the WCG and contains no unwanted

data such as page titles and link types. Furthermore,

unlike the authors of [18], we’ve also removed pages of

certain types: lists, classifications, portals, redirects,

disambiguation pages, and user pages. This helped us to

make the WCG more lightweight without loss of any

meaningful concepts. As a result, category links file

contains 13,001,687 links between 593,796 categories

and 3,156,822 articles.

4.2 Topic Deriver

Topic Deriver loads category links file on start and fills

in the internal structures of WikiGraph (refer to Section

5 for details). The workflow for this stage is shown at

the Figure 3. Here we touch on only the main steps.

For our analysis, we denote as a set of concepts,

 as a set of categories, and as a set of belonging

links. Then, the category system in Wikipedia is

expressed as a directed graph . A path is a

sequence of edges that connects one node with another.

The path length (hopcount) is the number of edges

along that path.

The key task of Topic Deriver is to obtain the list of

concepts connected semantically with certain domain.

Herewith, this connection should be the tightest one,

that is, these concepts should be more relevant to the

5 The Texterra knowledge base for this research has been

obtained by parsing the dump of English Wikipedia, as of

September 2010.

desired domain than to others. As this task is

computationally complex and, thus, supposed to be run

rarely, it’s allowably to choose the base categories

manually for experiments. We’ve selected 3 base

categories that likely cover the majority of concepts

required for disambiguating musical metadata:

 Category:Musical compositions

 Category:Recorded music

 Category:Music-related lists

For each of selected base categories, a separate

subgraph is built. This subgraph is almost the same as

Classification Tree in [18]. The base category serves as

a root node, and a tree-like structure of underlying

pages is obtained from WCG. The only difference from

approach proposed in [18] is that we use depth-first

search (DFS), not breadth-first search (BFS). The

reason for this is that the resulting subgraphs are often

large enough, thus, it’s inappropriate to waste the

memory for storing the FIFO queue required for BFS

traversal [26]. Moreover, as depth-first tree is expected

to contain back edges and cross edges, the list of visited

nodes has been added to avoid repetitive visiting and

loops.

A concept vector in our research specifies the degree

of affiliation between the base category and each of

articles reachable by traversing down the subgraph of

the base category starting from its root node. As

mentioned, the heuristics for building concept vectors

have been borrowed from [2] with some modifications.

We describe them briefly below, for more detailed

information refer to the source paper.

BVG (Basic Vector Generation method) generates

concept vectors by tracking back parent categories in

the category system and calculating the belonging

degree to each concept.

The belonging degree from concept to

category is defined by the following equation:

Here, denotes a set of paths from to ,

denotes the hopcount of path , denotes a

monotonically increasing function on the hopcount of

path (given as).

It’s noteworthy that in the original method [2] paths

with a hopcount of more than 4 were ignored. We asked

the authors for the reasons of this. The response was

―Because long paths scarcely affect values in concept

vectors in most cases. Of course, sometimes long paths

affect the values‖. We’ve decided to remove this

constraint in our experiments, that is, we consider all

paths between two nodes.

As a result, processing time may become too large

for base categories from high levels of the WCG

hierarchy. The reason for such behaviour is an exclusive

computational complexity of finding all paths between

two arbitrary nodes in the graph. It's well-known that

this task is NP-complete in general case.

Figure 3. Overall architecture of Topic Deriver

Musical
compositions

Recorded
music

Music-
related lists

Texterra knowledge base

ID1
940477

ID2
2722900

ID3
1520543

Wikipedia category graph

"Musical compositions"
SUBGRAPH

"Recorded music"
SUBGRAPH

"Music-related lists"
SUBGRAPH

"Musical compositions"
VECTOR

"Recorded music"
VECTOR

"Music-related lists"
VECTOR

16256

723678

90381

2763203

392

84678

280482

1.56

1.12

0.92

0.56

0.35

0.24

0.03

1234

491358

76036

386421

6032

16937

1.25

1.04

2 0.89

0.33

0.19

0.01

67891

2297721

6788201

404313

51578

30557

18358

1.02

0.90

0.78

0.44

0.36

0.20

0.09

LIST OF EXTRACTED CONCEPTS

Knowledge base
(complete)

Knowledge base
(domain specific)

Step 1. Get the list of

categories to be

processed.

Step 2. Get connected

to Texterra server and

obtain an ID for each

category.

Step 3. Explore the

pre-loaded Wikipedia

category graph and

build a separate

subgraph for each

category.

Step 5. Apply cutting

technique to each

vector. Collect the

remaining IDs into

common list of

extracted concepts.

Step 4. Traverse the

subgraphs and build

concept vectors.

Each vector consists

of "concept ID →

belonging degree"

pairs.

Step 6. Process

Texterra knowledge

base in a way to save

only records

associated with

obtained list.

Since WCG contains millions of edges, the maximal

path length may reach hundreds of edges, leading to

impetuous increase of processing time when trying to

process top-level categories. This is exactly why we've

picked up a "safe" set of categories, which are

processed relatively fast and cover the knowledge of

field we've chosen for experiments.

Notwithstanding, we believe that taking all existing

paths between two nodes into account allows to

estimate the belonging degree more precisely. However,

we didn’t confirm this assumption experimentally.

To reduce the complexity of finding all paths

between two arbitrary nodes, we tried to re-use one of

existing techniques [27-29]. Finally, the APAC

algorithm [29] has been chosen. This algorithm does not

need to keep track of all visited vertices and only stores

the feasible paths.

For domain specific areas where categories are

excessively segmentalized, the BVG method cannot

extract accurately concept vectors due to the increase in

hopcount. To solve this problem, the Single Parent

Integration (SPI) method is proposed. The authors

confirmed from their experiences that a part in the

category system which corresponds to (excessively

segmentalized) categories for a domain specific area

forms almost a tree structure. Based on this fact, when a

concept or a category has only one (onehop/multihop)

belonging link, the SPI method shortens the belonging

link. This is based on the idea that the characteristic is

not dispersed even when parent categories are tracked

back if the concept or category has only one (onehop or

multihop) belonging link.

In the SPI method, if there is only one belonging

link from node (or) to , the path length of

 is accounted as 0, which results in reformation of

to , and then the BVG method is applied to
 .

VVG (Variance-based Vector Generation

method) considers the weight of each category link.

This method is based on the idea that the belonging

degree from a certain category (concept) to parent

categories depends on the number of parent categories,

thus the weight of each category link is inversely

proportional to the number of parent categories.

Thus, the weight of a category link becomes 1 if the

category has only one parent category. That’s why the

authors argue that the VVG method contains the same

feature as the SPI method. Therefore, they didn’t

combined VVG with SPI. We, on the other hand, tried

both BVG + SPI and VVG + SPI combinations and

confirmed that VVG + SPI performs slightly better than

VVG itself (see Section 7 for details).

In the VVG method, weights are set to all belonging

links, and the belonging degree from concept to

category is calculated according to the weights.

When the number of belonging links from node (or

) to category is , weight of each of the

belonging links is defined as follows:

Then, given all paths from to

 , belonging degree from concept to

category is defined as follows:

 is the weight of path , calculated by the

following equation:

Here, denotes a set of all

belonging links forming path and denotes a

belonging link.

After the vector is built and sorted in descending

order of belonging degree, it's time to apply cutting

technique to it and get the list of IDs most relevant to

the base category. We've tried out two approaches:

1. belonging degree threshold – concepts with

belonging degrees less than the mean value of

belonging degree for each vector are filtered;

2. percent threshold - 25% of concepts with the

lowest belonging degrees are filtered.

Finally, Topic Deriver produces domain concepts

file that contains IDs of derived concepts.

4.3 Reducer

Reducer is the final part of the system. It takes domain

concepts file as input, applies the concepts' list to

complete Texterra knowledge base, and produces the

reduced domain specific version of the latter. It contains

not only concept IDs, but also full information about

each of them, including the part of category structure

that covers selected concepts. Therefore, the domain

specific version is consistent and ready for loading into

Texterra.

5 An approach to storing Wikipedia

category graph

As showed above, fast access to any point of Wikipedia

category structure is necessary for efficiency of all

described computations. In particular, VVG method

requires both entire WCG and subgraph of current base

category to be available simultaneously.

Chernov et al. [15] studied semantic relationships

between Wikipedia categories. They exported the

dataset of about 670 thousands pages into a MySQL

database. The data size was ~1.2 Gb. But, like many

other researchers, they picked just a small sample of

pages for processing (few thousands). For such small-

scale approaches, even a usual on-disk relational DB is

fast enough.

But our goal was to create a technique for fast

iterative traversing through even a top-level categories

with millions pages. Thus, we resorted to in-memory

storage of WCG.

5.1 Evaluation results for known graph libraries

We've tried out two third-party libraries for storing the

WCG in the JVM's memory. First of them, JUNG [30],

showed satisfying performance results on small-scale

subgraphs. But the entire WCG was impetuously

expanding while loading and didn’t fit in the RAM of

the test machine (8 Gb). Second one, JGraphT [31],

demonstrated almost the same behaviour: the WCG

consumed a bit less amount of memory, but still too

much. These observations hinder to utilize these

libraries as a solution for WCG storing.

But there are a number of other libraries for graph

storage which provide handy interface to stored data.

We've found neo4j [32] and WebGraph [33] libraries.

They may appear useful during the further research.

5.2 WikiGraph

The common shortcoming of all Java graph

implementations we've tested seemed to be the

redundancy of data stored in the RAM. Thus, the right

way is to change the data storage manner. We put this

into practice in WikiGraph.

All the prominent features of WikiGraph are due to

the fact that it's intended to store WCG:

1. It is directed (as category links have a direction);

2. It introduces the notions of category and article

and provides a powerful tooling to store and

maintain the data on affiliations between them;

3. Only IDs and types of pages are stored. Each

vertex is presented as a map consisting of [ID,

isCategory] entries. This allows to store page type

as a Boolean variable (TRUE is for category,

FALSE is for article). All page data are saved as

primitive variables, not an objects;

4. Incidence list has been chosen as a main data

structure (along with vertices and edges lists). This

is particularly important as the WCG is quite

dense:

. The incidence list

is organized into a set of [vertex, [list of incident

edges]] entries. Each list is sorted in ascending

order of edges IDs just after the loading. This

avoids the need to look over the entire incidence

list to get all the edges incident to an arbitrary

vertex. Moreover, due to sorting of the lists, it's

allowed to interrupt the search over them after the

edge with greatest expected ID is found;

5. All kinks (self-to-self links) are removed;

6. Initial capacity of the incidence list is beforehand

set to approximate amount of vertices in WCG

(3,500,000 for this case). This saves some memory

allocation costs while loading;

7. A set of helper methods is developed also (for

instance, a method for deriving a subgraph of a

given base category). This set provides usable and

fast interface to the WCG data.

After the described features were implemented, they

allowed us to fit WCG entirely in the RAM (~4 Gb

needed) and lead to significant speed-up of loading and

processing.

6 Evaluation methodology

Obviously, a domain specific subset of Wikipedia

should have a good coverage of domain knowledge. But

there is no easy direct way to evaluate quality of such a

subset. The reason is that we must evaluate the

completeness of knowledge available from Wikipedia's

articles in resulting subset compared to that of specific

domain. It's clear that this is rather difficult. In addition,

the quality of link structure in the resulting subset

should be also evaluated.

Therefore, we applied so called in vivo approach for

evaluation. To estimate the quality of proposed

methods, we studied how applying of the extracted

subsets affects the performance of Texterra as a whole.

As mentioned before, one of Texterra parts is the

system that enriches ID3 tags for musical recordings

with links to corresponding articles of Wikipedia. This

system utilizes graph structure to compute semantic

relatedness between Wikipedia pages [13]. Then,

semantic relatedness is exploited by word sense

disambiguation algorithm. The latter is intended to

choose the most relevant Wikipedia page from several

homonymic variants.

We assume that each page of Wikipedia describes

one possible meaning. WSD algorithm selects the most

consistent combination of meanings that correspond to

input ID3 tags. For sequence of input tags, it computes

similarity between all pairs of meanings. The weight of

a sequence is a sum of weights of all its pairs. Then, the

algorithm detects a sequence with greatest weight.

To show good results, the derived subset should

include as much as possible Wikipedia articles

associated with a specific domain. In additional, link

structure should be good enough for relatedness

computation. Therefore, this approach allows evaluating

both the quality of dictionary content and the quality of

link structure.

For testing purpose, we derived several music-

related subsets of Wikipedia by running different

combinations of heuristics and used these subsets for

described system. Then, we consequentially loaded

these domain specific versions of knowledge base into

Texterra and ran the tests. We used a small corpus of 20

random musical compositions and 49 different tags.

Then, we estimated the precision of automated

disambiguation by comparing the results of algorithm

with manually disambiguated tags.

7 Experimental results

The configuration of test workstation was as follows:

Intel Core 2 Duo CPU (3.16 GHz), 8 Gb RAM,

Windows 7 Enterprise 64 bit, Java SE 6 Development

Kit 1.6.0.20.

Sample vectors for different combinations of

heuristics are provided in Tables 1-4. Each sample

vector comprises three concepts with highest belonging

degree and three concepts with lowest values. The base

category is Category:Musical compositions. It’s

noteworthy that BVG vector differs significantly from

VVG one. Furthermore, enabling SPI affects both

vectors.

The results of the experiments with different

combinations of vector generation methods and cutting

techniques are presented in Table 5. Contents of all 3

base categories listed in Section 4.2 are included.

Ground truth row corresponds to original Texterra

knowledge base. As can be seen, it is huge, but ensures

the best accuracy of disambiguation.

No threshold is for case when no cutting technique

is applied to the concept vectors. In other words, this set

of IDs exactly matches the set of all articles from

subgraphs of all base categories. This version is much

smaller, but the precision gets lower also. This precision

drop (when no threshold is applied yet) is only due to

imperfect choice of base categories. They merely don't

cover all concepts required for precise disambiguation.

It's also obvious that all comparisons of heuristics

results should be done with no threshold results, not

with ground truth.

Table 1. Sample vector produced by the BVG method

ID Title
Belonging

degree

1784928 Candle in the

Wind 1997

0.54

1523941 Axel F 0.50

1728643 Jeremy (song) 0.49

3720518 Ludwig

Streicher

2.44 *

10-4

2175948 Ian Bousfield 2.44 *

10-4

875344 Willi

Boskovsky

2.44 *

10-4

Table 2. Sample vector produced by the VVG method

ID Title
Belonging

degree

27684606 Niagara Falls

Suite

0.50

20053503 Kumikyoku Nico

Nico Douga

0.50

2501716 Megamix 0.50

14054430 Oh, by the Way 6.02 *

10
-7

454136 A Collection

of Great Dance

Songs

6.02 *

10-7

361654 Echoes: The

Best of Pink

Floyd

6.02 *

10-7

As one can see, BVG performs a bit better than

VVG. The most accurate combinations of heuristics are

BVG + percent threshold and BVG + SPI + percent

threshold. Enabling SPI for VVG slightly increases the

precision of disambiguation. Percent threshold is

definitely better than belonging degree threshold.

What's important here is that the size of Texterra

knowledge base (both on disk and in RAM) depends

linearly on the number of concepts. Thus, the challenge

is to find a compromise between the precision of

disambiguation and the size (and contents) of the

knowledge base.

The conducted experiment was just our first effort of

this kind. Implemented algorithms allowed us to reduce

the size of Texterra knowledge base by more than order,

while the precision of disambiguating musical metadata

has decreased from 98% to 64%. We believe that these

results prove the applicability of proposed approach for

deriving domain specific subset of Wikipedia.

Certainly, there're still many things to improve.

Table 3. Sample vector produced by the BVG method

with SPI enabled

ID Title
Belonging

degree

1523941 Axel F 5.53

1815726 I Will Always

Love You

3.88

923235 My Heart Will

Go On

3.50

9010 Dance Dance

Revolution

0.00

4527 Béla Bartók 0.00

1370 Ambrose 0.00

Table 4. Sample vector produced by the VVG method

with SPI enabled

ID Title
Belonging

degree

27684606 Niagara Falls

Suite

0.50

20053503 Kumikyoku Nico

Nico Douga

0.50

2501716 Megamix 0.50

9010 Dance Dance

Revolution

0.00

4527 Béla Bartók 0.00

1370 Ambrose 0.00

8 Conclusion and future work

According to the results of this study, we outline the

following:

 Wikipedia categories network may be utilized

for domain specific subset of Wikipedia;

 Using concept vectors seems to be appropriate

way to represent the affiliations of belonging

between Wikipedia pages;

 BVG performs a bit better than VVG;

 SPI often improves the results;

 Percent threshold showed the best results as a

cutting technique.

Possible directions of future work include:

1. As noted by the authors of [18], the selection of

the root node is vital to the quality of the domain

specific corpus. Thus, it’s reasonable to

introduce some heuristics for automated

identifying of the most appropriate base category

given just a set of specific keywords. Moreover,

there can be several base categories with either

manually or automatically set relevance levels.

For example, to perform the search for

"Musicians of World War II" a user should

provide 2 base categories as an input:

Category:Musicians with relevance level of 0.9

and Category:World_War_II with relevance

level of 0.5;

2. Try other cutting techniques for concept vectors

(i.e., attempt to detect the distribution of

belonging degrees and utilize it);

3. Detect and remove meaningless pages from the

WCG (i.e., pages from administrative section of

Wikipedia [4]);

4. Distinguishing between classes and instances

among categories [9] may help to prune and/or

reorganize the WCG;

5. Add a facility for storing the results of semantic

relatedness computation to boost the further

processing;

6. Develop the approximation algorithm for finding

all paths between two arbitrary nodes in the

WCG.

In this work, we’ve demonstrated the possible

benefits of automated building of the domain specific

ontologies. Also, we’ve tested different heuristics while

implementing the system for such processing. An

original approach to storing WCG in the RAM has been

proposed, along with specific evaluation methodology.

The described approach can be applied to any

ontology with well-defined polyhierarchical taxonomy

(for instance, YAGO2). As it seems to us, weighting the

existing semantic connections is always a challenging

task while building any more or less large ontology.

This may be helpful for any domain dependent

Wikipedia-related research [34, 35].

Table 5. Experimental results

SPI

enabled
Threshold

Number of

IDs
Size, Mb Precision, %

Basic Vector

Generation

yes
belonging degree 334,575 112,3 45,10

percent 574,810 251,2 62,75

no
belonging degree 434,229 159,2 45,10

percent 574,940 251,8 64,71

Variance-based

Vector Generation

yes
belonging degree 420,302 154,8 49,02

percent 549,791 244,5 60,78

no
belonging degree 418,998 150,1 41,18

percent 549,639 245,5 56,86

No threshold — — 675,228 311,5 72,55

Ground truth — — 8,476,942 4528,3 98,04

References

[1] List of Wikipedias - Meta.

http://meta.wikimedia.org/wiki/List_of_Wikipedia

s

[2] M. Shirakawa, K. Nakayama, T. Hara, S. Nishio.

Concept Vector Extraction from Wikipedia

Category Network. In Proceedings of 3rd

International Conference on Ubiquitous

Information Management and Communication

(ICUIMC 2009), pp. 71-79, 2009.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R.

Cyganiak, Z. G. Ives. Dbpedia: A nucleus for a

web of open data. In ISWC, volume 4825 of

LNCS, pages 722–735. Springer, 2007.

[4] Simone P. Ponzetto, Michael Strube. Deriving a

large scale taxonomy from Wikipedia. In AAAI'07:

Proceedings of the 22nd national conference on

Artificial intelligence, pp. 1440-1445, 2007.

[5] Fabian M. Suchanek, Gjergji Kasneci, Gerhard

Weikum. YAGO: A Large Ontology from

Wikipedia and WordNet. In Elsevier Journal of

Web Semantics, Vol. 6, No. 3, pp. 203-217, 2008.

[6] Unified Medical Language System (UMLS) -

Home. http://www.nlm.nih.gov/research/umls/

[7] P. Buitelaar, P. Cimiano, B. Magnini (Eds.).

Ontology Learning from Text: Methods,

Evaluation and Applications. In Frontiers in

Artificial Intelligence and Applications Series,

Vol. 123, IOS Press, July 2005.

[8] A. Gregorowicz, M. A. Kramer. Mining a Large-

Scale Term-Concept Network from Wikipedia.

Technical Report #06-1028, The MITRE Corp.,

Oct. 2006.

[9] Cäcilia Zirn, Vivi Nastase, Michael Strube.

Distinguishing between instances and classes in

the Wikipedia taxonomy. In Proc. of ESWC-08,

pages 376-387, 2008.

[10] Gaoying Cui, Qin Lu, Wenjie Li, Yi-Rong Chen.

Mining Concepts from Wikipedia for Ontology

Construction. In Proceedings of Web

Intelligence/IAT Workshops, pp.287-290, 2009.

[11] J. Hoffart, F. Suchanek, K. Berberich, G. Weikum.

YAGO2: A Spatially and Temporally Enhanced

Knowledge Base from Wikipedia. Research

Report MPI-I-2010-5-007, Max-Planck-Institut für

Informatik, November 2010.

[12] A. Budanitsky, G. Hirst. Evaluating WordNet-

based measures of semantic distance. In

Computational Linguistics, 32(1), pp. 13-47,

March 2006.

[13] D. Turdakov, P. Velikhov. Semantic Relatedness

Metric for Wikipedia Concepts Based on Link

Analysis and its Application to Word Sense

Disambiguation. In Proc. of SYRCoDIS, 2008.

[14] T. Zesch, I. Gurevych. Analysis of the Wikipedia

Category Graph for NLP Applications. In

Proceedings of the TextGraphs-2 Workshop

(NAACL-HLT), 2007.

[15] S. Chernov, T. Iofciu, W. Nejdl, X. Zhou.

Extracting Semantic Relationships between

Wikipedia Categories. In Proceedings of the First

International Workshop on Semantic Wikis - From

Wiki To Semantics, June 2006.

[16] M. Strube, S. P. Ponzetto. WikiRelate! Computing

semantic relatedness using Wikipedia. In

Proceedings of the 21st national conference on

Artificial intelligence (AAAI'06), pp. 1419-1424,

2006.

[17] Z. Syed, T. Finin, and A. Joshi. Wikipedia as an

Ontology for Describing Documents. In

Proceedings of the Second International

Conference on Weblogs and Social Media, 2008.

[18] G. Y. Cui, Q. Lu, W. J. Li, Y. R. Chen. Corpus

Exploitation from Wikipedia for Ontology

Construction. In LREC 2008, Marrakech, pp.

2125-2132, 2008.

[19] Wikipedia:Overcategorization - Wikipedia, the

free encyclopedia.

http://en.wikipedia.org/wiki/Wikipedia:Overcateg

orization

[20] Wikipedia:Categorization - Wikipedia, the free

encyclopedia.

http://en.wikipedia.org/wiki/Wikipedia:Categoriza

tion

[21] Catgraph. http://toolserver.org/~dapete/catgraph/

[22] Wikipedia:WikiProject Categories/uncategorized -

Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Wikipedia:WikiProjec

t_Categories/uncategorized

[23] Wikipedia:Database reports/Uncategorized

categories - Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Wikipedia:Database_r

eports/Uncategorized_categories

[24] Category:Better category needed - Wikipedia, the

free encyclopedia.

http://en.wikipedia.org/wiki/Category:Better_categ

ory_needed

[25] J. Soto. Wikipedia: A Quantitative Analysis. PhD

thesis, 2009.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C.

Stein. Introduction to Algorithms, Second Edition.

MIT Press and McGraw-Hill, 2001. Section 22.3:

Depth-first search, pp. 540–549.

[27] L.-E. Thorelli. An algorithm for computing all

paths in a graph. In BIT 6, 347—349, 1966.

[28] M. Migliore , V. Martorana , F. Sciortino. An

algorithm to find all paths between two nodes in a

graph. In Journal of Computational Physics, v.87

n.1, pp.231-236, March 1990.

[29] R. Simoes. APAC: An exact algorithm for

retrieving cycles and paths in all kinds of graphs.

In Tékhne, no.12, p.39-55, 2009.

[30] JUNG - Java Universal Network/Graph

Framework. http://jung.sourceforge.net/

[31] JGraphT - a free Java graph library.

http://www.jgrapht.org/

[32] neo4j open source nosql graph database.

http://neo4j.org/

[33] WebGraph. http://webgraph.dsi.unimi.it/

[34] Wikipedia:Academic studies of Wikipedia -

Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Wikipedia:Academic_

studies_of_Wikipedia

[35] Academic studies about Wikipedia - Wikipedia,

the free encyclopedia.

http://en.wikipedia.org/wiki/Academic_studies_ab

out_Wikipedia#Natural_language_processing

