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Abstract 

Extracting information from tables is an 
important and rather complex part of 
information retrieval. 
For the task of objects extraction from HTML 
tables we introduce the following methods: 
determining table orientation, processing of 
aggregating objects (like Total) and scattered 
headers (super row labels, subheaders). 

1 Introduction 

Significant amount of text information has relational 
structure, which is often represented in a table view. 
Since this view is designed for humans and contains 
many ambiguous elements, it follows that automatic 
processing of tables is rather complex. 

For example, table 1 contains scattered header, 
complex hierarchical header, special objects, and other 
elements. They play particular roles in the table and, 
thus, should be treated in a special way. These elements 
are described in the rest of the paper. 

Another non-trivial task is to determine table 
orientation: it can be horizontal (row wise, table 1) or 
vertical (column wise, table 2). 

We consider tables in structured formats such as 
HTML and Wiki markup1. The main goal of our table 
processing is to extract objects as collections of 
attribute-value pairs. Thereupon we focus on 
determining table orientation and understanding the role 
of each element in the table. 

2 Related work 

Silva et al [1] distinguish five tasks of extraction 
information from table in their detailed survey: 

1. Location: differentiating the table from other text 
elements such as body text, titles, lists, etc. 

2. Segmentation: identifying table cells, rows, and 
columns and their relative positions. 

                                                           
1 Wiki markup is a lightweight markup language used to write 
pages in wiki websites, such as Wikipedia, and is a simplified 
alternative/intermediate to HTML. 
http://en.wikipedia.org/wiki/Wiki_markup 
Proceedings of the Spring Young Researcher's 
Colloquium On Database and Information Systems 
SYRCoDIS, Moscow, Russia, 2011 

3. Functional analysis: classifying a table area (cell, 
column, row) to data or attribute area. 

4. Structural analysis: connecting each data cell to 
all characterizing attribute cells. 

5. Interpretation: understanding and further using 
extracted information. 

First of them occurs mostly in plain text and image 
formats. The last task depends on kind of table usage: 
generating ontology from tables [2], mapping extracted 
information to predefined scheme [3], and so on. 

Our work is devoted to the three last tasks while 
structural analysis is a principal one. 
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2.1 Plain text format 

Early works deal with tables in plain text, usually in 
ASCII format [4-7]. The main problem here is to detect 
table, to recognize table delimiters (spaces, tabs, special 
characters like hyphens, etc), and thereby to understand  
table structure. 

Rus and Summers [4] consider a text block to be a 
table if it consists of columns separated by white space 
and if cells of such columns are lexically persistent. A 
similar approach is used in the work of Douglas et 
al. [5]; they group text blocks surrounded by white 
spaces and use heuristic to determine whether these 
blocks are parts of tables.  

There are many works concerned plain text and 
most of them use approaches inapplicable for HTML 
tables. However there are some useful ideas, which 
were explored in these works and inspired by linguistic 
characteristics of table content. For example, 
similarity/cohesion among different table elements 
(cells/lines/columns) became a common feature in 
future works including HTML tables oriented ones. 
Hurst and Douglas [6] suggest explicit string-based 
formulas for computing cell values cohesion.  

Pinto et al. [7] present Conditional random field 
algorithm for classification of each row in ASCII table 
to one of 12 classes such as “data row”, “section 
header”, “super header”, etc. 

2.2 Image format 

The majority of these works are devoted to performing 
location and segmentation of a table (Tupaj et al. [8], 
Wang et al. [9, 10], inter alia). 

At a distance, Gatterbauer et al. [11] process HTML 
tables treating them as images. More precisely, they 
distinguish two representations of web pages: DOM tree 
representation and visual box (topological) 
representation. Our work is based on the first 
representation, while their approach is based on the 
second one, and thereby it cannot be applied to our 
work. 

2.3 HTML format 

A main source of HTML tables is Web pages, but many 
Web-tables are created just for layout, not for 
representing relational information. Wang and Hu [12] 
call such tables non-genuine. They suggest machine 
learning classifiers (SVM and decision tree) to 
determine whether the table is genuine or non-genuine. 
Features are divided into three types: length consistency 
of the cell contents, type of cell content, and word 
group. 

Chen et al. [13] apply string and content type 
similarity to this task. They also use cell similarity for 
determining table orientation. 

Yoshida et al. [14] suggest Expectation 
Maximization algorithm for classifying each table into 
one of 9 predefined types. Ontological knowledge are 
used as a parameter for the model, e.g. "Name" and 
"Birthday" are more often attributes than values. 

Cafarella et al. [15] process the corpus of 14 billion 
Web tables. They introduce a tool for 
synonymic attributes searching (Attribute Correlation 
Statistics), which can be useful in the task of 
attribute/value classifying. Also the statistics gathered 
by authors corroborates the assumption that there is a 
small set of schemas that most tables in the world 
conform to. 

3 Table orientation 

What is an object in a table? Often the answer is 
obvious. For example, in table 2 objects are two 
airbuses: A310-200 and A310-200F. Table 1 is a little 
bit vaguer. It contains SVT vehicles manufactured in 
different years. Sometimes tables with nondefinable 
objects are found, e.g. multiplication table or table 3. 
Table 3 

NFPA 704 

0 
Fire diamond for aluminium shot 

As a rough definition, table object is a real world 
entity, whose attributes are set in the table. We assume 
that either row or column represents an object. So, table 
has either horizontal or vertical orientation. 

We use 2 machine learning algorithms with the 
same features to determine table orientation: decision 
tree and naïve Bayes. All features have common nature: 
some function is computed on horizontal table as well 
as on vertical one and the difference between obtained 
values is found. 

First feature is the difference in header depth. The 
function is very simple; it returns the depth of table 
header hierarchy. E.g. the header depth for horizontal 
table in figure 1 is 2, due to Power, hp, and kW cells; 
the header depth for the vertical table is 1. The header 
depths for both orientations of table 2 are 1. The 
motivation is following: orientation with deeper header 
is more likely to be correct.   

Second feature is difference in maximum cell 
cohesion. Cell cohesion is an average string similarity 
of all cells in a row or in a column. Average string 
similarity is computed by summation of all pairwise 
string similarities/metrics of cells and normalization 
(dividing by square of total count of cells). Maximum 
cell cohesion for the horizontal table is simply a 
maximum of cell cohesion in all rows; the same stands 
for the vertical one with replacement of rows by 
columns. 

Third feature is the difference in average cell 
cohesion. The only distinction from the previous feature 
is that all cell cohesions are summed and then divided 
by total count of rows or columns. 

After experiments with a small set of Wikipedia 
tables (about 70) we found that the most valuable 
feature is the difference in average cell cohesion. All 



other features aren’t presented in decision tree without 
overlearning (see figure 1). 
Figure 1 

 
Also we experimented with introducing the third 

type of tables, which contain no object, but 
effectiveness decreased dramatically. This can be easy 
explained because even human can’t label classify some 
table into the third type with confidence. So we don't 
take into account tables without objects. 

4 Aggregating objects processing 

Some tables contain aggregating objects, which 
actually store information about other objects from the 
same table. For example, in table 4 the last row isn't an 
ordinary entity and should be processed in special way. 
Table 4 

 
Recognizing such objects by only presence of a 

keyword (e.g. Total) isn’t efficient because of cells like 
“Total depravity, with prevenient grace, does not 
preclude free will”. So we collected statistics on 
thousands of Wikipedia tables and developed the 
heuristic for determining aggregating objects on basis of 
the next features: 

1. Type of keyword in the cell content. 
2. Number of words in the cell. 
3. Position of the cell (sequence number of its 

column). 
4. Decoration (bold, uppercase, <th>-tag). 
All keywords are split into 2 types: the strong type 

(Total, Totals, Tot., Subtotal) and the weak type (All , 
Sum). 

The cells containing words from the weak type must 
satisfy next conditions: 

• exactly 1 word 
• decorated 
• position is not greater than 2 
The cells containing words from the strong type 

must satisfy next conditions: 
• if there is 1 word - no condition 
• if there are 2 words - the cell must be decorated 
• if there are from 3 to 5 words - the cell must be 

decorated and its position must be not greater 
than 2 

The heuristic was inspired by the following 
considerations. The aggregating cells store information 
about special objects, so they should be noticeable by 
human readers. If the cell string is long or if it contains 
common word like all, then it must have some 
decorations in order to attract attention. 

In future we plan to develop machine learning 
approach with these heuristics as features. 

5 Scattered header processing 

Some tables contain special rows, or scattered headers, 
which add structural information and are not table 
objects. Example is the row Sports car from table 1. We 
called the object extracted from such scattered header 
row during the initial processing the scattered header 
object.  

We extract scattered header objects only from the 
object set, which corresponds to the horizontal 
orientation of the table. Vertical objects aren't 
processed, because width of any table is limited and 
scattered headers are useless in vertical tables. 

5.1 Scattered header recognizing 

Deciding whether each row is a scattered header (SH) is 
based on the assumptions that only one cell in the row is 
nonempty and the row must stand out against other 
table. In addition, we don't consider empty rows and 
last rows. 

We divide all SHs into three subclasses: single-cell 
SH, middle SH, first-cell SH. 

1) Single-cell SH is a row with just one cell in a 
table where other rows have more than 1 cell (in HTML 
terms, a row with colspan greater than 1). 

The example is given in table 5 (row Central Asia). 
Table 5 

 
We consider such row to be an SH without other 

criteria. 
2)  Middle SH is a row with just one nonempty cell, 

located in the middle of the table. 
The 4th row Bonus track of table 6 is a middle SH. 

Table 6 

 
We require the nonempty cell of such row to be 

decorated. 
In addition, we check the table to be non-sparse. 

Sparse table is a table with many empty cells, e.g. 
table 7. It is evident that the heuristic for determining 
middle SH doesn't work correctly with sparse tables.  
Table 7 

 



So we check the rows near the concerned middle SH 
row (3 rows above and 3 below). If they have empty 
cells, then the row under review isn't a middle SH. Of 
course, the row with empty cells can be another middle 
SH; to address this issue we don't take such rows into 
account while checking their cells. But previous and 
next rows must differ from the concerned one, because 
scattered headers never have the same structure and 
content with another SH. 

Thereby table 7 contains no SH. 
3) First-cell SH is a row whose only nonempty cell 

is first. 
For example, the third row Cities (10 Largest) of 

table 8 belongs to this type.  
Table 8 

 
The criteria for this type are the same as for the 

previous type. 

5.2 Scattered header processing 

Scattered header object are removed from the original 
set before the aggregating objects processing. Therefore 
created aggregating objects have no information about 
scattered header objects. 

We update attributes of all objects by adding the 
new field; currently its name is Type. Every table object 
located below the current scattered header and above 
the next scattered header (if it exists) is updated by 
adding a new value, which is the content of the 
corresponding scattered header. 

6 Conclusions and future work 

In this paper we concerned on the task of objects 
extraction from HTML tables, gave a short survey of 
occurring problems, and introduced methods (mostly 
heuristics) for their solving. Of course, there are many 
cases uncovered by this paper, e.g. accurate detection of 
table header, processing of non-aggregating special 
objects and so on. It's the scope of future research. 

The most common usage of extracted objects is to 
map them to predefined relational scheme. Embley et 
al. [3] worked towards this task, but we believe that 
fully automatic processing will be ineffective. 
Gatterbauer et al. [11] make a similar note: “domain-
independent table interpretation cannot result in 
unambiguously structured information because of 
existing inherent domain-specific ambiguities that can 
sometimes not even be resolved by humans”. Therefore, 
we consider the computer-aided way to be more 
promising for the task of objects mapping and, in 
general, for table interpretation. 
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