
Benchmarking inter and intra operator parallelism on

contemporary desktop hardware

© Kirill Smirnov, George Chernishev

Saint-Petersburg University
Kirill.k.smirnov@math.spbu.ru, Chernishev@gmail.com

Abstract

In this paper we explore effects of threading
regarding inter and intra operator parallelism in
a distributed database system. We review
several well-known join techniques and
evaluate them in multithreading environment
using our prototype of distributed database
system and a variety of workloads. The
motivation for this study of the classical
algorithms is the emergence of new equipment
which became readily available and in
particular multicore processors capable of
running several threads concurrently.

1 Introduction

Distributed database systems (DDBS) had appeared
more than three decades ago and since that time there is
constant demand in DDBS technologies. The driving
force of this demand is the ever-growing volume of data
which require processing. The scalability of distributed
databases gives us a promise to handle this mass of
data. The present demands new effective algorithms,
models, architectural solutions so the field remains
active and relevant.

In early 90s a substantial portion of research effort
was dedicated to ascertainment of how we should
divide the work (speaking more precisely a query
execution plan or a part of it) between processing
elements. Extensive experiments were conducted
regarding the query plan execution techniques, and a
pool of knowledge was formed.

Despite these experiments, nowadays, the same
questions had become relevant again due to the
following reasons:

1) Shortage of research concerning utilization of
threads and processes. Research papers usually
had following distinct attitudes: use one
process/thread per processing element, allocate
much higher number of threads than processing

elements [5] or not to touch this issue in detail.
2) The advancement of hardware – a few

generations of CPUs had been developed. The
improvements were not just clock speeds and
cache size growth, but also more sophisticated
ones. Notable examples are multithreading and
multicore processing.

3) Advancement of software – mainly
thread/process scheduling software involved.

Even alone items two and three can alter or
invalidate principles of thread usage in database system.

The goal of this study is to determine how we
should utilize threads designing a distributed database
which runs on a modern hardware. We re-evaluate a
few classical approaches to process joins in a
distributed databases taking into consideration threading
aspect. There are two ideas being considered: intra and
inter operation parallelism and their combinations. The
first one is how we can divide our work processing
inside one operator treating our cores as separate
processing elements. The latter covers matters of
executing several operators in different threads.

This paper is organized as follows: in section 2 we
briefly review some crucial aspects of DDBS which are
related to our study; in section 3 we present our
prototype of DDBS and provide some insights into
implementation details. Section 4 reviews several
possible ways of thread usage for parallelizing join
operation in our system. Sections 5 and 6 describe our
experiments and their interpretation results respectively.

2 Related work and DDBS technology

overview

2.1 Overview of important technology concepts of

DDBS

Extensive research in this field had been conducted for
decades and a lot of knowledge had been accumulated.
In this section we will review some part of it (by giving
definitions at least), which will be referred to in this
study.

The first aspect to consider designing a distributed
database is its architecture. Here we imply the hardware
architecture, how the data is distributed, stored and
processed on the lowest level. Most popular
architectures are shared-nothing, shared-disk and shared

Proceedings of the Spring Researcher's Colloquium

on Database and Information Systems, Moscow,

Russia, 2011

memory [5]. This choice impacts all further decisions
regarding all constituent parts the design.

The second aspect is the system processing model.
There are two basic alternatives and a lot of different
combinations. This choice is the choice between
pipelined execution and a materialized one. The former
is the policy when a tuple passes through all operators
of query tree without “stops”. The latter approach
means that some “stops” are allowed. The stop is
essentially a blocking operator [1], e.g. an operator
which requires all tuples to carry out its task. The sort
operator is the blocking one, while predicate filtering
operator is the non-blocking. The pipelined execution
has a huge benefit over materialization-based, namely
all operations can be done in memory. While
materialization often requires extensive disk operations
which are caused by intermediate result being too large
to fit into memory.

Another important aspect to consider is the tuple
routing mechanisms. There are a few approaches,
namely each tuple passes the operators in the same
order, or not. The latter is known as adaptive execution
[1]. The next major choice is the choice between data-
driven (also called producer-consumer) and demand-
driven (known as workflow) execution. Demand-driven
execution works by “pumping” tuples from the leaves
of the tree to the root, through the operators involved. In
this scheme, each operator of a higher rank sends a
notification request to its children to get tuples.
Consequently, this request propagates to the leaf nodes,
which usually deal with disk-based operations. The
data-driven approach is the vice-versa: the leaf nodes
generate intermediate result, notify its parents and
submit the result. The data-driven approach is the more
appealing one in case of distributed database system,
because it has great potential for parallelization. Also, it
offers more freedom and convenience implementing
leaf operators. However, this approach requires great
care programming it, due to synchronization and work
distribution issues.

Yet another pair of aspects to consider designing a
distributed database system is the operator
parallelization methods. Considering a single query
optimization task one can name the following ways:
inter- and intra-operator parallelism. Intra-operation
parallelism refers to the parallel execution of a single
operator and inter-operation parallelism means
executing a multiple operators in parallel. The first
heavily relies on the data partitioning techniques and
the latter is more architectural-dependent.

2.2 Threads and processes in databases

Threading and processing aspects are of critical
importance and should be taken into consideration
building high performance database engine. However,
there is shortage of studies related to threading and its
impact on operator parallelism. With the increasing
popularity of multicore processors the demand for the
reevaluation of these threading technologies had risen
greatly. Lets briefly review the threading in databases.

One of the first most prominent database systems
which implemented threading was Volcano [4]. The
following conclusions were presented [4]: it is
beneficial to use multiple threads running concurrently
on the same processor. However, running each operator
in its own dedicated thread is unfeasible:
synchronization and thread switching will eat up all the
benefits. The same results presented here [2], also
another important question is mentioned: how much
memory we should provide to the thread. This question
affects the number of threads which could be run
effectively. In this paper [1] an adaptive query
processing is considered, and shown that each adaptive
symmetric hash join operator can work effectively in
the separate thread.

3 Our system

The experiments which are described in this work were
conducted using our prototype of distributed query
engine developed by authors. This system is devised for
simple SPJ conjunctive queries [1] and is capable of
serving simultaneously a substantial number of clients.
The architecture of the system is described on a Pic. 1
and it is essentially a shared-nothing design with a
number of processing nodes distributed among network.
We partition nodes into two types: master and slave.
There is only one master node per setup and it is
responsible for handling incoming queries. For purpose
of paper’s experiments we run slave processes on the
same computer.

Our system is based on assumption that data are pre-
distributed and reside on slave nodes. The data are
collection of relations, where each attribute may be
either integer value or string. Each relation is
partitioned horizontally and may be replicated.

The overall design of the system resembles a
classical Volcano [2], where QEP (query execution
plan) is defined as a tree of various operators and
candidate tuples have to pass them in order for result to
be produced. In our system there are the following
operators: selection (actually consisting of both
selection and projection), join and cross-product.
Details regarding our implementation of join operator
can be found in part 4, but it is essential to note that the
overall architecture was designed for non-blocking
operations, so the join operator should be non-blocking
too.

Picture 1: architecture

The QEP generation procedure also is a very
unpretentious and is based entirely on heuristics, which
resemble classical ones described [3]. The plan
generation doesn’t affect our benchmarks much because
we use very specific loads (described in part 5) to assess
the performance.

Some details regarding implementation can be
found in [6].

To conclude, we should mention that despite its
simplicity our system is sufficient for use in our
benchmarks to reach our goal.

4 Considered approaches

We considered the following approaches to
incorporation of threading into join processing. Our
initial algorithm was essentially nested loop join
algorithm [2] which was modified to cope with the
networking issues. The main difference is the bulk
processing technique which provides bufferization to
lessen the communication burden (as opposed to per
record processing). When the both sets of tuples are
received, we sort one of them and use the second as the
probing one. Also, we employ in-operation caching to
lessen the network stress further. This caching works as
follows: if one of the participating relations is small
enough to fit in memory, it is put into inner operation
cache. This baseline method is working inside a single
thread (all joins and cross-products are working inside
one thread), Pic. 2.

JOIN

R S

?

Thread 1 Thread 1 Thread 2 Thread N...

Picture 2: initial join design

To introduce parallelism we consider the technique
which employs a number of threads for data processing.
The core idea is to partition data supplied by one of the
child nodes, while leaving the other one intact, then use
different threads to process it (shown on Pic. 3).

Also, we consider a hash join operator. In this case,
the processing of a join operation is separated into two
separate phases: a build phase and a probe phase.
During the build phase, a table which was chosen as a
build one is used in building a hash-table. Then, the
next phase is essentially a traversal of a probe table to
locate the match. The evident drawback of this
technique is the temporary “freeze” of the system. This
is caused by the build stage, e.g. the dependent
operators should wait until the build phase is finished.
This drawback is a critical issue, because it breaks [1]
the pipelining execution, or this join operator becomes a
blocking operator. If we are dealing with the QEP of a

sufficient depth the blocking operators can become the
source of a major slowdown in processing of the whole
query. Also, this blocking especially adversely affects
inter-operation parallelism (threads will wait for tuples
to arrive). Thus, blocking operations should be taken
into consideration.

To parallelize this join we employ the similar
technique: we partition the build relation into a few
fragments and each fragment is processed inside its
dedicated thread.

R Scatter S

...

R JOIN S1, R JOIN S2,

… R JOIN SN;

S1 U S2 U...U SN = S

Thread 1 Thread 2 Thread N

S

Gather S

...

Picture 3: join parallelization

To overcome the blocking nature of the previous
approach we would consider a symmetric hash-join
operator [1]. The core idea is to have two join nodes,
which have different building relations. The processing
happens as follows: given a tuple from relation R we
probe it against build relation of S join operator and at
the same time, we use this tuple in building relation of
R join operator. Likewise, given a tuple from relation S
we use it to probe it in R and build it in S operators.
This join is correct due to the fact that if a tuple arrives
too early (e.g. no relevant tuples from other relation had
been built) it would be probed later, because it is built
in other join operator. This type of hash join operator is
a non-blocking operator. However, this advantage
comes at a price – additional memory and time
constraints (twice as much as a simple hash join) and
more sophisticated programming techniques are
required.

R S

RJOIN:

R put

S probed

SJOIN:

S put

R probed

Picture 4: symmetric hash join operator design

To implement data partitioning in our system we
introduced two new operators (much alike exchange

operator in volcano system), for distribution and
collection of the results. These operators are inserted in
QEP around join operator which is going to be
parallelized. We call helper threads the threads which
hold the additional join nodes which will appear as the
result of our parallelization.

5 Experiments

5.1 Parameters used in experiments

We implemented the proposed approaches and

examined them using our system on a variety of
workloads. First we characterize the data used in our
experiments:

1) Size of the tables are 150Mb (first type of
workload)

2) Selectivity of join predicate is 0.1%
3) Each table contained three attributes: primary

key, integer attribute used for joining and
predicate which defines selectivity. We used
only 4 byte integer data in our experiments and
it is uniformly distributed.

The processing details:
1) Number of helper threads per processing node

(QEP one): 1, 2, 5, 10
2) Methods (node types) of join:

a. Hash join
b. Block nested loop (sort)
c. Block multithreaded nested loop (sort)
d. Block multithreaded hash join
e. Symmetric hash join

3) Operation cache (also, size of bulk which is
transferred from one QEP node to another): 2,
5, 10 MB

4) Join operators use results of a sequential scan
over table (no index is used)

Query type details:
1) Query to evaluate intra-operation parallelism: a

single join of two tables
2) Query to evaluate inter-operation parallelism: a

QEP which contains 2 joins and 3 tables

5.2 Hardware and software

The following setup was used: Intel(R) Pentium(R)
D CPU 3.00GHz, RAM 3Gb, which run GNU/Linux
2.6.35.10 x86, and we used gcc 4.5.2.

We implemented our threads using standard POSIX
threads, NPTL threads are used for multithreading,
threads communicate via chunk of shared memory.
Notifications are implemented using POSIX pipes along
with select core. For hash joins we used c++0x
unordered map STL container.

5.3 Experiments performed

Each of the considered experiments was repeated
several times, high spread of the measured values was
observed and average values were used. This is

especially important for the multithreaded algorithms,
due to erratical thread scheduling algorithm behaviour.

We had evaluated our algorithms on two distinct
groups of workloads, namely workloads which evaluate
intra-operator parallelism and inter-operator parallelism.
The first ones evaluate our algorithms using QEP which
contains only one join operation, which is fueled by two
scan operations. The Table 1 contains summarized
results over all runs in this group of experiments (here
we measured execution time in milliseconds). Detailed
results are presented in histograms 1-3, where each
histogram shows results for a fixed cache size.

In this experiment we varied the following
parameters: operation cache and number of helper
threads. The last six methods describe parallelized join
methods (for threads amount of 2, 5, 10 respectively) of
two distinct methods: sort and hash. Sort method is a
plain block nested loop, where one relation’s block is
sorted before probing by another.

In multithreaded tests we observed several modes,
all but one insignificant. This phenomenon can be
explained by system thread scheduler fluctuations. The
Table 1 presents main mode value.

Method/Cache size 2Mb 5Mb 10Mb

Hash Join 50,698 50,773 56,600

Block NL Sort 57,502 56,567 57,452

Symmetric HJ 67,608 66,982 68,165

Block NL Hash MT 2 43,969 42,185 41,615

Block NL Sort MT 2 44,800 43,558 42,437

Block NL Hash MT 5 44,688 42,613 41,685

Block NL Sort MT 5 46,646 44,446 47,910

Block NL Hash MT 10 44,281 42,235 42,385

Block NL Sort MT 10 45,844 43,563 43,132
Table 1: Intra-operation parallelism

Histogram 1: 2 Mb cache

Histogram 2: 5 Mb cache

Histogram 3: 10 Mb cache

The Block NL Hash MT version of the operator is
constructed in such way, that hash relation is always
hashed and fully resides in the memory. So, it can be
considered a true hash join.

We can draw the following conclusions:
1) Parallelization does help to speed-up join

processing on modern hardware, under several
conditions. Our initial experiments were
conducted with bulk size of 1Mb and
parallelized joins had shown worse results that
single-threaded ones.

2) Increasing bulk size does increase performance,
up to some point. Our assumption is the
following: there is a tradeoff between a number
of data transfers and degree of thread
utilization, e.g. increasing amount of work one
may ensure that communication does not
happens too often, but we have to communicate
frequently enough in order to have a benefits of
parallelism and pipelining.

3) Increasing number of threads further does not
improve performance on dual core cpu.

4) Examining single-threaded join methods (first
three mentioned operators) had shown us the
following:

a. Hash join better than nested loop
b. Symmetric hash join is actually worse

than nested loop
5) Other results (not shown here) state the

following: hash-based parallel algorithms a bit
worse than sort-based ones on workload which

converges to cross-product and vice versa (join
which has both tables filtered on the same field
and value). Our hypothesis is the following: this
behavior could be attributed to our
implementation of sort-based algorithm (we
implemented a quicksort algorithm) which is
tightly coupled with pointers for efficiency and
to a large amount of collisions which arise
considering this workload.

Another group of experiments we considered was
the group which tested the QEP containing 2 join nodes.
The goal was to run each join in separate threads. We
restrict ourselves to having both join operators of the
same type. The results of these experiments were the
following:

1) There are not much intermediate results of the
first join processing to load second one in such
way to see different results. So is unfeasible to
use the original dataset in order to evaluate
these approaches. To cope with this problem we
raised scan selectivity 5 times.

2) Under the new conditions we got the following
results:

a. Difference between non-threaded hash
join and symmetric hash join is about
5% (hash join is better). Overall
performance of QEP had increased
over the same case of the first group
(8% loss). We presume that this
happens due to enabling of pipelining.

b. Threaded versions worse 2.5 times
compared to single-threaded hash join
on the smallest buffer size (2MB).
Unfortunately, now, it is unclear
whether our programming technique
was sufficient to implement this
threading correctly or it is the
hardware processing specifics
guarantee us these bad results
(different operators cause constant
cache resets). We can also say for sure,
that it is not thread scheduler problem,
because adding more threads does not
have any effect.

c. Bulk size has a huge impact on
performance in such case also. It is
becoming even more evident here.
Increasing bulk size increases
performance of threaded joins almost 2
times (single-threaded ones get
approximately 10%), but still threaded
joins lose to single threaded ones.

6 Conclusions and future work

We presented results of evaluation of a set of join
algorithms. The results imply that thread usage is
beneficial for join processing and can give up to 50%
increase in performance on simple queries. However,
these approaches require extra programming effort,
extensive parameter tuning and heavily rely on thread

scheduler. Symmetric hash join has a promise for deep
QEPs over threaded joins on such hardware.

This is a relatively small piece of work for this vast
and evolved topic. A lot of aspects require our attention
and they hadn’t been touched at all in this paper. The
future work will include parallelization of symmetric
hash join algorithm, deeper join trees for more thorough
analysis of threading effects to pipelining, proper
evaluation of scale-up, and possibly evaluation on more
productive equipment.

References

[1] Amol Deshpande, Zachary Ives, and Vijayshankar
Raman. 2007. Adaptive query processing. Found.

Trends databases 1, 1 (January 2007), 1-140.
[2] Goetz Graefe. 1993. Query evaluation techniques

for large databases. ACM Comput. Surv. 25, 2
(June 1993), 73-169.

[3] P. Griffiths Selinger, M. M. Astrahan, D. D.
Chamberlin, R. A. Lorie, and T. G. Price. 1979.
Access path selection in a relational database
management system. In Proceedings of the 1979
ACM SIGMOD international conference on
Management of data (SIGMOD '79). ACM, New
York, NY, USA, 23-34.

[4] Donald Kossmann. 2000. The state of the art in
distributed query processing. ACM Comput. Surv.
32, 4 (December 2000), 422-469.

[5] M. Tamer Özsu and Patrick Valduriez. 1999.
Principles of Distributed Database Systems (2nd
Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

[6] Kirill Smirnov and George Chernishev. 2011.
Networking and multithreading architectural
aspects of distributed dbms (in russian), Software

and Systems 1(93) (March 2011), 164-168

