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Abstract 

In this paper we explore effects of threading 
regarding inter and intra operator parallelism in 
a distributed database system. We review 
several well-known join techniques and 
evaluate them in multithreading environment 
using our prototype of distributed database 
system and a variety of workloads. The 
motivation for this study of the classical 
algorithms is the emergence of new equipment 
which became readily available and in 
particular multicore processors capable of 
running several threads concurrently. 

1 Introduction 

Distributed database systems (DDBS) had appeared 
more than three decades ago and since that time there is 
constant demand in DDBS technologies. The driving 
force of this demand is the ever-growing volume of data 
which require processing. The scalability of distributed 
databases gives us a promise to handle this mass of 
data. The present demands new effective algorithms, 
models, architectural solutions so the field remains 
active and relevant.  

In early 90s a substantial portion of research effort 
was dedicated to ascertainment of how we should 
divide the work (speaking more precisely a query 
execution plan or a part of it) between processing 
elements. Extensive experiments were conducted 
regarding the query plan execution techniques, and a 
pool of knowledge was formed.  

Despite these experiments, nowadays, the same 
questions had become relevant again due to the 
following reasons: 

1) Shortage of research concerning utilization of 
threads and processes. Research papers usually 
had following distinct attitudes: use one 
process/thread per processing element, allocate 
much higher number of threads than processing 

elements [5] or not to touch this issue in detail. 
2) The advancement of hardware – a few 

generations of CPUs had been developed. The 
improvements were not just clock speeds and 
cache size growth, but also more sophisticated 
ones. Notable examples are multithreading and 
multicore processing. 

3) Advancement of software – mainly 
thread/process scheduling software involved. 

Even alone items two and three can alter or 
invalidate principles of thread usage in database system. 

The goal of this study is to determine how we 
should utilize threads designing a distributed database 
which runs on a modern hardware. We re-evaluate a 
few classical approaches to process joins in a 
distributed databases taking into consideration threading 
aspect. There are two ideas being considered: intra and 
inter operation parallelism and their combinations. The 
first one is how we can divide our work processing 
inside one operator treating our cores as separate 
processing elements. The latter covers matters of 
executing several operators in different threads. 

This paper is organized as follows: in section 2 we 
briefly review some crucial aspects of DDBS which are 
related to our study; in section 3 we present our 
prototype of DDBS and provide some insights into 
implementation details. Section 4 reviews several 
possible ways of thread usage for parallelizing join 
operation in our system. Sections 5 and 6 describe our 
experiments and their interpretation results respectively. 

2 Related work and DDBS technology 

overview 

2.1 Overview of important technology concepts of 

DDBS 

Extensive research in this field had been conducted for 
decades and a lot of knowledge had been accumulated. 
In this section we will review some part of it (by giving 
definitions at least), which will be referred to in this 
study. 

The first aspect to consider designing a distributed 
database is its architecture. Here we imply the hardware 
architecture, how the data is distributed, stored and 
processed on the lowest level. Most popular 
architectures are shared-nothing, shared-disk and shared 
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memory [5]. This choice impacts all further decisions 
regarding all constituent parts the design. 

The second aspect is the system processing model. 
There are two basic alternatives and a lot of different 
combinations. This choice is the choice between 
pipelined execution and a materialized one. The former 
is the policy when a tuple passes through all operators 
of query tree without “stops”. The latter approach 
means that some “stops” are allowed. The stop is 
essentially a blocking operator [1], e.g. an operator 
which requires all tuples to carry out its task. The sort 
operator is the blocking one, while predicate filtering 
operator is the non-blocking. The pipelined execution 
has a huge benefit over materialization-based, namely 
all operations can be done in memory. While 
materialization often requires extensive disk operations 
which are caused by intermediate result being too large 
to fit into memory. 

Another important aspect to consider is the tuple 
routing mechanisms. There are a few approaches, 
namely each tuple passes the operators in the same 
order, or not. The latter is known as adaptive execution 
[1]. The next major choice is the choice between data-
driven (also called producer-consumer) and demand-
driven (known as workflow) execution. Demand-driven 
execution works by “pumping” tuples from the leaves 
of the tree to the root, through the operators involved. In 
this scheme, each operator of a higher rank sends a 
notification request to its children to get tuples. 
Consequently, this request propagates to the leaf nodes, 
which usually deal with disk-based operations. The 
data-driven approach is the vice-versa: the leaf nodes 
generate intermediate result, notify its parents and 
submit the result. The data-driven approach is the more 
appealing one in case of distributed database system, 
because it has great potential for parallelization. Also, it 
offers more freedom and convenience implementing 
leaf operators. However, this approach requires great 
care programming it, due to synchronization and work 
distribution issues.  

Yet another pair of aspects to consider designing a 
distributed database system is the operator 
parallelization methods. Considering a single query 
optimization task one can name the following ways: 
inter- and intra-operator parallelism. Intra-operation 
parallelism refers to the parallel execution of a single 
operator and inter-operation parallelism means 
executing a multiple operators in parallel. The first 
heavily relies on the data partitioning techniques and 
the latter is more architectural-dependent. 

2.2 Threads and processes in databases 

Threading and processing aspects are of critical 
importance and should be taken into consideration 
building high performance database engine. However, 
there is shortage of studies related to threading and its 
impact on operator parallelism. With the increasing 
popularity of multicore processors the demand for the 
reevaluation of these threading technologies had risen 
greatly. Lets briefly review the threading in databases. 

One of the first most prominent database systems 
which implemented threading was Volcano [4]. The 
following conclusions were presented [4]: it is 
beneficial to use multiple threads running concurrently 
on the same processor. However, running each operator 
in its own dedicated thread is unfeasible: 
synchronization and thread switching will eat up all the 
benefits. The same results presented here [2], also 
another important question is mentioned: how much 
memory we should provide to the thread. This question 
affects the number of threads which could be run 
effectively. In this paper [1] an adaptive query 
processing is considered, and shown that each adaptive 
symmetric hash join operator can work effectively in 
the separate thread. 

3 Our system 

The experiments which are described in this work were 
conducted using our prototype of distributed query 
engine developed by authors. This system is devised for 
simple SPJ conjunctive queries [1] and is capable of 
serving simultaneously a substantial number of clients. 
The architecture of the system is described on a Pic. 1 
and it is essentially a shared-nothing design with a 
number of processing nodes distributed among network. 
We partition nodes into two types: master and slave. 
There is only one master node per setup and it is 
responsible for handling incoming queries. For purpose 
of paper’s experiments we run slave processes on the 
same computer. 

Our system is based on assumption that data are pre-
distributed and reside on slave nodes. The data are 
collection of relations, where each attribute may be 
either integer value or string. Each relation is 
partitioned horizontally and may be replicated. 

The overall design of the system resembles a 
classical Volcano [2], where QEP (query execution 
plan) is defined as a tree of various operators and 
candidate tuples have to pass them in order for result to 
be produced. In our system there are the following 
operators: selection (actually consisting of both 
selection and projection), join and cross-product. 
Details regarding our implementation of join operator 
can be found in part 4, but it is essential to note that the 
overall architecture was designed for non-blocking 
operations, so the join operator should be non-blocking 
too.  

 
Picture 1: architecture 



The QEP generation procedure also is a very 
unpretentious and is based entirely on heuristics, which 
resemble classical ones described [3]. The plan 
generation doesn’t affect our benchmarks much because 
we use very specific loads (described in part 5) to assess 
the performance. 

Some details regarding implementation can be 
found in [6]. 

To conclude, we should mention that despite its 
simplicity our system is sufficient for use in our 
benchmarks to reach our goal.  

4 Considered approaches 

We considered the following approaches to 
incorporation of threading into join processing. Our 
initial algorithm was essentially nested loop join 
algorithm [2] which was modified to cope with the 
networking issues. The main difference is the bulk 
processing technique which provides bufferization to 
lessen the communication burden (as opposed to per 
record processing). When the both sets of tuples are 
received, we sort one of them and use the second as the 
probing one. Also, we employ in-operation caching to 
lessen the network stress further. This caching works as 
follows: if one of the participating relations is small 
enough to fit in memory, it is put into inner operation 
cache. This baseline method is working inside a single 
thread (all joins and cross-products are working inside 
one thread), Pic. 2.  
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Picture 2: initial join design 

To introduce parallelism we consider the technique 
which employs a number of threads for data processing. 
The core idea is to partition data supplied by one of the 
child nodes, while leaving the other one intact, then use 
different threads to process it (shown on Pic. 3).  

Also, we consider a hash join operator. In this case, 
the processing of a join operation is separated into two 
separate phases: a build phase and a probe phase. 
During the build phase, a table which was chosen as a 
build one is used in building a hash-table. Then, the 
next phase is essentially a traversal of a probe table to 
locate the match. The evident drawback of this 
technique is the temporary “freeze” of the system. This 
is caused by the build stage, e.g. the dependent 
operators should wait until the build phase is finished.  
This drawback is a critical issue, because it breaks [1] 
the pipelining execution, or this join operator becomes a 
blocking operator. If we are dealing with the QEP of a 

sufficient depth the blocking operators can become the 
source of a major slowdown in processing of the whole 
query. Also, this blocking especially adversely affects 
inter-operation parallelism (threads will wait for tuples 
to arrive). Thus, blocking operations should be taken 
into consideration.  

To parallelize this join we employ the similar 
technique: we partition the build relation into a few 
fragments and each fragment is processed inside its 
dedicated thread.  
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Picture 3: join parallelization 

To overcome the blocking nature of the previous 
approach we would consider a symmetric hash-join 
operator [1]. The core idea is to have two join nodes, 
which have different building relations. The processing 
happens as follows: given a tuple from relation R we 
probe it against build relation of S join operator and at 
the same time, we use this tuple in building relation of 
R join operator. Likewise, given a tuple from relation S 
we use it to probe it in R and build it in S operators. 
This join is correct due to the fact that if a tuple arrives 
too early (e.g. no relevant tuples from other relation had 
been built) it would be probed later, because it is built 
in other join operator. This type of hash join operator is 
a non-blocking operator. However, this advantage 
comes at a price – additional memory and time 
constraints (twice as much as a simple hash join) and 
more sophisticated programming techniques are 
required.  
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Picture 4: symmetric hash join operator design 

To implement data partitioning in our system we 
introduced two new operators (much alike exchange 



operator in volcano system), for distribution and 
collection of the results. These operators are inserted in 
QEP around join operator which is going to be 
parallelized. We call helper threads the threads which 
hold the additional join nodes which will appear as the 
result of our parallelization. 

5 Experiments 

5.1 Parameters used in experiments 

 
We implemented the proposed approaches and 

examined them using our system on a variety of 
workloads. First we characterize the data used in our 
experiments: 

1) Size of the tables are 150Mb (first type of 
workload) 

2) Selectivity of join predicate is 0.1%  
3) Each table contained three attributes: primary 

key, integer attribute used for joining and 
predicate which defines selectivity. We used 
only 4 byte integer data in our experiments and 
it is uniformly distributed. 

The processing details: 
1) Number of helper threads per processing node 

(QEP one): 1, 2, 5, 10 
2) Methods (node types) of join:  

a. Hash join 
b. Block nested loop (sort) 
c. Block multithreaded nested loop (sort) 
d. Block multithreaded hash join 
e. Symmetric hash join 

3) Operation cache (also, size of bulk which is 
transferred from one QEP node to another): 2, 
5, 10 MB 

4) Join operators use results of a sequential scan 
over table (no index is used) 

Query type details: 
1) Query to evaluate intra-operation parallelism: a 

single join of two tables 
2) Query to evaluate inter-operation parallelism: a 

QEP which contains 2 joins and 3 tables 

5.2 Hardware and software 

The following setup was used: Intel(R) Pentium(R) 
D CPU 3.00GHz, RAM 3Gb, which run GNU/Linux 
2.6.35.10 x86, and we used gcc 4.5.2. 

We implemented our threads using standard POSIX 
threads, NPTL threads are used for multithreading, 
threads communicate via chunk of shared memory. 
Notifications are implemented using POSIX pipes along 
with select core. For hash joins we used c++0x 
unordered map STL container. 

5.3 Experiments performed 

Each of the considered experiments was repeated 
several times, high spread of the measured values was 
observed and average values were used. This is 

especially important for the multithreaded algorithms, 
due to erratical thread scheduling algorithm behaviour. 

We had evaluated our algorithms on two distinct 
groups of workloads, namely workloads which evaluate 
intra-operator parallelism and inter-operator parallelism. 
The first ones evaluate our algorithms using QEP which 
contains only one join operation, which is fueled by two 
scan operations. The Table 1 contains summarized 
results over all runs in this group of experiments (here 
we measured execution time in milliseconds). Detailed 
results are presented in histograms 1-3, where each 
histogram shows results for a fixed cache size. 

In this experiment we varied the following 
parameters: operation cache and number of helper 
threads. The last six methods describe parallelized join 
methods (for threads amount of 2, 5, 10 respectively) of 
two distinct methods: sort and hash. Sort method is a 
plain block nested loop, where one relation’s block is 
sorted before probing by another.  

In multithreaded tests we observed several modes, 
all but one insignificant. This phenomenon can be 
explained by system thread scheduler fluctuations. The 
Table 1 presents main mode value. 

 

Method/Cache size 2Mb 5Mb 10Mb 

Hash Join 50,698 50,773 56,600 

Block NL Sort 57,502 56,567 57,452 

Symmetric HJ 67,608 66,982 68,165 

Block NL Hash MT 2 43,969 42,185 41,615 

Block NL Sort MT 2 44,800 43,558 42,437 

Block NL Hash MT 5 44,688 42,613 41,685 

Block NL Sort MT 5 46,646 44,446 47,910 

Block NL Hash MT 10 44,281 42,235 42,385 

Block NL Sort MT 10 45,844 43,563 43,132 
Table 1: Intra-operation parallelism 

 

 
Histogram 1: 2 Mb cache  

 



 
Histogram 2: 5 Mb cache 

 
Histogram 3: 10 Mb cache 

The Block NL Hash MT version of the operator is 
constructed in such way, that hash relation is always 
hashed and fully resides in the memory. So, it can be 
considered a true hash join.  

We can draw the following conclusions:  
1) Parallelization does help to speed-up join 

processing on modern hardware, under several 
conditions. Our initial experiments were 
conducted with bulk size of 1Mb and 
parallelized joins had shown worse results that 
single-threaded ones. 

2) Increasing bulk size does increase performance, 
up to some point. Our assumption is the 
following: there is a tradeoff between a number 
of data transfers and degree of thread 
utilization, e.g. increasing amount of work one 
may ensure that communication does not 
happens too often, but we have to communicate 
frequently enough in order to have a benefits of 
parallelism and pipelining. 

3) Increasing number of threads further does not 
improve performance on dual core cpu. 

4) Examining single-threaded join methods (first 
three mentioned operators) had shown us the 
following: 

a. Hash join better than nested loop 
b. Symmetric hash join is actually worse 

than nested loop 
5) Other results (not shown here) state the 

following: hash-based parallel algorithms a bit 
worse than sort-based ones on workload which 

converges to cross-product and vice versa (join 
which has both tables filtered on the same field 
and value). Our hypothesis is the following: this 
behavior could be attributed to our 
implementation of sort-based algorithm (we 
implemented a quicksort algorithm) which is 
tightly coupled with pointers for efficiency and 
to a large amount of collisions which arise 
considering this workload. 

Another group of experiments we considered was 
the group which tested the QEP containing 2 join nodes. 
The goal was to run each join in separate threads. We 
restrict ourselves to having both join operators of the 
same type. The results of these experiments were the 
following: 

1) There are not much intermediate results of the 
first join processing to load second one in such 
way to see different results. So is unfeasible to 
use the original dataset in order to evaluate 
these approaches. To cope with this problem we 
raised scan selectivity 5 times. 

2) Under the new conditions we got the following 
results:  

a. Difference between non-threaded hash 
join and symmetric hash join is about 
5% (hash join is better). Overall 
performance of QEP had increased 
over the same case of the first group 
(8% loss). We presume that this 
happens due to enabling of pipelining. 

b. Threaded versions worse 2.5 times 
compared to single-threaded hash join 
on the smallest buffer size (2MB). 
Unfortunately, now, it is unclear 
whether our programming technique 
was sufficient to implement this 
threading correctly or it is the 
hardware processing specifics 
guarantee us these bad results 
(different operators cause constant 
cache resets). We can also say for sure, 
that it is not thread scheduler problem, 
because adding more threads does not 
have any effect. 

c. Bulk size has a huge impact on 
performance in such case also. It is 
becoming even more evident here. 
Increasing bulk size increases 
performance of threaded joins almost 2 
times (single-threaded ones get 
approximately 10%), but still threaded 
joins lose to single threaded ones.  

6 Conclusions and future work 

We presented results of evaluation of a set of join 
algorithms. The results imply that thread usage is 
beneficial for join processing and can give up to 50% 
increase in performance on simple queries. However, 
these approaches require extra programming effort, 
extensive parameter tuning and heavily rely on thread 



scheduler. Symmetric hash join has a promise for deep 
QEPs over threaded joins on such hardware. 

This is a relatively small piece of work for this vast 
and evolved topic. A lot of aspects require our attention 
and they hadn’t been touched at all in this paper. The 
future work will include parallelization of symmetric 
hash join algorithm, deeper join trees for more thorough 
analysis of threading effects to pipelining, proper 
evaluation of scale-up, and possibly evaluation on more 
productive equipment. 
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