
Flexab – Flexible Business Process Model
Abstraction

Matthias Weidlich, Sergey Smirnov, Christian Wiggert, and Mathias Weske

Hasso Plattner Institute, Potsdam, Germany
{matthias.weidlich,sergey.smirnov,mathias.weske}@hpi.uni-potsdam.de,

christian.wiggert@student.hpi.uni-potsdam.de

Abstract. Process models are a widely established means to capture
business processes. Large organizations maintain process model collections
with hundreds of process models. Maintenance of these collections can
be supported by business process model abstraction. Given a detailed
model, an abstraction technique derives a coarse grained process model
that preserves the essential process properties. In this paper, we introduce
Flexab, a tool that realizes flexible process model abstraction. Arbitrary
groups of activities may be selected for abstraction. Flexab is realized
in a mashup environment, which allows for creating different abstracted
versions of a process model and comparing them on a single screen.

Keywords: Process Model Abstraction, Model Synthesis.

1 Introduction

In the last decades, there has been a remarkable uptake of business process
management (BPM). This trend emerged largely independent of any business
domain or organizational background. Organizations that adopt BPM often
manage the knowledge about their business processes by means of process models.
These models define how business activities are performed in coordination to
achieve a certain goal [16]. Large organizations maintain collections of hundreds
of process models. The sheer number along with potential overlap of process
models are challenges regarding the maintenance of such model collections.

Business process model abstraction (BPMA) emerged as a technique to
support the management of large model collections. Given a very detailed model,
it abstracts the process model by preserving essential process properties and
leaving out insignificant details. In this way, maintenance of model collections
can be centered around the most fine-grained model – more abstract models are
generated by an abstraction approach.

In this paper, we present Flexab, a tool for flexible business process model
abstraction. The tool is based on the abstraction approach introduced in [13]. In
contrast to other work on process model abstraction, e.g., [3, 7, 9, 10], it does not
impose structural restrictions when selecting activities that should be grouped
into more coarse-grained ones. Instead, it is flexible in the sense that arbitrary



18 Pre-proceedings of CAISE’11 Forum

Receive forecast 

request

Collect 

data

Perform 

analysis (a)

Perform 

simulation (b)
Generate forecast 

report (e)

 

Perform quick 

data analysis (c)

Consolidate 

results (d)

Prepare data for 

quick analysis

Prepare data for 

full analysis

abstract model, PMa

initial model, PM

Perform full 

analysis

Perform quick  

analysis

?
Receive 

forecast request

Generate 

forecast report

Handle 

data

F2
F1

Fig. 1. Motivating example: initial model and activity grouping

groups of activities may be selected for abstraction. The question of how to define
control flow dependencies for these arbitrary groupings in the abstracted model
has been addressed in [13] using behavioral profiles. These profiles capture control
flow relations between pairs of activities. Flexab implements the approach in
a web-based environment. Using the Oryx framework [6], we created a mashup
environment. This environment features gadgets for the visualization of process
models and for providing the abstraction functionality. Using the Flexab gadgets,
different abstracted versions of a common process model can be created and
compared on a single screen. As such, our tool allows for different abstract views
on a detailed process model at the same time.

The remainder of this paper is structured accordingly. The next section
summarizes our approach to flexible abstraction of process models. Then, Section 3
introduces the implementation of this approach. We elaborate on the system
architecture and explain the realization of all steps of the abstraction in detail.
Finally, Section 4 reviews related work, before we conclude in Section 5.

2 Business Process Model Abstraction Approach

This section summarizes the approach to flexible abstraction of process models
that was introduced in [13]. This approach focuses on the control flow perspec-
tive and has been defined for a generic graph model. The latter captures the
commonalities of process modeling languages, i.e., a process model is a graph
consisting of activities and control nodes that realize the routing behavior (aka
gateways in BPMN and connectors in EPCs).

We illustrate the approach using the example depicted in Fig. 1. The lower
model PM represents a detailed model of a forecasting process. This models
contains several semantically related activities, indicated by the coloring in Fig. 1.
These activities may be grouped to arrive at an abstract process model. Our
abstraction approach allows for arbitrary grouping of activities, which may even
be overlapping (indicated by a two-colored activity background in Fig. 1). This



Flexab – Flexible Business Process Model Abstraction 19

flexibility is not offered by existing approaches, which allow to aggregate only
fragments, such as the groups F1 or F2 illustrated in Fig. 1.

Our abstraction approach comprises four steps. In the remainder of this
section, we explain each of these steps.

1. derive the behavioral profile BPPM of the process model PM
2. construct the behavioral profile BPPMa

for the abstract process model PMa

3. if a well-structured model with profile BPPMa exists
4. then create PMa, else report to user.

1. Derivation of the Behavioral Profile BPPM . The approach leverages the
notion of a behavioral profile. Such a profile captures behavioral characteristics of
a process model by means of relations between pairs of activities. Two activities
are said to be in strict order, if one occurs always before the other in every trace
of the process model that contains both activities (e.g., (d) and (e) in Fig. 1).
Activities that never occur together in a single trace are exclusive according to
the behavioral profile (e.g., (c) and (d)). If two activities may occur in any order
in a trace, then they are in interleaving order (e.g., (a) and (b)). For the class of
process models considered by our approach (assuming the absence of behavioral
anomalies such as deadlocks), the relations of the behavioral profile are computed
in low polynomial time to the size of the model [15]. With BPPM , we refer to the
behavioral profile comprising the aforementioned relations for the model PM .

2. Construction of Behavioral Profile BPPMa . As the next step, we require
a user to select groups of activities in the detailed process model that should be
aggregated in the abstracted model. For our example in Fig. 1, a user defines
several aggregations for activities, such as the aggregation of activities Prepare
data for quick analysis and Perform quick data analysis that yields an activity
Perform quick analysis. Once aggregation dependencies have been defined, we
leverage the behavioral profile BPPM of PM to construct a behavioral profile
BPPMa

for the abstract model PMa. This works as follows. For each pair of
coarse-grained activities x, y in PMa, we study the relations of the activities
in PM that are aggregated into activities x and y. As a result, we obtain a
dominating behavioral relation between the activities that are aggregated. This
approach has the advantage that behavioral relations between activity pairs of
PMa are discovered independently of each other. For the setting in Fig. 1, for
instance, we observe that both activities Prepare data for quick analysis and
Perform quick data analysis are in strict order with Generate forecast report.
Hence, the aggregated activity Perform quick analysis and activity Generate
forecast report are in strict order in the behavioral profile BPPMa

.

3. Behavioral Profile Well-Structuredness Validation. The creation of the
behavioral profile for the abstract model may yield an inconsistent profile. That is,
we may obtain a behavioral profile for which there does not exist a process model
that satisfies certain requirements, e.g., that is free of behavioral anomalies and
free of duplicated activities, and shows the relations of this profile. An example
for an inconsistency would be a cyclic strict order dependency between activities



20 Pre-proceedings of CAISE’11 Forum

(x before y before z before x). The implementation in Flexab deviates from the
synthesis proposed in [13], which is underspecified. Within Flexab, we analyze the
behavioral profile BPPMa following an approach proposed for different behavioral
relations to restructure process models [11]. Based on the profile relations, we
create a graph that represents the different behavioral dependencies between
activities. Then, a modular decomposition is applied to this graph. It identifies a
hierarchy of modules, groups of activities that have equal dependencies with the
remaining activities. The behavioral profile is well-structured if the decomposition
yields a hierarchy of modules and none of them is unstructured. If the behavioral
profile is well-structured, there exists a well-structured process model that is free
of behavioral anomalies and shows the respective profile.

4. Abstract Model Synthesis from BPPMa . Given a well-structured behav-
ioral profile for the abstract model, we create the abstract process model. All
modules, groups of activities that have equal relations to all remaining activities,
identified in the previous step directly translate into process model fragments. For
instance, a module comprising activities that are all pairwise exclusive to each
other is represented by an XOR-block containing the respective activities. Since
the modular decomposition yields a hierarchy of modules, we are able to stepwise
synthesis the process model. For our example, Fig. 1 illustrates the abstract
model PMa derived from the initial model PM . The model PMa, for instance,
reflects the strict order relation between activities Perform quick analysis and
Generate forecast report derived before.

3 Process Model Abstraction using Flexab

In this section, we elaborate on Flexab—an application enabling process model
abstraction. Flexab extends the Oryx framework, which we introduce first. Then,
we describe the Flexab architecture and illustrate the usage to demonstrate the
capabilities of Flexab.

Oryx. We implemented the business process model abstraction approach de-
scribed in Section 2 within the Oryx Framework. Oryx is an extensible modeling
framework bringing Web 2.0 technologies to business process designers. It allows
for web-based modeling following a zero-installation approach. Oryx identifies
each model by a URL, so that models can be shared by passing references rather
than by exchanging model documents in email attachments. The framework can
be extended in various directions. New languages are added by stencil sets that
define explicit model element typing, rules of the composition and connection
of elements, and the visualization of elements. Further, Oryx features a plugin
infrastructure to add new functionality.

Oryx is organized into client and server components. The client component,
the Oryx editor, realizes the modeling functionality. The editor is a JavaScript
application running in a web-browser. The server component, the Oryx backend,
stores process models, stencil sets, and fulfills other tasks, e.g., user management
and rendering of various model representations (SVG, PNG, or PDF). The
backend is implemented in Java.



Flexab – Flexible Business Process Model Abstraction 21

 Mashup

 backend

 Browser

Mashup Framework

Viewer 

gadget

Abstraction 

gadget

 Oryx

 backend

Backend

Models Stencil sets

R R

SVG 

servlet

Abstraction 

servlet

R

R

R

Fig. 2. Flexab architecture overview (FMC notation)

Oryx Mashup Framework. The Oryx editor addresses use cases that center
around a single model, i.e., a designer edits one model at a time and does not need
to trace dependencies with other models. However, several use cases, and process
model abstraction is one of them, require the designer to observe several models
simultaneously. The Oryx Mashup Framework provides an API for developing
applications in which several models are manipulated on one screen. Similar
to the Oryx Editor, the Mashup Framework is written in JavaScript and runs
within a browser. The framework organizes functionality by gadgets and provides
means to support communication between different gadgets. Each gadget not only
accumulates business logic, but also has a UI representation. The UI components
of gadgets are allocated on a dashboard. Typical gadgets provide model viewing
functionality or enable selection of model elements. Hence, the Oryx Mashup
Framework enables developers to create mashups for analyzing existing Oryx
models and for concurrent interaction with several models.

FLEXAB. We have used the Oryx Mashup Framework as the basis for Flexab.
Logically, the application is decomposed into the client-side and server-side
components. The client-side component is built as an extension of the Oryx
Mashup Framework. The server-side component is further distributed into the
Oryx backend and Mashup backend, see Fig. 2. The communication between these
three components is established by HTTP requests. The client-side component
renders the user interface of the application. A viewer gadget presents the initial
model that should be abstracted. The abstraction gadget, in turn, enables the
user to define activity groups. This is supported by the viewer gadget to allow for
populating groups with activities by simply selecting the activities in the viewer.
Finally, another instance of a viewer gadget is used to show the abstract model.

Once the abstraction is triggered, the abstraction gadget sends the user-
defined activity groups along with the initial process model to the abstraction
servlet on the server side. Given this input, the abstraction servlet performs
the abstraction algorithm and produces an abstract model. The abstraction
servlet is supported by an SVG servlet that is responsible for the generation of a



22 Pre-proceedings of CAISE’11 Forum

Viewer gadget: initial model Abstraction gadget

A B

C
D

F
E

I

HG

Fig. 3. Screenshot of Flexab at the stage of activity group creation

SVG representation of the abstract model. To this end, it needs to retrieve the
respective stencil set from the Oryx backend.

From a user perspective, abstracting a process model in Flexab works as
follows. The user starts selecting the model to be abstracted. In response, the
application caters two gadgets: a viewer gadget and an abstraction gadget, see
Fig. 3. The user creates named activity groups, edits, and deletes the groups using
the controls of the abstraction gadget. The viewer gadget not only renders the
process model and provides zoom functionality, but also supports activity group
creation: the user populates groups selecting activities directly in the model.
Once the groups are finalized, the user initiates model transformation clicking
the abstraction button in the abstraction gadget. Then, Flexab abstracts the
model in the background and instantiates a new viewer gadget to visualize the
result of abstraction. Fig. 4 presents the UI constellation in terms of the complete
Mashup dashboard once model abstraction completes.

Viewer gadget: abstract model

A BCG

GH I

CDEF

Fig. 4. Flexab presents the process model emerging from abstraction



Flexab – Flexible Business Process Model Abstraction 23

4 Related Work

Flexab supports the user in the creation of an abstract process model given a
detailed model. We identify three streams of related work, theoretical foundations
of process model abstraction, applications implementing abstraction functionality,
and research on process model generation.

In the recent years, a number of techniques for business process model
abstraction emerged, e.g., [3, 4, 7–9, 12, 13]. All of these works investigate the
theoretical principles of process model abstraction, while some address the
implementation aspects as well. In [3, 4, 7–9, 13] the primary challenge of process
model abstraction is addressed, i.e., structural model transformation. While the
approaches of [3, 4, 9] build on an explicit definition of a fragment to aggregate,
in [2, 10, 14] the fragments are discovered according to their properties. The
abstraction approach implemented in this work equips the user with the most
flexible way of activity aggregation. The question of how to identify model
elements that are candidates for abstraction has been tackled in [7, 8, 12].

A few ideas on business process model abstraction found their way into
implementations. The contribution of Bobrik, Reichert, and Bauer is realized
in the Proviado system [3] and the approach presented in [9] has also been
implemented in a prototype. As mentioned earlier, both approaches impose
restrictions on the selection of the activities that are avoided by our approach. In
the context of process mining, a mechanism for process simplification has been
realized as a ProM plugin [8]. In contrast to our work, this simplification is guided
by the occurrence frequency of activities in event logs. A system architecture for
an application realizing model abstraction has been presented in [7].

The employed method for the synthesis of abstract process models from
behavioral profiles belongs to the family of process model synthesis techniques.
Most prominently, the alpha-algorithm constructs a process model given an event
log [1]. The relations used in this algorithm differ to ours, since they are grounded
on direct successorship of activities. A number of approaches based on Petri net
formalism take the state space as an input for process model synthesis, e.g., [5].

5 Conclusion and Future Work

The theoretical aspects of business process model abstraction have been described
in numerous papers. Up until now, however, very few implementations of these
approaches have been presented. This paper showcases Flexab—an implementa-
tion of the business process model abstraction developed in [13]. Flexab builds
on the Oryx framework. Hence, it brings together the functionality of process
model abstraction and the Web 2.0 features of the Oryx framework including an
extensible Mashup framework.

We have to reflect on some limitations of Flexab. The abstraction is currently
restricted to Petri net models. Further, Flexab does not address the challenge of
naming activities in abstract process models. In future work, we want to extend
Flexab towards automation of process model abstraction. Since the current



24 Pre-proceedings of CAISE’11 Forum

version of the tool requires the modeler to group model elements manually, the
natural next step is to develop functionality for the automatic discovery of activity
groups in process models.

Acknowledgments

The authors acknowledge the technical support of Gero Decker and Philipp
Maschke from Signavio, a BPM company based in Berlin.

References

1. W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE TKDE, 16(9):1128–1142, 2004.

2. A. Basu and R.W. Blanning. Synthesis and Decomposition of Processes in Organi-
zations. ISR, 14(4):337–355, 2003.

3. R. Bobrik, M. Reichert, and T. Bauer. View-Based Process Visualization. In BPM
2007, volume 4714 of LNCS, pages 88–95, Berlin, 2007. Springer.

4. J. Cardoso, J. Miller, A. Sheth, and J. Arnold. Modeling Quality of Service for
Workflows and Web Service Processes. Technical report, University of Georgia,
2002.

5. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
from Finite Transition Systems. IEEE TC, 47(8):859–882, August 1998.

6. G. Decker, H. Overdick, and M. Weske. Oryx - Sharing Conceptual Models on the
Web. In ER, volume 5231 of LNCS, pages 536–537. Springer, 2008.

7. R. Eshuis and P. Grefen. Constructing Customized Process Views. DKE, 64(2):419–
438, 2008.

8. C. W. Günther and W. M. P. van der Aalst. Fuzzy Mining—Adaptive Process
Simplification Based on Multi-perspective Metrics. In BPM 2007, volume 4714 of
LNCS, pages 328–343, Berlin, 2007. Springer.

9. D. Liu and M. Shen. Workflow Modeling for Virtual Processes: an Order-preserving
Process-view Approach. ISJ, 28(6):505–532, 2003.

10. A. Polyvyanyy, S. Smirnov, and M. Weske. The Triconnected Abstraction of Process
Models. In BPM 2009, pages 229–244, Ulm, Germany, 2009. Springer.

11. A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas. Structuring acyclic process
models. In BPM 2010, volume 6336 of LNCS, pages 276–293. Springer, 2010.

12. S. Smirnov, H. Reijers, Th. Nugteren, and M. Weske. Business Process
Model Abstraction: Theory and Practice. Technical report, Hasso Plattner
Institute, 2010. http://bpt.hpi.uni-potsdam.de/pub/Public/SergeySmirnov/

abstractionUseCases.pdf.
13. S. Smirnov, M. Weidlich, and J. Mendling. Business Process Model Abstraction

Based on Behavioral Profiles. In ICSOC 2010, volume 6470 of LNCS, pages 1–16,
2010.

14. A. Streit, B. Pham, and R. Brown. Visualization Support for Managing Large
Business Process Specifications. LNCS, 3649:205–219, 2005.

15. M. Weidlich, J. Mendling, and M. Weske. Efficient Consistency Measurement based
on Behavioural Profiles of Process Models. IEEE TSE, DOI: 10.1109/TSE.2010.96,
2010. In press.

16. M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer, 2007.


