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Abstract. This paper presents a novel method to estimate kinetic pa-
rameter of biological pathways by using observed time-series data and
other knowledge that cannot be formulated in the form of time-series
data. Our method utilizes data assimilation (DA) framework and model
checking (MC) technique, with a quantitative modeling and simulation
architecture named hybrid functional Petri net with extension (HFPNe).
Proposed method is applied to an HFPNe model underlying circadian
rhythm in mouse. We first translate 23 rules of biological knowledge
with temporal logic for the model checking, which are not described in
the time-series data. Next, we employ particle filter often applied to DA
for our estimation procedure. Each particle checks whether its simulation
result satisfies the rules or not, and the result of the checking is used for
its resampling step. Our simulation results show that proposed method
is faster and more accurate than previous method.

Keywords: Hybrid functional Petri net with extension, parameter esti-
mation, data assimilation, particle filter, model checking, temporal logic

1 Introduction

Modeling and simulating large-scale biological pathways have played an impor-
tant role in systems biology. Owing to their importance, many formal description
methods of biological pathway models have been made so far [1–3]. Petri net and
its related concepts are one of the succeeded ways of describing biological models
[4–6], which have been used for modeling a wide variety of biological pathways
and succeeded in reproducing consistent time-series profiles of biological ele-
ments such as the concentrations of mRNAs and proteins by means of computer
simulations.

Simulation studies on biological pathways promises a deep understanding of
complex cellular mechanisms by investigating the dynamic feature. Simulation-
based models are commonly governed by a series of parameters, e.g. initial values,
� Corresponding author email: masao@hgc.jp. †These authors made equal contribu-
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2 Parameter Estimation with Data Assimilation and Model Checking

reaction speeds and threshold values of activities. Before the model can be simu-
lated, all parameters must be assigned in advance. However, most parameters are
often unknown or not obvious. In general, such parameters are carefully tuned
by experts to fit the simulated elements with observed in vivo/vitro experiment
results. Due to the nonlinearity of the model, parameter estimation is difficult
and requires a lot of trial and errors. Small differences of the parameters make
large gap between reality and simulation results. Therefore, conventional hand
tuning method severely limits the size and complexity of simulation models built
as more output data (e.g., microarray gene expression data) are being measured.

The aim of this paper is to develop a novel method to automatically and
efficiently estimate kinetic parameters of a given model or a model starting
from scratch by combining data assimilation (DA) and model checking (MC)
approaches, coupled with observed experiment data. Observed experiment data
includes well-defined time-series data and other knowledge that cannot be for-
mulated in the form of time-series data.

DA was originally established in the field of geophysical simulation science.
Nagasaki et al. [7] have proposed a so-called genomic data assimilation approach.
Their DA framework enables users to handle both the model construction and
parameter tuning in the context of statistical inferences, and establishes a link
between the HFPNe simulation model and observed data, e.g., microarray gene
expression data [7] or time series proteomic data [8]. Current DA approach has
some issues because it depends on providing successive time points (at least 10-
20 time points) of time-series data by biological experiments. That is, for a small
time-series data set including for example two or three time points, DA will cost
massive computational resource, in some cases, it will be completely impossible
to estimate parameters. The response to this difficulty of dealing with sparse
and/or not well-defined time-series data is the use of model checking.

MC is a method for automatic verification of system requirements [9], which
firstly used in hardware field because of its determined behavior and limited value
space. Today, this technique has been applied to more complex biological models.
There are several studies that use model checking for parameter estimation, e.g.
Donaldson and Gilbert developed a computational system named MC2(GA) [10]
that couples model checking with genetic algorithm for parameter estimation. Li
et al. [11] proposed online model checking approach based parameter estimation
framework applied to the HFPNe class. In order to check the model, one need
to write biological rules of the knowledge with temporal logic. For example, “A
biological phenomena Foo keeps decreasing until Bar rises.” can be written as
“d([Foo])≤0 U d([Bar])>0” in a kind of temporal logic. Various knowledge
can be described in this way. Nevertheless, in order to improve the estimation
efficiency and accuracy, it is expected to find a general methodology to determine
parameters by combining DA and MC dealing with both time-series experimental
data and biological queries.

The paper is organized as follows. In Methods, we briefly explain how to (i)
construct biological models with HFPNe, (ii) estimate unknown parameters in a
nonlinear state space model, (iii) translate biological rules with a temporal logic

54

Matsuno
長方形



Lecture Notes in Computer Science: Authors’ Instructions 3

for querying system properties, and (iv) combine MC with DA for parameter
estimation. In Results, we compare our novel method with previous method by
applying them to mouse circadian rhythm model represented by HFPNe. We
show that our method is potentially faster and more accurate than previous one
that excludes MC technique.

2 Methods

2.1 Hybrid Functional Petri Net with Extension (HFPNe)

HFPNe is developed as a biosimulation tool for pathway modeling and simulation
extended from original Petri net [13]. HFPNe can deal with three types of data:
discrete, continuous and generic, whereas the original Petri net deal with only
discrete data. HFPNe consists of three types of elements: entity, process and
connector (see Figure 1 (a)). Figure 1 (b) shows connection rules in HFPNe. For
more definitions and usages of HFPNe, see Nagasaki et al. [13].

Figure 2 shows circadian rhythm model of mouse represented by HFPNe [14].
This model is composed of of 12 entities, 28 processes and 45 connectors. Due
to the space restriction, Appendix gives the details of these elements. Initial
value of entities mi(0) (i=1, · · ·, 12), reaction speed parameters ki (i=1, 2 and ki
is a common parameter to control speeds of similar biological processes: k1 for
protein binding; k2 for translation), and threshold parameters si (i=1, · · ·, 3) are
unknown parameters.

2.2 Data Assimilation for Parameter Estimation

We here explain how to estimate parameters in a simulation model from time-
series data with the use of DA.

Data Assimilation with Nonlinear State Space Model DA is an approach
to improve the accuracy of the models by combining with data, which can deal
with models formulated by nonlinear state space model (SSM) given by two
equations [15]:

mt=f(mt−1,wt,θsys) , (1)
yt=Hmt + εt . (2)

Equation (1) is called “system model” and Equation (2) is called “observed
model”. In the system model, mt≡(m1t, · · ·,mpt)T is a state vector consisting
of p state variables mit (i=1, · · ·, p) at discrete time point t. wt denoting system
noise is an l-dimensional white noise at t with a density q(w). f is a vector-valued
function, f : R

p+l �→ R
p, and θsys is a vector of model parameters. In the ob-

served model, yt∈R
d is an observation vector at t, H∈R

d×R
p is an observation

matrix; Hij takes value one if observed value of jth entity corresponds to the
ith element of yt, otherwise zero. εt called observational noise is a d-dimensional
white noise at t with a density r(ε). The likelihood of the parameter is given by
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4 Parameter Estimation with Data Assimilation and Model Checking

Fig. 1. (a) Basic HFPNe elements and biological icons in Cell Illustrator [12] in which
HFPNe was implemented. (b) Connection rules (left side) and corresponding network
(right side) in HFPNe. For instance, for the uppermost block labeled with ”Connection
from Entity to Process with Process connectors”, the check-mark denotes the availabil-
ity connected from corresponding entities to processes, e.g., only the generic process
can be selected as the output connected from generic entity with process connector.
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Fig. 2. Circadian rhythm model of mouse with HFPNe .

L(θsys)=p(y1, · · ·,yT |θsys)=
∏T
t=1 p(yt|Y t−1,θsys)=

∏T
t=1

∫
p(yt|mt,θsys)p(mt|

Y t−1,θsys)dmt, where Y t={y1, · · ·,yt}. The maximum likelihood estimator
(MLE) for θsys is given by

argmax
θsys

logL(θsys).

We can estimate parameters with MLE, however, this maximum likelihood method
has an important issue that the value of logL(θsys) computed by Monte Carlo
filter includes an approximation error. For accurate estimation, huge computa-
tion resources are thus required.

Self-Organizing State Space Model To deal with the difficulty of maximum
likelihood method, we use self-organizing state space model (SOSSM) [16–18].
We can estimate parameters based on Bayesian inference with SOSSM by weav-
ing parameters in the state vector as

zt=
[

mt

θsys

]
.

The SSM for this vector is given by zt=F ∗(zt−1,wt) and yt=H∗zt+εt, where

F ∗(zt−1,wt) =
[

f(mt−1,wt,θsys)
θsys

]

H∗zt = Hmt.
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6 Parameter Estimation with Data Assimilation and Model Checking

We can obtain marginal posterior densities without obtaining MLE of θ as

p(mT | Y T ) =
∫
p(zT | Y T )dθsys

p(θsys | Y T ) =
∫
p(zT | Y T )dmT .

In this way, we can avoid the issue of maximum likelihood method during the
estimation.

Particle Filter As mentioned above, we have to calculate distribution p(zT |Y T )
for estimating parameters. However, it generally becomes a non-gaussian distri-
bution in SSM. Therefore, it is needed to represent this distribution with some
method. We here use a sequential Monte Carlo method called particle filter (PF)
[19]. Figure 3 shows the overview of particle filter’s algorithm. In particle filter,
predictive distribution p(zt|Y t−1) and filter distribution p(zt|Y t) are approxi-
mated by m in which each realization is called particle as follows:

pt|t−1 ≡ {p(1)
t|t−1, · · · ,p(m)

t|t−1} ∼ p(zt | Y t−1)

pt|t ≡ {p(1)
t|t , . . . ,p

(m)
t|t } ∼ p(zt | Y t),

where p
(j)
t|t−1 (j=1, · · ·,m) and p

(j)
t|t (j=1, · · ·,m) are (p+|θsys|)-dimensional num-

bers. This algorithm is processed with the following steps.

Fig. 3. Overview of particle filter. The left-most column of particles shows state at t−1.
The second column shows the predicted states. The third column shows the weights of
corresponding particles (αt ≡ α

(1)
t , · · · , α

(m)
t ). The right-most column shows results of

resampling step.
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Step 1 Generate the (p+|θsys|)-dimensional random number p
(j)
0|0 for j=1, · · ·,m.

Step 2 Repeat the following three steps for the observed time points t=1, · · ·, T .
Step 2.1 (Prediction step) Generatem system noises w

(j)
t independently

and identically from q(wt), and compute particles by inputting filtered
states into simulation model, p

(j)
t|t−1=F ∗(p(j)

t−1|t−1,w
(j)
t ) for j=1, · · ·,m.

Step 2.2 (Weight calculation step) Compute the weights of importance
for the particles according to

α
(j)
t =p(yt|p(j)

t|t−1)=r(yt − H∗p(j)
t|t−1) (3)

for j=1, · · ·,m. These weights are then normalized as ᾱ(j)
t =α(j)

t

∑m

j=1
α

(j)
t .

Step 2.3 (Resampling step) Generate filtered state p
(j)
t|t for j=1, · · ·,m

by resampling {p(1)
t|t−1, · · · ,p(m)

t|t−1} with the probabilities {ᾱ(1)
t , · · · , ᾱ(m)

t }.

2.3 Model Checking

We explain how to represent requirements of biological pathway models for model
checking. Model checking is a method to verify whether models satisfy the re-
quirements or not. Temporal logic formulae are often used to describe the system
requirements. In this study, we selected PLTL (Probabilistic Linear-time Tem-
poral Logic) for querying dynamic models of cellular networks [20, 21] which
extends original LTL to a stochastic setting with a probability operator and a
filter criterion defining the starting state where the property is satisfied.

Table 1. Syntax of PLTL.

ψ ::= P�x(LTL) | P=?(LTL) | LTL
LTL ::= φ{AP} | φ
φ ::= Xφ | Gφ | Fφ | φ U φ | φ R φ | ¬φ | φ&&φ | φ‖φ | φ⇒ φ | AP
AP ::= value comp value | valueboolean

value ::= value op value | [variableName] | Functionnumeric | Integer | Real
valueboolean ::= true | false | Functionboolean

comp ::= == | ! = | > | ≥ | < | ≤
op ::= + | − | ∗ | / | ˆ,

with � ∈ {<,≤, >,≥}, x ∈ [0, 1].

[PLTL Syntax] Table 1 shows definition of PLTL syntax, which is used to ask
for the probability of user’s query via a PLTL formulae ψ. In the LTL expression
φ{AP}, φ will be checked from the state that AP is satisfied rather than from
the default initial state, where AP is called atomic proposition and takes boolean
domain. PLTL allows (i) LTL expression to contain temporal operators, i.e., X,
F, G, U, R. Five temporal operators are used to describe the sequencing of the
states along the execution; and (ii) the usage of ψ without probabilistic operators
(i.e. simply in the form of LTL), which is useful when the model is deterministic.
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8 Parameter Estimation with Data Assimilation and Model Checking

Table 2. Semantics of temporal operators

Operator Meaning Explanation
Xφ Next time φ must be true at the next time point.
Gφ Globally φ must always be true.
Fφ Finally φ must be true at least once.

φ1Uφ2 Until φ1 must be true until φ2 becomes true; φ2 must become true
eventually.

φ1Rφ2 Release φ2 must be true until and including the time point φ1 becomes
true; if φ2 never true, φ1 must always be true.

[PLTL Semantics] The semantics of PLTL is defined over the finite sets of
finite paths through system’s state space, obtained by repeated simulation runs
of HFPNe models. The PLTL formula is built upon two components: probabilis-
tic operator and property LTL. For each simulation run, the LTL expression is
evaluated to a boolean truth value, and the probability of the LTL statement
holding true is calculated based on the whole set of simulation results.

For the probability operator components, there are two distinct operators:
(i) P�x(LTL) is any inequality comparison of the probability of the property
LTL holding true, for example P≥0.5(LTL); and (ii) P=?(LTL) returns the value
of the probability of the property holding true. The semantics of the temporal
logic operators are described in Table 2. Concentrations of biochemical species
in the model are denoted by [variableName]. A special variable, [time], stands
for simulation time.

Due to the ability of PLTL, it is possible to define functions of two differ-
ent natures: functions that return a real number and functions that return a
boolean value. An example of the real number function is d([variableName])
which returns the subtracted value of [variableName] between time i and i−1.
Note that, d([variableName]) equals zero at time point zero. One example of
a boolean function is similarAbsolute(value a, value b, value ε), which returns
true if |a−b|<ε or else it returns false. Table 3 shows the rules written in PLTL
for circadian rhythm model of mouse.

2.4 Combining Model Checking with DA

As stated in Introduction, we have applied either DA or MC to pathway model
in the previous researches, but used time scales are different. We here employ
common time scale called Petri net time for combining DA with MC, which is the
virtual time unit of the HFPNe model denoted by [pt]. We define: (i) simInt∈R

as simulation interval; (ii) mcInt∈R which is a multiple of simInt as a model
checking interval; and (iii) MapOttoP t : N �→R as a mapping from observed time
point to Petri net time for combining. From the MC’s viewpoint, Xφ means that
φ must be true at the state after mcInt Petri net time. Meanwhile, a simulation
from timeMapOttoP t(t−1) toMapOttoP t(t) is a run in f from DA’s viewpoint.

Hürseler and Künsch mentioned that it is difficult to generate a good ini-
tial distribution of parameters with SOSSM [22]. This is because parameters
in resampled particles are the subset of parameters in the initial particles and
a model with randomly generated parameters rarely satisfy all rules. To gen-
erate good initial distribution of parameters, two considerations are designed:
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Table 3. Biological rules for circadian rhythm model of mouse. Rule 1 to Rule 9
describes the range of concentrations; Rule 10 to Rule 17 describes that of peak con-
centrations, Rule 18 to Rule 21 specifies concentration relationships when they reach
peaks, and Rule 22 to Rule 23 specifies normal concentration relationships.

No.
Rule

LTL translation

Rule 1
Concentration of per mRNA is between 0.2 and 3.8.
G([per mRNA] < 3.8 && [per mRNA] > 0.2)

Rule 2
Concentration of Rev-Erv mRNA is between 0.2 and 3.4.
G([Rev-Erv mRNA] < 3.4 && [Rev-Erv mRNA] > 0.2)

Rule 3
Concentration of Bmal mRNA is between 0.2 and 4.3.
G([Bmal mRNA] < 4.3 && [Bmal mRNA] > 0.2)

Rule 4
Concentration of Bmal mRNA is between 2.4 and 2.6 after time becomes 20.
G(similarAbsolute([Clock mRNA],2.5,0,1)){[time] > 20}

Rule 5
Concentration of Cry mRNA is between 3.8 and 0.2.
G([Cry mRNA] < 3.8 && [Cry mRNA] > 0.2)

Rule 6
Concentration of PER is between 2.6 and 0.2.
G([PER] < 2.6 && [PER] > 0.2)

Rule 7
Concentration of CRY is between 2.6 and 0.2.
G([CRY] < 2.2 && [CRY] > 0.2)

Rule 8
Concentration of PER/CRY is between 2.7 and 0.2.
G([PER/CRY] < 2.7 && [PER/CRY] > 0.2)

Rule 9
Concentration of REV ERB is between 1.5 and 0.2.
G([REV ERB] < 1.5 && [REV ERB] > 0.2)

Rule 10
Local maximum concentration of per mRNA is greater than 2.0.
G(d([per mRNA]) ≥ 0 && X(d([per mRNA])<0) ⇒ [per mRNA] > 2.0)

Rule 11
Local minimum concentration of per mRNA is less than 1.0.
G(d([per mRNA])≤0 && X(d([per mRNA])>0)⇒ [per mRNA] < 1.0)

Rule 12
Local maximum concentration of Rev-Erv mRNA is greater than 1.5.
G(d([Rev-Erv mRNA])≥0 && X(d([Rev-Erv mRNA])<0) ⇒ [Rev-Erv mRNA] > 1.5)

Rule 13
Local minimum concentration of Rev-Erv mRNA is less than 1.0.
G(d([Rev-Erv mRNA])≤0 && X(d([Rev-Erv mRNA])>0) ⇒ [Rev-Erv mRNA] < 1.0)

Rule 14
Local maximum concentration of Bmal mRNA is greater than 1.5.
G(d([Bmal mRNA]) ≥0 && X(d([Bmal mRNA])<0) ⇒ [Bmal mRNA] > 1.5)

Rule 15
Local minimum concentration of Bmal mRNA is less than 1.0.
G(d([Bmal mRNA])≤0 && X(d([Bmal mRNA])>0) ⇒ [Bmal mRNA] < 1.0)

Rule 16
Local maximum concentration of Cry mRNA is greater than 2.0.
G(d([Cry mRNA])≥0 && X(d([Cry mRNA])<0) ⇒ [Cry mRNA] > 2.0)

Rule 17
Local minimum concentration of Cry mRNA is less than 1.0.
G(d([Cry mRNA])≤0 && X(d([Cry mRNA])>0) ⇒ [Cry mRNA] < 1.0)

Rule 18
When concentration of Bmal mRNA takes local minimum, concentration of Bmal mRNA is less
than concentration of per mRNA.
G(d([Bmal mRNA])≤0 && X(d([Bmal mRNA])>0) ⇒ [Bmal mRNA] < [per mRNA])

Rule 19
When concentration of Bmal mRNA takes local maximum, concentration of Bmal mRNA is grater
than concentration of per mRNA
G(d([Bmal mRNA])≥0 && X(d([Bmal mRNA])<0) ⇒ [Bmal mRNA] > [per mRNA])

Rule 20
When concentration of per mRNA takes local minimum, concentration of per mRNA is less than
concentration of per mRNA.
G(d([per mRNA])≤0 && X(d([per mRNA])>0) ⇒ [per mRNA] < [Bmal mRNA])

Rule 21
When concentration of per mRNA takes local maximum, concentration of per mRNA is grater
than concentration of Bmal mRNA
G(d([per mRNA])≥0 && X(d([per mRNA])<0) ⇒ [per mRNA] > [Bmal mRNA])

Rule 22
Concentration of per mRNA is greater than concentration of Rev-Erv mRNA.
G([per mRNA] > [Rev-Erv mRNA])

Rule 23
Concentration of CLOCK is greater than concentration of PER.
G([CLOCK] > [PER])
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Firstly, we repeat particle filters many times by regenerating p0|0 from pT |T like
a crossover in genetic algorithm since the length of time courses for biological
use is generally shorter than that for other fields; Secondly, a threshold value Th
is used to discard particle whose unsatisfied number by the checking is greater
than Th. Th is changed for each run of particle filter. In this study, system noise
is not taken into account in order to accelerate the estimation. Nevertheless, a
generic process can be mapped to Java object supporting HFPNe model in a
nondeterministic settings.

Algorithm 1 shows pseudocode of our parameter estimation method. In
step 9, PredictandMC returns predicated particle and the result whether it is
worthless or not. The detail of this function is displayed in Algorithm 2. In
steps 10–15, if the simulation results unsatisfy more than Th rules, the weight of
the particle will become zero, or else the weight is calculated by Equation (3)
via r. To calculate r, we assume that observed noise is a gaussian white noise
and its mean is zero. The variance of observed noise is thus needed to be esti-
mated. We generate multiple candidate values and use the value that has the
maximum likelihood as the variance. Steps 17–19 are designed to break the run
of particle filter if all the particles unsatisfied more than Th rules; Otherwise Th
is incremented or decremented in steps 23–27. p0|0 for the next run of particle
filter is generated from pT |T in step 28.

Algorithm 1. Pseudecode of our parameter estimation method.

1: function EstimateParameters(Y T , Rules)
2: p0|0 ← GenerateInitialParticles()

3: Th← initialThreshold
4: F ← false
5: loop
6: for t← 1, . . . , T do
7: F ← false
8: for j ← 1, . . . ,m do

9: (p
(j)
t|t−1, SatisfiedRules)← PredictandMC(p

(j)
t−1|t−1, t, Rules, Th)

10: if SatisfiedRules then

11: α
(j)
t ← CalculateWeight(p

(j)
t|t−1,yt)

12: F ← true
13: else
14: α

(j)
t ← 0

15: end if
16: end for
17: if !F then
18: break
19: end if
20: ᾱt ← αt/

∑M
j=1 α

(j)
t

21: pt|t ← Resampling(pt|t−1, ᾱt)

22: end for
23: if F then
24: Th← max(0, Th− 1)
25: else
26: Th← Th+ 1
27: end if
28: p0|0 ← RegenerateParticles(pT |T )

29: end loop
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In Algorithm 2, steps 2–3 convert time scale from observed time to Petri
net time. Step 4 separates particle p into m(start) and θ, where m(t) is a
vector consisting of the values of p entities at Petri net time t and θ is a vector
of parameters to be estimated. m(pt+simInt) is predicted by simulation in
step 6. Step 7 returns the number of unsatisfied rules via ModelChecking(). In
steps 9–11, if simulation result violates more than Th rules, simulation will stop
immediately.

Algorithm 2 Prediction step of particle filter and model checking.

1: function PredictandMC(p, t, Rules, Th)
2: start← MapOttoPt(t− 1)
3: end←MapOttoPt(t)− simInt
4: (m(start), θ)← p
5: for pt← start to end step simInt do
6: m(pt + simInt)← Simulation(m(pt), θ)
7: if (pt+ simInt)%mcInt = 0 then
8: N ←ModelChecking(m, Rules)
9: if Th < N then
10: return ([m(pt+ simInt)T , θT ]T , false)
11: end if
12: end if
13: end for
14: return ([m(MapOttoPt(t))T , θT ]T , true)

3 Results and Discussions

3.1 Estimation environment and evaluation criteria

We estimate 17 parameters of circadian rhythm model of mouse (i.e., 12 ini-
tial values of entities, two reaction speeds and three threshold values). We
use synthesized data set coupled with simulation and observed noise εt (εt ∼
N (0, 0.052I12)) as observed data. It contains 312 data of 26 time points (see
Figure 4) for each 12 biological entities – five mRNAs, five proteins and two
complex proteins –. One observed time point is mapped to five Petri net times.
Table 4 summarizes details of our estimation environment. Parameter search
range is set from zero to 15.

Table 4. Default parameters of the estimation.

Parameter name Value Meaning
m 50,000 the number of particles
p 12 the number of entities
d 12 the number of entities which have observed data
T 26 the number of observed time points
simInt 0.1 simulation interval
mcInt 1.0 model checking interval
initialThreshold 8 initial value of threshold for model checking
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Fig. 4. Examples of observed data.

To evaluate the results of estimation, following Scores are defined and cal-
culated before the step RegenerateParticles step given in Algorithm 1.

Scoremean =
∑T
t=1

∑p
e=1

|SimResult(Paramsmean,e,t)−yt,p|2
|Y T |

Scoremode =
∑T
t=1

∑p
e=1

|SimResult(Paramsmode,e,t)−yt,p|2
|Y T |

Scoremedian =
∑T
t=1

∑p
e=1

|SimResult(Paramsmedian,e,t)−yt,p|2
|Y T |

Scorebest =
∑T
t=1

∑p
e=1

|SimResult(Paramsbest,e,t)−yt,p|2
|Y T |

Score = min{Scoremean, Scoremode, Scoremedian, Scorebest, Scorecurrent},
where yt,p is an observed value of entity p at observed time point t. Paramsbest
denotes parameters of a particle which is made of particles. Paramsmean, Paramsmode
and Paramsmedian represent mean, mode and median value of all particles’ pa-
rameters respectively. SimResult(Params, e, t) returns the value of entity e at
time t which is calculated by simulation with Param. Scorecurrent is ∞ at first
time of the calculation, otherwise it is the Score of previous calculation.

3.2 Experimental Result

Comparison between PFMC and PF We compare the performance be-
tween our new method Particle Filter with Model Checking (PFMC) and pre-
vious method Particle Filter (PF). The estimation experiments are carried out
on workstation of Intel Xeon E5450 (3.0GHz) with 32G bytes of memory. We
performed estimation 100 times for both methods. Figure 5 shows the result
with respect to the distribution of Score with elapsed time. Mean of Score is
also analyzed by Welch’s t-test (See Table 5). Nearly all Score of PFMC and
PF are good on and after 600 seconds. Both medians are also good on and after
600 seconds, but there are many bad cases before 1,000 seconds for PF. That
is, roughly speaking, if there are enough amounts of observed data, there is no
much difference by using either PMFC or PF for the estimation. However, in
almost all cases, we can finish the estimation within a short time incorporating
model checking.
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Fig. 5. Distributions of Score at corresponding time points. The left diagram shows
the result of PFMC, and the right one shows that of PF. X-axis denotes elapsed time
(second), while y-axis denotes Score.

Table 5. Results of Welch’s t-test.

Elapsed time[sec] P-value Mean of PFMC Score Mean of PF Score

200 1.584 × 10−6 1.1055600 0.7746972
400 0.02169 0.4656204 0.5243369
600 1.834× 10−10 0.07760144 0.44547495

800 6.165 × 10−9 0.0516071 0.3580496
1000 9.631 × 10−8 0.04642736 0.31403475
1200 2.974 × 10−7 0.04446433 0.29820645

Estimation with small amount of observed data To investigate the per-
formance in the case of small amount of observed data, we use only first ten time
points of five biological entities’ data for the estimation: per mRNA, Cry mRNA,
Rev Erv mRNA, Clock mRNA and Bmal mRNA. More detailedly, we use all
default parameters for Score calculation and just overwrite p to five and T to
ten. The estimation results are exhibited in Figure 6 and Table 6.

The results clearly show that on and after 1,200 seconds, in contrast to the
previous experiment, there is difference not only between bad cases, but also
between medians of PFMC and PF. This is because it is difficult to estimate
parameters which makes certain rhythms with only two cycles of observed data.
Therefore, median Scores of PF are not good before 3,000 seconds. Moreover,
convergence of PFMC is worse than previous experiment.

Effects of the rules We also investigate the effect of rules by checking which
rule is unsatisfied which results in the cutting of a particle. We run estimation
100 times with default parameters and all of observed data. All the runs finished
after 20 minutes and the results are shown in Figure 7.

Two kinds of effects used in model checking approach can be considered.
First, it cuts useless particles,which enables us to estimate with more particles
or more runs of particle filters. Second, it cuts bad results which facilitates the
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Fig. 6. Distributions of Score with small amount of observed data.

Table 6. Results of Welch’s t-test.

Elapsed time[sec] P-value Mean of PFMC Scores Mean of PF Scores
600 0.3340 6.401179 1.137218

1200 3.725× 10−10 0.3219618 0.8769369
1800 1.393× 10−10 0.2144606 0.7418111
2400 1.797× 10−10 0.1849873 0.6784018
3000 8.596× 10−9 0.1677461 0.6048147
3600 3.071× 10−8 0.1469600 0.5597454

estimation only with observed data. From the first effect’s viewpoint, the rule
that cut more particles is a good rule. This is due to the fact that rule is able
to cut many particles from early time because the number of unique particle
decreases with the time elapse in our method. Rule 1 to 3, 5 to 9, 22 and
23 are such rules. From the second effect’s viewpoints, good rules are different
depending on behaviors of target models. For the circadian rhythm model, it is
important to reproduce the oscillations within a certain range. Rule 10 to 21
are specified for verifying the behavior of oscillation. Generally, it is not easy
to prepare this kind of rules before trial. Nevertheless, unlike observed data, it
will be a great help in improving the efficiency and accuracy of conventional
parameter estimation process and eventually leading to better understanding of
biological pathways.

4 Conclusions

We propose a novel parameter estimation method for biological pathways. By
combining model checking with DA framework, our method enables us to use
various knowledge in addition to observed time series data. We extract 23 bi-
ological rules with temporal logic which cannot be formulated in the form of
time-series data. Proposed method and previous method are applied to mouse
circadian rhythm model of HFPNe by means of performance evaluation. Results
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Fig. 7. The number of the particle cutting happened by model checking with respect
to each rule. X-axis denotes rule number, and y-axis denotes the number of the cutting.

shows that (i) if estimations execute with enough amounts of observed data, our
method can practically give good parameters in a short time; and (ii) if estima-
tions execute with small amount of observed data, new method is much faster
than the method without model checking.
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22. Hürzeler and Hans, M., Künsch, R.: Approximating and maximising the likelihood
for a general state-space model. In: Sequential Monte Carlo Methods in Practice,
Springer-Verlag New York, 159–175 (2001)

68

Matsuno
長方形



Lecture Notes in Computer Science: Authors’ Instructions 17

Appendix:

Table 7. Biological entities in the model of Figure 2. Variable mi(t) (i = 1, . . . , 12)
indicates the concentration of corresponding entity at time t. mi(0) (i = 1, . . . , 12) is
the initial value of corresponding entity.

Entity Name Variable Initial Value Biological Type

per mRNA m1(t) m1(0) mRNA
PER m2(t) m2(0) protein
Cry mRNA m3(t) m3(0) mRNA
CRY m4(t) m4(0) protein
PER/CRY m5(t) m5(0) complex protein
Rev-Erv mRNA m6(t) m6(0) mRNA
REV-ERV m7(t) m7(0) protein
Clock mRNA m8(t) m8(0) mRNA
CLOCK m9(t) m9(0) protein
Bmal mRNA m10(t) m10(0) mRNA
BMAL m11(t) m11(0) protein
CLOCK/BMAL m12(t) m12(0) complex protein
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Table 8. Processes and their reaction speeds in the model. (k1 and k2 are common
parameters to control speeds of similar biological processes: k1 for protein binding. k2

for translation.

Process Name Biological Process Type Speed of corresponding processes

p1 degradation v1(t) = m1(t) × 0.2
p2 degradation v2(t) = m2(t)/7
p3 degradation v3(t) = m3(t) × 0.2
p4 degradation v4(t) = m4(t) × 0.1
p5 degradation v5(t) = m5(t)/15
p6 degradation v6(t) = m6(t) × 0.2
p7 degradation v7(t) = m7(t) × 0.1
p8 degradation v8(t) = m8(t) × 0.2
p9 degradation v9(t) = m9(t)/7
p10 degradation v10(t) = m0(t) × 0.2
p11 degradation v11(t) = m1(t) × 0.1
p12 degradation v12(t) = m2(t)/15
p13 transcription v13(t) = 1
p14 transcription v14(t) = 0.05
p15 translation v15(t) = m1(t)/k2

p16 transcription v16(t) = 0.05
p17 transcription v17(t) = 1
p18 translation v18(t) = m3(t)/k2

p19 binding v19(t) = m2(t) × m4(t)/k1

p20 transcription v20(t) = 1
p21 transcription v21(t) = 0.05
p22 translation v22(t) = m6(t)/(2 × k2)
p23 transcription v23(t) = 0.5
p24 translation v24(t) = m8(t)/k2

p25 transcription v25(t) = 0.05
p26 transcription v26(t) = 1.1
p27 translation v27(t) = m10(t)/k2

p28 binding v28(t) = m9(t) × m1(t)/k1

Table 9. Threshold parameters si (i = 1, . . . , 3) and the corresponding connectors in
the model.

Threshold Name of regulation Corresponding
parameters connector

s1 Bmal mRNA active regulation c45
s2 Rev-Erv mRNA inhibitory regulation c40
s3 Cry mRNA inhibitory regulation c39

70

Matsuno
長方形




