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Abstract. Thyroid nodule segmentation is a hard task due to different
echo structures, textures and echogenicities in ultrasound (US) images
as well as speckle noise. Currently, a typical clinical evaluation involves
the manual, approximate measurement in two section planes in order to
obtain an estimate of the nodule’s size. The aforementioned nodule at-
tributes are recorded on paper. We propose instead the semi-automatic
segmentation of 2D slices of acquired 3D US volumes with power water-
sheds (PW) independent of the nodule type. We tested different input
seeds to evaluate the potential of the applied algorithm. On average we
achieved a 76.81 % sensitivity, 88.95 % precision and 0.81 Dice coeffi-
cient. The runtime on a standard PC is about 0.02 s which indicates
that the extension to 3D volume data should be feasible.

1 Introduction

A study of human thyroid glands throughout Germany in 2001/2002 showed
that every fourth citizen has nodules in his thyroid gland. Thus, modern screen-
ing methods are necessary for controlling the progress of nodule growth. Among
several diagnostic modalities, US imaging is the most popular one, partly due to
its low cost, ease of use and lack of radiation. There are different techniques for
studying thyroid nodules: US elastography, contrast-enhanced US (CEUS) [1],
color power Doppler US [1] and “traditional” 2D/3D US with/without guided
fine-needle aspiration biopsy [2]. During a typical US examination of the thyroid
gland, a physician manually measures the volume of a nodule with the ellipsoid
formula (Fig. 1). He also records the echo structure (solid, mixed or cystic), tex-
ture (homogeneous, heterogeneous) and echogenicity (iso-, hyper- or hypoechoic)
in the patient’s chart. Additionally, 2D print-outs of the two section planes are
added to the chart. This procedure becomes complex if there are multiple nod-
ules of different types. The findings of the examination can also vary with the
physician’s experience. The longterm goal of this project is to develop a com-
puterized system which (semi-)automatically detects, accurately measures and
classifies the different nodule types in the thyroid gland (Fig. 3, middle column).
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Fig. 1. Screen shot of the 2D measurement (axial
section plane) of an echo complex thyroid nodule,
partial input for the ellipsoid formula; compare to
Fig. 3: last row (sagittal section plane).

Medical studies have correlated the appearance of nodules with their benig-
nity and malignancy [2, 3]. These studies were based on visual inspection of
size, calcifications, blurred margins and echogenicity. Recently there has been
interest in automating the nodule identification process [4, 5]. However, because
of the big variation in nodule appearance, existing methods make restrictive
assumptions. For example, Maroulis et al. [4] study only hypoechoic thyroid
nodules. Tsantis et al. [5] use a multi-scale structure model in combination with
an explicit circular shape prior, which may fail in axial section planes due to
a possible confusion with circular arteries and veins. Furthermore, they work
mainly with iso- and hypoechoic nodules.

Instead of explicitly incorporating such restrictive assumptions in our system,
we allow the user to provide additional information in an easy-to-use intuitive in-
terface. We work with 3D US volumes of benign nodules and try to segment them
reliably in order to capture changes in echo structure, texture and echogenicity.
Working with 3D US has the advantage of utilizing the entire volume, e.g. for
echogenicity and echo texture analysis and for precise volume estimation (if there
is not an ellipsoidal shape). Though our ultimate goal is to classify the different
nodule types, this is currently not feasible due to the very limited amount of
training image data. Therefore this paper focuses on a semi-automatic approach
for segmenting the different benign nodule types.

2 Materials and Methods

As an initial baseline we tested the traditional watershed segmentation method.
Please note that certain parameters like flood level, minimum intensity or num-
ber of regions have to be adjusted. Fig. 2 shows on the left side the gradient
magnitude image, on the right side the result of the watershed segmentation.
The nodule structure was not extracted satisfactorily. Since the appearance of
nodules can vary significantly and is not sufficiently distinct from the surround-
ing structure, we believe that a semi-automatic segmentation approach is more
appropriate.

Couprie et al. [6] proposed a new family of seeded segmentation algorithms
called power watershed (PW). They extended the watershed algorithm into a
general framework for seeded/semi-automatic image segmentation which con-
tains graph cuts (GC), random walker (RW), and shortest path optimization
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Fig. 2. Left: gradient mag-
nitude image of Example 6);
right: watershed segmentation
result.

algorithms. Each image pixel is associated with a graph node and nodes are
connected with edges to their four neighboring pixels. Each edge has a weight
that is determined by a similarity measure, e.g. intensity, of the pixels at the
endpoints of the edge. A high weight indicates high similarity between the two
pixel intensities. The watershed of a function (seen as a topological surface)
is composed by the locations from which a drop of water could flow towards
different minima. In a framework of edge-weighted graphs, the watershed is de-
fined as a cut relative to the regional minima/maxima of the weight function.
Couprie et al. showed that GC and RW converge to maximum spanning forest
(MSF) cuts [6, 7]. The MSF computation is a key factor in this computational
efficiency. PW is based on Kruskal’s algorithm for MSF computation and on RW
for plateaus (edge sets with same weights connected to more than one labeled
tree). As part of our analysis we investigated different types of seeds: single
points, open and closed curves. Different benign nodule type categories were
evaluated (Fig. 3). The available image data contains only the region of inter-
est (ROI), not the whole thyroid gland. The volumes were obtained from the
General Electric Healthcare ultrasound system Voluson 730 Pro with a 3D RSP
6-16 MHz small part probe. The volume size varies between 199× 65× 181 and
199× 153× 169 with an isotropic voxel size of 0.28594 – 0.339378 mm. At this
stage, we only use 2D slices for evaluating the algorithm.

3 Results

Fig. 3 shows the seed placement, the original US slice and the segmentation
results of PW as well as the two gold standard segmentations (GSS) to obtain the
intra-observer variance. Note that for the GSS the 3D volume is more informative
when traversing through the slices than by analyzing a single 2D slice. Sensitivity
(SE), precision (PRE) and Dice coefficient (DICE) are calculated for the seven
examples. Additionally, in Table 1 the Jaccard index (JAC) of the two GSS as
well as the JAC of the PW result and each GSS is given. The computation time
is on average 0.02 seconds for one slice on a standard PC (Intel R⃝ Core

TM

2 Duo,
2.49 GHz, 3,5 GB of RAM).

4 Discussion

Some of our image data is problematic in terms of complex echogenicity patterns,
e.g. echo complex nodules or hypoechoic nodules with cystic parts (Fig. 3). Bet-
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(a) Example 1: echo complex nodule, partly solid, partly cystic

(b) Example 2: hypoechoic nodule, cystic

(c) Example 3: cyst

(d) Example 4: echo complex nodule

(e) Example 5: echo complex nodule

(f) Example 6a: echo complex nodule

(g) Example 6b: echo complex nodule

Fig. 3. First column: segmentation mask (gray: area to segment, white: foreground,
black: background); second column: original US slice; third column: manual gold
standard segmentations (red, green; overlap: yellow) and PW segmentation result
(blue). The sagittal section planes are shown. The diagnoses are listed below the
subfigures. Examples 6a and 6b show the result for two different input masks.
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Table 1. Quantitative results of the six examples: sensitivity (SE), precision (PRE),
Dice coefficient (DICE), Jaccard index (JAC) of two gold standard segmentations
(GSS) compared to the PW result. JAC GSS shows the JAC of the two GSS.

Example GSS 1 (green) GSS 2 (red) JAC

SE [%] PRE [%] DICE JAC SE [%] PRE [%] DICE JAC GSS

1 74.79 85.09 0.80 0.66 57.37 95.98 0.72 0.56 0.68

2 94.96 90.38 0.93 0.86 94.38 92.43 0.93 0.87 0.88

3 91.70 67.26 0.78 0.63 93.91 72.19 0.81 0.68 0.87

4 76.25 90.39 0.83 0.70 72.34 90.11 0.80 0.67 0.93

5 70.00 97.34 0.81 0.68 71.79 98.60 0.83 0.71 0.88

6a 61.78 89.73 0.73 0.57 60.40 92.80 0.73 0.57 0.90

6b 78.11 89.20 0.83 0.71 77.69 93.88 0.85 0.73 0.90

ter results can be achieved with more user input (Fig. 3: Example 6) but this
has to be studied carefully. It can be seen that the different occurrences of the
nodule types are roughly segmented (Examples 4 and 6b). Example 1 shows a
higher deviation for the two GSS than the other examples. An extension to 3D is
planned as well as the classification of different nodule types after segmentation,
e.g. in follow-up studies.
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