
LogicGeoObject: a Client-Side Architectural Model for
Aggregating Geospatial Dynamics from Sensor Web

Xuelin He1, Jeremy G. Morley2

1 Department of Civil, Environmental & Geomatic Engineering, University College London

ucfsxhe@ucl.ac.uk
2 Centre for Geospatial Science, University of Nottingham, UK

jeremy.morley@nottingham.ac.uk

Abstract. Sensor technology brings the pervasive capability for observing and
communicating real-world dynamics, while current GeoWeb lacks a model for
scalable aggregation of client-side logic applications that convey and apply
these dynamics. This research explores a client-side architectural model, ADIR
(short for Aggregating Dynamics, Interaction & Responsiveness), for
organizing geospatial logic applications. A core concept for ADIR is the
LogicGeoObject representing a granular unit of geospatial logic. Some inbuilt
mechanisms and facilities enable ADIR to cater for geospatially specialized
missions. An implementation named LeKML materializes this LogicGeoObject
conceptual component. This ADIR architectural model is expected to become a
geospatially self-owned, normalized and integral facility for building the
mashable Geospatial Logic Web.

Keywords: LogicGeoObject, LeKML, ADIR Architecture, mashability,
interoperability, Geospatial dynamics, Proximity-based interaction.

1 Introduction

The Geospatial Sensor Web [1] aims to mirror the real world with multi-source
dynamics of interests to provide an integrative context for decision making. Client-
side logic is the direct initiator and coordinator of a chained workflow involving back
and front ends, so the mashability [2] of client-side logic is a crucial factor in creating
an integrative and dynamic front-end for end users.

Most academic and industrial efforts have been concentrating on back-end
architectures and techniques. For example, sensor networks observe real-world
dynamics, and Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE)
services disseminate dynamic sensor data.

There are also certain efforts working on client-side functionality. For example,
Tillman & Garnett [3] explore integrated client-side access to OGC Web Services,
while the OGC Web Service Access Framework (OX-Framework) developed in the
52°North Community [4] provides a framework for plugging OGC Web Services
connectors. In nature, these integrated connectors are all common functional



2 Xuelin He1, Jeremy G. Morley2

components to be used by client-side applications. However, existing research is still
inadequate to make these client applications mashable and interoperable, i.e., to be
able to aggregate various independently developed elements of geospatial logic with
arbitrary scalability. It is challenging to mash up heterogeneous sources of applied
logic and services [5]. In a scenario based around mashing up various standalone
Sensor Web client applications, the potential clash of code logic as well as lack of
interoperability is really a headache.

How can we make heterogeneous sources of geospatial logic mashable and
interoperable? This research explores a fundamental solution to equip the GeoWeb
with an architectural model on the client side.

2 An Architecture Strategy: LogicGeoObject for Aggregating
Dynamics, Interaction & Responsiveness (ADIR)

2.1 Requirements.

To achieve generic mashability, an architecture needs to meet some essential
requirements:

a. Mashability. All units of geospatial logic, including those standalone GeoWeb
applications, can become mashable ingredients which can generate and manipulate
dynamic data respectively.

Fig. 1. Evolution from mashing up data into
mashing up logic generating and manipulating data dynamically

Web Services (GeoProcessing)

Logic 1 Logic 2 Logic i Logic n

DataData_1 Data_2 Data_i Data_n

Sensor Networks

mash up

LogicGeoObjects Message Bus

Object nObject 1 Object 2 Object i

Logic 1 Logic 2 Logic i Logic n Common

function

LogicData 1 Data 2 Data i Data n



LogicGeoObject: a Client-Side Architectural Model for Aggregating Geospatial Dynamics
from Sensor Web 3

b. Reusability. Mashable logic units including those crowd-sourced code programs,
which are distributed on the Web, can become on-demand code to be dynamically
incorporated into new integrative geospatial applications while spatio-temporal
context is changing on the fly.

c. Interoperability. All independent units can effectively inter-communicate in a
dynamic and loosely-coupled way for scalability, for cooperation to fulfil a certain
integrative task, or for incremental development of new applications making use of
existing on-demand code logic without necessarily requiring amendment.

d. Portability. Programmed logic units are platform-independent and application-
neutral. They can be mashed up into all kinds of geospatial platforms and new
applications, such as Standalone Geobrowsers, Web-browser-based mapping
applications, or even Desktop-GIS clients.

e. Geospatial suitability and specialization. In-built capability (model, mechanisms
and facilities) can cater for Geospatially specialized demands, such as context-
awareness, proximity-based communication and cooperation.

2.2 LogicGeoObject: an Architectural Model for Organizing Client-Side
Geospatial Logic.

LogicGeoObject for ADIR architecture.
This research proposes an architectural style named ADIR (short for Aggregating

dynamics, interaction & responsiveness), within which there is a core concept, Logic-
enabled Geospatial Objects (LogicGeoObjects for short). A LogicGeoObject is an
autonomous, self-contained unit of data profile and logic, with the granularity of the
mashed-up will vary from the whole application scale to individual geospatial
features. For example, a LogicGeoObject can refer to a geospatial application (or a
module), service, phenomenon, process, incident, activity, functionality, dynamic
sensor dataset, geospatial feature–level business or functional logic, etc.

As a result, client-side geospatial sensor applications can be organized as mashable
logic units, as illustrated in Fig. 1. Every LogicGeoObject can autonomously access
remote Web Services, and can interact with other dynamically aggregated
LogicGeoObjects locally via a Message Bus.

Logic-embedded KML: an implementation for LogicGeoObjects.
This conceptual LogicGeoObjects need to be represented by an appropriate data-

logic carrier, which is expected to meet the following requirements: format neutrality
that is independence from any proprietary platforms or products; potential capability
of coupling data (or data profile) with logic; suitable for exchanging geospatial
objects; mashability with scalability; Web-based capability for accessing,
communicating, deploying and exploiting; etc.

Some media, such as CityGML, KML, etc., are all competent candidates,
depending on the client-side environments and tasks. Here we demonstrate an
implementation using KML, i.e., Logic-embedded KML (LeKML for short),
encapsulating data profile and applied logic. It should be noted that this embedded



4 Xuelin He1, Jeremy G. Morley2

logic can deal with other geospatial data types and need not be limited to KML.
However KML format is convenient for presenting geospatial data. The
<NetworkLink> element in KML can supply an effective mechanism for dynamically
aggregating and activating/inactivating on-demand geospatial logic units based on
spatial-temporally -aware conditions.

To make this ADIR architecture work via the implementation of LeKML, this
research designs a series of LeKML facilities and mechanisms (showed in Fig. 2.),
including an approach to couple geospatial data profile and its corresponding applied
logic; a unified and platform-neutral programmable Object & Event Model for
LeKML; implementing LeKML-supporting capability (LeKML Library) for
geospatial platforms, i.e. parsing LeKML, executing logic procedures, and performing
in-built LeKML mechanisms and regulations; etc.

Runtime LeKML units can work in inter-isolated environments of different
executing threads, which can avoid potential clashes between various sources of
geospatial logic, and can satisfy parallelism of all LeKML units to process instant
updates from respective sensor networks.

Web browser
Geospatial Sensor Web

application

Google / Bing / Yahoo / …… Maps APIs
(Various Proprietary Objects & Events Models)

Intermediate Bridging Layer
(LeKML Matching Library)

Integrated SWE Services Connectors
(Library)

LeKML LeKM2 LeKMLLeKMLi

HTM

Neutral Layer

LeKMLLibrary APIs
(LeKML Objects & Events Model)

Fig. 2. Platform-neutral LogicGeoObjects:

Object & Event Model for bridging heterogeneities



LogicGeoObject: a Client-Side Architectural Model for Aggregating Geospatial Dynamics
from Sensor Web 5

Sentience and interoperability for LogicGeoObjects.
In addition to autonomy, mashability and the on-demand assembling mechanism,

sentience and interoperability are in-built characteristics for LogicGeoObjects. This
LeKML implementation can equip every runtime LogicGeoObject with an internal
event pool, and provide a common Message Bus bridging all LogicGeoObjects. A
LogicGeoObject can subscribe/listen to certain events of interest to get context-
awareness of both its internal state (such as monitoring data mutation) and the state of
their surrounding local or remote environment, so as to adapt its behavior and trigger
some actions. For example, generally a LogicGeoObjects is designed to only execute
(be active) under a specific geospatial conditions such as a certain geographic region
and level of detail of views being in the user’s viewport currently. So Geospatial
context can affect linking, assembling, loading, executing and activating/inactivating
LogicGeoObjects.

The Message Bus provides a flexible mechanism for plugging in/out
communication to enable interoperability. There is no directly-coupling relationship
among these participated LogicGeoObjects. Service discovery and event notification
are all based on indirect and anonymous approach via this Message Bus, on which
LogicGeoObjects just subscribe to own-interested types of events, and publish own-
generated events that may be interest to others. A key Geospatially-specialized
characteristic is the location (proximity)-based event-filtering capability built in this
Message Bus middleware. An event producer (LogicGeoObject) can specify a certain
geographic range of area (bounded by a shape) for constraining event propagation.
Only those targeted event consumers (LogicGeoObjects) locating within this area can
receive notifications of this event. This kind of event types involves the parameters
about valid vicinities. When dispatching events, this Message Bus can analyze these
parameters and just pick up those proximity-satisfied LogicGeoObjects (whether
stationary or mobile objects) for event delivery. Such proximity-based event-filtering
provides a mechanism to dynamically group objects for interoperation, and can
reduce the volume of event propagations to improve system performance.

3 Use Case and Scenario

LeKML is a purposely-designed format for a geospatial event-driven architecture
catering for responsive granularized client units of Sensor Web to facilitate geospatial
digital nervous systems [6]. A LogicGeoObject (implemented using a LeKML file)
can function as a smart real-time sensor data feed for dynamically receiving,
processing and presenting sensor data. As LogicGeoObjects are autonomous, data-
self-monitorable, situation-aware, event-responsive and condition-controlled, these
outstanding features make LogicGeoObjects a promising architecturae pattern on
building responsive client-side programs for geospatial Sensor Web.

In OGC’s SWE framework [7], a SWE client can be appropriately represented by a
LogicGeoObject. A LogicGeoObject can act as an autonomous message-interpreting
or event-processing engine unit with compact encapsulation of logic (which listens
and responds to events) and a data framework (which keeps or stores data parsed from



6 Xuelin He1, Jeremy G. Morley2

incoming messages or generated by procedural logic dynamically). This LeKML
programming pattern can sensitively monitor, interpret, analyze and process events
coming from inside (e.g. internal events such as UI interactions or data changes in this
local application) or messages from outside (e.g. external events such as sensor alerts
or Web Service Notifications from remote sources).

The mashability of autonomous LeKML files implies that scalable numbers of
SWE clients can aggregate within a GeoWeb client application or platform. From a
macro perspective, mashing up LogicGeoObjects will imply the aggregation of
scalable numbers of event-processing engines and sensor-feeds-consumers into a Web
Mapping client, which then implies the capability for the GeoWeb to sense and
interact with the real world responsively and instantly. Consequently this ADIR
architecture will improve GeoWeb with the capability to browse the physical world
with aggregated individual dynamics.

This LogicGeoObject model can be used to program various applied logic that
retrieve, receive archived or real-time sensor data from the Web, or generate model-
simulated data. Fig. 3 demonstrates an example employing this ADIR architecture to
aggregate and correlate LogicGeoObjects reflecting dynamics, interoperation and
responsiveness. Fig. 3(a) illustrates an original application [8] simulating
automatically driving without consideration on traffic control signals, while Fig. 3(b)
derives from an example in the COREX [9] project presenting the changes of traffic
light state from sensor data. Now these two originally separate and irrelevant
applications can be re-programmed with additional cooperative logic using this
LogicGeoObject model to fulfill mashability and interoperability. Loose and
dynamical correlation and communication can be achieved between the mobile
LogicGeoObjects of the vehicles and the stationary LogicGeoObjects of the traffic
lights, based on the spatio-temporal context. The Message Bus implemented in this
ADIR architecture can use the proximity-based mechanism to filter event
propagation, only delivering the events of traffic lights to those vehicles that are
currently within a designated proximity.

(a) Simulation of automatically driving (b) Proximity-filtered cooperation

Fig. 3. Aggregating and correlating LogicGeoObjects by mashing up LeKMLs



LogicGeoObject: a Client-Side Architectural Model for Aggregating Geospatial Dynamics
from Sensor Web 7

4 Conclusion

This ADIR with LogicGeoObject is a geospatially-specialized architecture for
organizing, communicating and aggregating geospatial logic, applications and
services with decentralized granularization and scalable mashability. This
architectural model can facilitate the aggregation of real-world dynamics from the
geospatial Sensor Web. The LogicGeoObject is a generically-adaptive conceptual
model that can be realized via various media carriers such as KML. The LeKML is
expected to become a geospatially self-owned, normalized and integral facility for
building mashable geospatial Logic Web.

References

1. Van Zyl, T. L., Simonis, I. & Mcferren, G.: The Sensor Web: Systems of Sensor Systems.
International Journal of Digital Earth, vol. 2, no. 1, pp. 1-14 (2008)

2. Kazman, R. & Chen, H. M.: The Metropolis Model: a New Logic for Development of
Crowdsourced Systems. Communications of the ACM, vol. 52, no. 7, pp. 76-84 (2009)

3. Tillman, S. & Garnett, J.: OGC's OWS Integrated Client Architecture, Design, and
Experience. OGC Discussion Paper. OGC Document Number: 05-116 (2006)

4. Broering, A., Jurrens, E. H., Jirka, S. & Stasch, C.: Development of Sensor Web
Applications with Open Source Software. In: Proceedings of First Open Source GIS UK
Conference (OSGIS 2009)

5. Benslimane, D., Dustdar, S. & Sheth, A.: Services Mashups: the New Generation of Web
Applications. IEEE Internet Computing, vol. 12, no. 5, pp. 13-15 (2008)

6. Longueville, B. D., Annoni, A., Schade, S., Ostlaender, N. & Whitmore, C.: Digital Earth's
Nervous System for Crisis Events: real-time Sensor Web Enablement of Volunteered
Geographic Information. International Journal of Digital Earth, vol. 5, pp. 1-18 (2010)

7. Botts, M., Percivall, G., Reed, C. & Davidson, J.: OGC's Sensor Web Enablement: Overview
and High Level Architecture. GeoSensor Networks, pp. 175-190 (2007)

8. Google Code Examples: Driving Simulator, [Online], Available from: <http://earth-api-
samples.googlecode.com/svn/trunk/demos/drive-simulator/index.html>.

9. Wu, M.: COREX Project Evaluation Report: CO-operating Real-time sentient objects-
Architecture and Experimental evaluation (2004), [Online], Available from:
<http://cortex.di.fc.ul.pt/Deliverables/WP4-D13.pdf>.


