
Abstract
Ontologies provide potential support for knowl-
edge and content management on P2P platform.
Although we can design ontology beforehand for
an application, it is argued that in P2P environ-
ments, static or predefined ontology cannot sat-
isfy the ever-changing requirements of all users.
So we propose every user should make proposals
for what kind of ontology is the most up to his
need. Collecting all these proposals (or votes)
helps to the drift of ontology. This paper presents
OntoVote, a scalable distributed votes collecting
mechanism based on application-level broadcast
trees and describes how OntoVote can be applied
to ontology drift on P2P platform by discussing
several problems involved in the voting process.

1 Introduction
With the rapid development of ontology technology and
P2P computing in the past few years, it has been suggested
that knowledge and content management on P2P platform
make use of ontologies to provide enhanced services to
users [Fensel et al., 2002]. To attain this object, some
limited but beneficial attempts have been made and even
more research plans are on the agenda. For example, the
open source project Edutella [Nejdl et al., 2002] aims to
provide an RDF-based metadata infrastructure for P2P
applications building on the JXTA framework [JXTA].
[Sato et al., 2002; Nodine et al., 2000; Arumugam et al.,
2002; etc] try to gather and share information and
knowledge with the help of ontologies in P2P or other
distributed environments.
 These attempts presume that ontologies have been
constructed beforehand and what they are concerned about
is how to use ontologies to exchange knowledge and to
enable efficient and accurate semantic search in distrib-
uted environments. In many application scenarios, such
predefined ontologies cannot catch up with the
ever-changing requirements of users. Instead, ontology
should drift with the appearance of new application re-
quirements. But just as [Fensel et al., 2002] has stated, one
cannot expect any maintenance to happen on the ontolo-

gies in P2P environments (in fact, users will not often
know what is in the ontologies on the machine, let alone
that they perform maintenance on them) and as a result, we
must design mechanisms that allow the ontologies to up-
date themselves, in order to cope with ontological drift.
[Fensel et al., 2002] has proposed several informal
mechanisms that use metaphors from social science
(opinion-forming, rumor-spreading, etc).
 In this paper, we propose a more formal mechanism of
ontology drift that is based on every user’s participating in
proposing the modification of ontology according to his
demands of the application. To relieve the burden of users,
proposals can be obtained by mining user activities (so
called emergent semantics [Maedche and Staab, 2001],
e.g., by mapping the modification of a directory name to
the modification of a concept in ontology) or by providing
users with a basic ontology together with visualization
tools with which the users can make modifications easily.
The modifications cause every user to hold a local on-
tology. These ontologies are characterized by:

• They are partly overlapped, but the same concepts may
be expressed in different words.

• There are a lot of noisy semantics, owing to the wrong
activities of users (e.g., a rookie of a domain may mod-
ify the domain ontology wrongly).

• Most of them cannot represent all aspects of the re-
quirements of users.

 In order to align concepts, to filter out noisy semantics,
and to indicate the principal direction of the development
of user requirements, we propose these local ontologies be
combined together to construct a common ontology. With
a common ontology, we can also improve the efficiency of
semantic search by avoiding too many mappings between
ontologies.
 One possible way to combine the ontologies from all
users is votes collecting: we collect the proposals of all
users to make some analyses; only the semantics hold by a
majority of the users (or we can set a threshold for the
proportion of users) is adopted by the common ontology.
The various minor semantics collected can also be treated
in different ways according to its value in use, which we
will describe in details afterwards.

OntoVote: a scalable distributed votes collecting mechanism for
ontology drift on P2P platform

Yanfeng Ge, Yong Yu, Xing Zhu, Shen Huang and Min Xu
Department of Computer Science and Engineering

Shanghai Jiao Tong University, Shanghai, 200030, P.R.China
{gyf, yyu, zhuxing, s_huang, xm}@sjtu.edu.cn

 Practically, a voting organizer (such as a chairman or a
tally clerk) is needed to accomplish the voting task. This
organizer can be considered as a server and serves for the
common interests of a community by publishing messages
to and receiving messages from all other voters. But in P2P
environments, it may be hard to find any volunteer to serve
the community for no evident good. Moreover, using a
server to collect votes will bring about scalability and
single node failure problems as discussed in many P2P
researches. To get rid of such problems, we use OntoVote,
a scalable distributed votes collecting mechanism based on
application-level broadcast trees, to collect votes on P2P
platform.
 The rest of the paper is organized as follows. Section 2
describes the design of OntoVote. Section 3 applies On-
toVote to the process of ontology drift. Section 4 makes a
conclusion of our work and proposes our future work.

2 OntoVote
In practice, a voting process can be divided into three
successive phases. The first is a preparing phase, notify-
ing all participants to get ready their votes. The second is a
collecting phase, collecting votes from all participants.
And the third phase is devoted to publishing the voting
results to all participants.

(a) (b)
Figure 1. The phases of votes collecting. (a) Phase One: pre-
paring phase and Phase Three: results publishing phase. (b)
Phase Two: collecting phase.

OntoVote realizes the voting process in a fully decen-
tralized manner. It uses broadcasts and a reverse operation
on an application-level broadcast tree to fulfill the three
phases of a voting. As in Figure 1, at the first and the third
phase in (a), notifying messages and voting results are
published from root to leaves. At the second phase in (b), a
node on the tree first collects votes from all of its children,
then it sums up the votes from the children together with
its own votes, and submits the total votes to its parent.
 To make use of broadcast trees, OntoVote supposes
there are a large number of groups on P2P platform. Every
peer can choose several groups to join in. Every group
forms a reliable application-level broadcast tree with
mechanisms introduced in some researches [Castro et al.,
2002; Zhuang et al., 2001; etc], which is out of the scope
of this paper (one can simply view a broadcast tree as a
tree). Votes collecting happens inside a group. OntoVote
provides best-quality votes collecting service (i.e., col-
lecting exactly one copy of votes from every participant)

by extending the existing application-level broadcast
mechanisms.

2.1 Basic Implementation of OntoVote
In this section we introduce the basic implementation of
OntoVote, mainly discussing two important procedures:
getCredential() and deliver(msg). getCredential validates
a voting. deliver handles the messages on broadcast trees.

Voting Validity
Before a new round of voting in a group is initiated, the
root node of the broadcast tree of the group calls getCre-
dential to get a voting credential for the voting. A voting
credential is granted only when a majority of group
members are online so that they are capable to take par-
ticipant in the voting, otherwise, the voting results plotted
by a minority of group members will be invalid and mis-
leading. Current version of OntoVote simply assumes that
all votes are available, so a voting credential is always
granted. This assumption is correct if all peers publish
their votes to rendezvoux, which are online most of the
time, just as in JXTA [JXTA].

Voting Process
The three phases of a voting process is realized in the
procedure deliver(msg), which is called whenever a node
receives a message whose destination is the node itself.
The parameter msg contains the received message. The
pseudo code for this procedure, simplified for clarity, in
shown in Figure 2.
 The following variables are used in the pseudo code:
msg.type is the message type, which may be PREPARE,
SUBMIT or PUBLISH, corresponding to the three phases
of a voting. msg.groupID indicates the group the message
belongs to. groups is a set of groups that the node has
joined in, groups[].children and groups[].parent are
bi-directed links of the broadcast tree of the group. To
avoid conflicts among different voting tasks, we treat each
voting process as a transaction and use transID to distin-
guish them from each other globally and uniquely. trans is
a set of transactions that the node is involved in,
trans[].votePool is the vote pool which keeps an entry for
the votes from every child (i.e., keep the votes from every
child separately).
 After the root node has got a voting credential, it sends
PREPARE messages to its children, thus starting the new
round of voting. On receiving a PREPARE message, a
node sets up a new transaction environment by clearing the
vote pool for the transaction (line 2). If the node is a leaf
node, it sends a SUBMIT message to itself to start the
collecting phase (lines 3, 4). Otherwise, it recursively
passes on the message to its children (lines 5, 6).
 When a node receives a SUBMIT message from a child,
it adds the votes from the child to its vote pool in line 7 (If
the child has submitted votes before, the old submitted
votes in the vote pool will be replaced with new submitted
votes). After all children of the node have submitted votes,
the node adds the votes in the pool and its own votes to-
gether, then submits the total votes to its parent (lines 10 to

12). These lines may be called for several times allowing
for node failures, which will be discussed in details in the
next section.
 After getting votes from all of its children, the root node
extracts some useful knowledge from the votes and re-
publishes the knowledge to its children (lines 8, 9), thus
any node in the group can update its local knowledge base
(lines 13 to 15).
 As is seen, the basic implementation of OntoVote is
very simple. But if we want to collect votes in a distributed
fashion reliably and efficiently on network, there are still
more things to be considered.

2.2 Reliability
On account of the unreliable nature of Internet, a broadcast
tree may break at any time, including during voting
process. If we collect votes from rendezvoux, the rate of
failure will decrease sharply, but we still cannot avoid
node failures completely. Therefore, OntoVote proposes
repairing the broadcast tree for the best-quality collecting
purpose.
 Periodically, each node in the tree sends a heart beat
message to its children, if any, and the children respond
with answering messages. A child suspects its parent is
faulty when it fails to receive heartbeat messages and so
does the parent, i.e. when two nodes lose in touch with
each other, every one of them will suspect the other has
failed. But in fact, any one of them may be really faulty, or
none of them are faulty, but the link between them is
broken.
 Upon detection of the failure of its parent, a child tries to
connect to a new parent. To maintain the performance of
fully distributed votes collecting, the tree’s balance should
be approximately retained, so the new parent is chosen
from the tree nodes that are nearly at the same level with
the old parent in a uniformly-random way.
 If node failures occur during publishing phases (i.e., the
first or the third phase in Figure 1), it is a trivial task to

ensure that every node on the tree would receive the pub-
lished message: the new parent sends all published mes-
sages it has received or will receive to the new child, and
the child either relays the messages to it children or dis-
cards the messages, according to whether or not it has
received the identical messages before.
 However, if node failures occur during collecting phase,
things become a bit more complicated: if a node fails at the
very time that some children have submitted votes to it and
some not, how about these submitted votes? If the failing
node has disconnected from the network, the submitted
votes will be lost. To avoid losing votes, the children of the
failing node can resubmit votes to a new parent. But if the
failing node has not disconnected from the network or if
the failing node has submitted votes to parent before its
failure, straightforward resubmitting will result in redun-
dant votes on the broadcast tree. In the rest of this section,
we first put forward the repairing protocol of OntoVote for
collecting phase, then we show that this protocol satisfy
our best-quality collecting purpose by leaving out as few
votes as possible and by avoiding counting in the same
copy of votes repeatedly.

Repairing Protocol for Collecting Phase
As in Figure 3, let FN be a failing node from the aspect of
its child CN. CN reconnects to a new parent NPN. We use
P[X] to denote the parent of a node X. T∆ is a config-
urable time limit. After CN reconnects to NPN, the re-
pairing protocol goes as follows:
(1) If CN has not submitted votes to FN yet, then CN will

submit votes to NPN after it collects votes from all of
its children.
Else if CN has submitted votes to FN, but the interval
from the submission of CN to the failure of FN is still
within the time limit T∆ , then CN will submit votes
to NPN immediately.

deliver(msg)
1 switch msg.type is
2 PREPARE: empty trans[msg.tranID].votePool
3 if(isLeafNode(msg.groupID))
4 send SUBMIT message to self
5 else ∀ node in groups[msg.groupID].Children
6 send(msg, node)
7 SUBMIT: addToPool(msg.votes, msg.source)
8 if(isRootNode(msg.groupID) AND allChildrenSubmittedVotes())
9 analyze voting results and send PUBLISH message to self
10 else if (allChildrenSubmittedVotes())
11 msg.votes=countVotes(trans[msg.tranID].votePool)+local votes
12 send(msg, groups[msg.groupID].parent)
13PUBLISH: updateKB(msg)
14 ∀ node in groups[msg.groupID].Children
15 send(msg, node)

Figure 2. The implementation of deliver

Else CN submits a null vote as a placeholder to NPN
immediately.

(2) After NPN adds the votes from CN to vote pool:
If NPN has never submitted votes before (that is,
NPN is still waiting for some other children), or if
NPN finds that the votes from CN are null, then stop.
Else NPN recounts the total votes (including that of
CN) and resubmits the total votes to P[NPN]. The
recounting and resubmitting process will be iterated
up the tree until some ancestor of NPN that has not
submitted votes yet.

(3) If CN has submitted votes to FN and the interval from
the submission of CN to the failure of FN is still
within the time limit T∆ , then FN will delete the
entry of CN in its vote pool. If FN has also submitted
votes to P[FN], it will recount the total votes it has
collected (excluding that of CN) and resubmit the
total votes to P[FN]. The recounting and resubmit-
ting process will be iterated up the tree until some
ancestor of FN that has not submitted votes yet.

FN

CN

NPN

FN'NPN'

CN'

Figure 3. Repairing broadcast trees for best-quality collecting

Explanation of the Repairing Protocol
To explain the repairing protocol, we first neglect the time
limit T∆ let T∆ =0). The main idea of the protocol is that
when a node finds its parent is faulty, it doesn’t know
whether the submitted votes are lost or not, so it resubmits
votes to a new parent, and at the same time, the original
ancestors of the node try to eliminate the votes from the
node by recounting and resubmitting the total votes in a
bottom up manner. The repairing protocol is passive in
that although the old submitted votes may have been re-
layed to many ancestors, they are rolled back to start
afresh.
 How well does this repairing protocol perform? In par-
ticular, can it really guarantee we collect exact one piece
of votes from every node online even when several nodes
of the tree fail concurrently or subsequently?

 To illustrate the robustness of this protocol, assume in
Figure 3, CN loses in touch with FN and reconnects to
NPN. If CN has not submitted votes to FN yet, it is all right
for CN to collect votes from all children and to submit the
votes to NPN. Otherwise, CN resubmits votes to NPN and
the previously submitted votes to FN should be eliminated
thoroughly. If FN is not disconnected from the network,
P[FN] may find FN is still alive, so FN and its ancestors
can delete the copy of votes of CN from their vote pools.
Assume before this deleting process is performed till some
ancestor CN’, CN’ finds its parent FN’ is also faulty and
reconnects to NPN’, then the deleting process will be
continued on the new path. Meanwhile, FN’ will start a
new deleting process for the votes of CN’, which contains
the votes of CN. If FN is disconnected from the network,
then P[FN] will delete votes of FN, which also contains
the votes of CN. Such recursive call of the deleting process
ensures the old copy of the votes of CN is deleted com-
pletely.
 Obviously, the resubmitting process and the deleting
process for the votes of CN are executed along two dif-
ferent paths to root, so if the processes can reach the root,
they are not likely to always arrive at the same time. To
avoid losing votes or introducing redundant votes, after all
children have submitted votes, the root node should wait
for a period of time that is long enough for the two proc-
esses to be finished. But the problem is that while the root
is waiting for the repairing processes for one node, another
node may happen to fail. The passive repairing processes
will be called again, despite that the votes submitted by the
node may have reached the root. As a result, the root will
be trapped in an ever-waiting deadlock.
 We adjust the passive repairing protocol by introducing
some active ingredient to avoid ever-waiting: If a node has
submitted votes to its parent long before it finds the parent
is dead (i.e., beyond a time limit T∆ which is much longer
than the collecting time of the node), then it simply as-
sumes that the parent has also submitted votes and there
are several ancestors that have received the votes. Because
the parent (if it is not disconnected from the network) and
every one of the ancestors that have kept the votes longer
than T∆ will try their best (just as the node itself does) to
relay the votes to the root, it is not necessary for the node
to resubmit votes.
 With this compromised protocol, the loss of votes will
still occur if several nearest ancestors of a node disconnect
from the network concurrently, but the probability of such
loss is greatly less than before (the above mentioned
scenario).

2.3 Efficiency
Recall that before a node submits votes to its parent, it will
sum up the votes in the vote pool together with its own
votes. OntoVote does not export the summation method
but leaves it to application level. The implementation of
the method is highly related to the efficiency of OntoVote:
when more and more votes are collected, message packets
that encapsulate votes will become larger and larger.

Without additional disposal, the packets will overwhelm
the network and the scalability of OntoVote will be no
better than that of a client-server model. So we should
follow several principles in the design of this method.
 To understand our principles, one can view a message
packet that contains votes as a sheet. Every vote has its
entry on the sheet. The number of entries a sheet can hold
is limited. By combining the entries on several sheets
together to form a new sheet and by relaying the new sheet
to parent node, a voting participant fulfils his collecting
task. Here are the design principles described with the
above metaphor:

• Merge identical entries. To save on the space of a sheet,
votes devoted to the same candidate should be merged
together, that is, each entry should maintain a counter of
the votes that fall in this entry. Actually, this is the
original meaning of votes counting.

• Filter minor entries. Because the number of the entries a
sheet can hold is limited, one should filter out the least
counting entries when the sheet overflows. The contents
of the least counting entries are likely to be noisy or
unimportant to most users, so it is acceptable to filter
them out.

• Choose a proper-sized sheet. Each application should
choose a proper-sized sheet by simulation or by prob-
ability analysis to avoid a phenomenon that we call
“Entry Jolts”: although some vote may be very large
altogether, it happens to be filtered out every time be-
fore it can accumulate. “Entry Jolts” is determined by
such factors as data makeup, data distribution on the
network, filtering algorithms and sheet sizes, etc. To
reduce the probability of “Entry Jolts”, a large-sized
sheet is preferred, but we’d better get an upper bound of
the size of the sheet, size larger than which brings about
no evidently-good performance but more consumption
of the network bandwidth.

In addition to the implementation of the summation
method, other factors such as the balance of a broadcast
tree, which has been addressed above, also affect the ef-
ficiency of OntoVote. But they are beyond our considera-
tions.

3 Application of OntoVote to Ontology
Drift

In section 1, we give our thought that colleting votes from
all users can drive the drift of a common ontology and in
section 2, we show that it is possible to collect votes in P2P
environments with OntoVote. In this section, we will try to
apply OntoVote to the process of ontology drift. Our im-
plementation of ontology drift is part of the knowledge
acquisition module developed under our undergoing PICQ
project. PICQ is dedicated to paper sharing on P2P plat-
form with semantic web technologies. In PICQ, users are
grouped according to research interest. Every group has a
common ontology. New fields or new application re-
quirements will introduce new concepts or attributes in the

ontology. The common ontology is used to provide more
powerful semantic search service.

3.1 Process of Ontology Drift
We use the following process to cope with the drift of a
common ontology:
(1) When a new group is created, the creator provides a

basic common ontology.
(2) When a new user joins the group, he is provided with

the currently available common ontology. If the user
is dissatisfied with the common ontology, he can
modify it with ontology visualization tools to create a
local ontology. The visualization tools can map on-
tology elements to application elements (e.g., direc-
tories, bookmarks, etc) to hide ontologies from ele-
mentary users. They can also provide powerful sup-
port for expert users to modify ontologies directly
and easily. In any case, the modifications of the local
ontology are translated into the user’s votes on the
common ontology. By tracking user modifications,
system can also partly do the mapping between the
local ontology and the common ontology.

(3) At a proper time, all votes are collected and the
common ontology is modified with the voting results.

(4) After the new common ontology is published to all
peers, the mapping between the local ontology and
the new common ontology is adjusted again.

(5) Iterate the above process.
To put it simply, the whole is an iterated process. Let LO
(Local Ontology) denote the local ontology of a user and
let CO (Common Ontology) denote the common ontology
of a community. LC is the mapping between LO and CO.
The iterated process can be described as follows:
(1) LO=CO, LC=Identity Mapping
(2) User modifies LO. System records user modifications

and automatically adjusts LC.
(3) At a proper time, system translates modifications into

votes, collects all votes and modifies CO background.
(4) Publish CO to every peer and adjust LC again.
(5) Goto (2).
There are some issues that need to be further addressed in
the management of the ontologies involved in this process,
e.g., how to track user modifications? Why do we keep the
mapping between the common ontology and the local
ontology and how to do this mapping (Obviously, it is not
enough to do the mapping between two ontologies just by
tracking the changes of either ontology)? How to derive a
user’s modification proposals (or votes) on the common
ontology from his modifications of the local ontology?
What the system should do if there is a conflict of opinions?
In the following sections, we will discuss these problems
one by one.

3.2 Tracking User Modifications
The problem for tracking changes within ontologies or
within a knowledge base has been addressed in [Kiryakov
and Ognyanov, 2002]. [Kiryakov and Ognyanov, 2002]
proposes using RDF statements (i.e. triples) instead of
resources or literals as the smallest trackable pieces of
knowledge. The two basic types of updates in a repository
are addition and removal of a statement. To track series of
updates that are bundled together according to the logic of
the application, it uses batch update that works with the
repository in a transactional fashion.

DS

P2P

is_a

Pure Hybrid

is_ais_a

DS

P2P

is_a

Figure 4. Two Different Local Ontologies

A

B

C

is_a

D

is_a

A

B
E

is_a
History

r1

r1

Figure 5. Tracking Modifications from Initial Common Ontol-

ogy to Current Local Ontology

In regard to reflecting the modification proposals of users,
we think atomic update (additions or removals of state-
ments) plus batch update is almost appropriate and only a
small change is made: because we treat modification
proposals as votes and OntoVote requires identical votes
to be merged, but two batch updates that represent the
same proposals may not match exactly (e.g., in Figure 4,
both of two users propose the sub-tree rooted at the con-
cept “P2P” be deleted, but the two sets of removed triples
can’t match exactly. One set contains two more triples
than the other.), so we propose the application should
induce some patterns from batch updates, which reflect the
intention of a user. Two batch updates are matched if and
only if both their patterns and the parameters of the pat-
terns are matched. For instance, the deleting of the two
sub-trees rooted at “P2P” in Figure 4 can be matched if a

pattern for the deleting of a sub-tree is defined and the root
node of the sub-tree is used as a parameter of the pattern.
 Our approach for tracking modifications is illustrated in
Figure 5. The left structure of the figure denotes the initial
common ontology that the user imported from the com-
munity; the right structure is the local ontology. A history
of modifications is recorded in a way something like that
of [Kiryakov and Ognyanov, 2002]:

History:
1. remove sub-tree(C): remove <C is_a A>, remove<D

is_a C>
2. add <E is_a A>

3.3 Maintenance of Ontology Mapping
In P2P applications, every user should be allowed to hold a
local ontology to keep his personality. He uses this local
ontology to raise queries. The queries are translated into
the common ontology before being sent to other peers to
improve search efficiency and the recall of search results.
So it is of great importance to maintain the mapping be-
tween the local ontology and the common ontology.
 By tracking the modifications of the local ontology and
the common ontology in step (2) and step (3) in the process
of ontology drift, we can partly do the mapping between
them. For instance, if a resource in either ontology is
renamed, the mapping can be adjusted. But how about
adding a new resource? How can we know whether or not
the new resource in one ontology can be mapped to some
old resource in another ontology? This problem may be
solved with emergent semantics [Maedche and Staab,
2001; Fensel et al., 2002]: after the user adds a new re-
source, he queries with this new resource for a period of
time. During this period, emergent semantics helps to find
out the mappings between the new resource and some
other resources in the common ontology or other local
ontologies (e.g. same file categorized to different concepts
indicates alignment). The derived mappings are expressed
with probabilities, based on the number of the instances
that indicating alignment. Different peers may find dif-
ferent mappings, or same mappings with different prob-
abilities. At a proper time, all new resources and the
mappings among them are collected and coordinated with
a new round of voting. Among the resources that can be
mapped to each other, the one that wins the vote is adopted
by the common ontology, the noisy semantics (votes that
are below a threshold) is discarded and the rest are mapped
to the one accepted. This process is something like the
revision of a dictionary in social life: after a new word
emerges, people use this word in their communication and
every one gets a scrap of the meanings of the word (e.g.,
find synonyms of the word). When a dictionary is revised,
all meanings of the word is collected and validated, and if
necessary, the word is lexicalized.
 In practice, the mapping results that are automatically
obtained and maintained may not always be sound, so a
semi-automatic ontology mapping mechanism is preferred,
i.e., advanced users are allowed to manually correct the

mapping results before or after any round of votes col-
lecting.

3.4 Generation of Votes
Before votes collecting, the modifications of the local
ontology should be translated into the modification pro-
posals (votes) on the common ontology. Or else, just as
section 3.2 has stated, although the proposals of two users
are identical, they cannot be merged.
 Currently, our system generates the votes in a rather
simple way, which is mainly based on the mapping be-
tween the common ontology and the local ontology. Below
we discuss how our approach works in various conditions.
 Firstly, if the mapping between the common ontology
and the local ontology is well maintained, and the pattern
of the modification has been defined by the application,
then the translation is straightforward. For instance, in
Figure 6, assume concept “DC” is mapped to concept
“Distributed Computing” and concept “P2P” is mapped to
concept “Peer-to-Peer”. If a user adds two new concepts
“Pure” and “Hybrid” under concept “P2P” in his local
ontology, then we think the user proposes adding these
concepts under concept “Peer-to-Peer” in the common
ontology; If the user deletes the tree rooted at “DC”
completely, then we think the user proposes deleting the
tree rooted at “Distributed Computing” completely.

Distributed
Computing

Client-Server Peer-to-Peer

Flat Hierarchical

is_a is_a

is_a is_a

DC

P2P

Pure Hybrid

is_a

is_ais_a

Figure 6. Common Ontology and Local Ontology

 Secondly, if no appropriate mapping information is
obtained, then we either ignore the modification or
transform the modification into a list of sub-modifications,
according to the specification of the modification pattern.
For example, in Figure 6, if no corresponding concept of
“DC” is found in the common ontology, then we either
discard the vote or split the vote to generate a new one to
delete the sub-tree rooted at the concept “peer-to-peer”.
 Thirdly, for some modifications (e.g., additions of
statements), the mapping information is not necessary at
all, i.e., additions of statements that have no relations with
other resources in the common ontology are allowed in our
system.
 The last but not the least, advanced users are allowed to
modify the local copy of the common ontology directly, if
they are pleased to do that. We also allow a user to replace

his local ontology with the common ontology, if he is
dissatisfied with his local ontology or he does not want his
opinions diverge too much from those of the masses, thus
the old modification records are cleared and the new
modifications of the local ontology can be more easily
translated into those of the common ontology.\
 It should be noted that our system tries to translate every
record in the modification history into a vote. If the
modifications do not interact, this approach may work well.
However, sometimes an appropriate combination of addi-
tions and removals may trigger complex "non monotonic"
updates of the ontology, e.g., a user first adds “B” as a
sub-concept of “A” and adds “C” as a sub-concept of “B”,
and later, he finds that “C” is unnecessary, so he deletes it
and adds “B” as a sub-concept of “A” directly. This se-
quence of modifications will be translated into a list of
votes. If most members of the community believe that “B”
is a sub-concept of “A”, it is likely that the last proper
modification of the user will be accepted. However, if
many users make the similar wrong modifications before,
the wrong modifications may also be accepted. To filter
out the wrong modifications, we’d better find out the last
determination of the user (or the real intention of the user)
before we construct a vote from a sequence of related
modifications. Unfortunately, our system has not realized
this object yet, and we will leave it to the future.

3.5 Resolving Conflicts
It is obvious that there are conflicts among all collected
proposals, e.g., some users suggest deleting concept
“Peer-to-Peer”, while others suggest adding “Pure” as a
sub-concept of “Peer-to-Peer”.
 One straightforward way to resolve a conflict is to
choose among the conflicting proposals the one with the
largest proportion. However, such simple con-
flict-resolving mechanism will bring about the instability
of the common ontology, especially when the proportion
of the adopted proposal is not overwhelming.
 To understand this problem, assume there are totally
100 users in the community. At the beginning, 60 percent
of them suggest adding the concept “Peer-to-Peer” (or
concepts that are equivalences of “Peer-to-Peer”) to the
common ontology, thus “Peer-to-Peer” is accepted in the
common ontology. In the second round of voting, assume
30 users suggest deleting the concept “Peer-to-Peer”
(these 30 users may come from the previously 60 percent
of users, or advanced users who modify common ontology
directly, or users who reimport and modify their local
ontologies, etc.), while 10 users add sub-concepts “Pure”
under “Peer-to-Peer” and the rest make no modifications.
After the voting, if the system chooses to delete
“Peer-to-Peer”, then the local ontologies that still record
the addition of “Peer-to-Peer” will propose adding
“Peer-to-Peer” to the common ontology again in the next
round of voting. Because the proportion of this proposal is
still large enough, it may be adopted again by the common
ontology, which causes the instability of the common
ontology.

 Intuitively, We can get rid of the instability problem by
tracking the history of voting. But till now, this idea has
not been tested yet. Instead, we take a rather simpler
measure to ease the instability problem, i.e., we set dif-
ferent thresholds for modifications with different patterns
to be accepted in the common ontology. Because the
common ontology is mainly used to improve search effi-
ciency and the recall of search results, it is better to contain
more resources than not. So we set low thresholds for
additions of statements and high thresholds for deleting
operations. In this way, when a conflict occurs, it is more
likely that a proposal with an overwhelming vote propor-
tion exists, and that the opposite proposals may be too
trivial to bring about instability.

4 Conclusions and Future Work
Ontology drift is important in many requirement-sensitive
P2P applications. We proposed collecting the modification
proposals (votes) from all users to drive ontology drift. To
collect votes on P2P platform, we presented OntoVote, a
scalable distributed votes collecting mechanism based on
application-level broadcast trees. OntoVote is reliable in
that it leaves out as few votes as possible and avoids
counting in the same copy of votes repeatedly. We also
summarized several design principles of vote counting for
OntoVote to work efficiently. And finally, we tried to
apply OntoVote to the process of ontology drift with the
discussion of several problems encountered in the appli-
cation.
 In future, we will research ontology drift further by
obtaining more general modification patterns of ontology.
we will also try to make the drifting process more stable.
Besides, we will research some further issues of voting,
such as voting security and the using of the opinions of
authoritative members. There is also a problem that
common ontology based on voting will neglect the views
of an individual (or a small group of people) that brings
real innovation and original perspectives on community’s
point of view. We will find out whether intercommunica-
tion between peers helps to solve this problem.

References
[Fensel et al., 2002] Dieter Fensel, Steffen Staab, Rudi
Studer and Frank van Harmelen. Peer-2-Peer Enabled
Semantic Web for Knowledge Management. Ontol-
ogy-based Knowledge Management: Exploiting the Se-
mantic Web, Wiley, London, UK, 2002.

[Sato et al., 2002] Hiroyuki Sato, Yutaka Abe and Atsushi
Kanai. Hyperclip: a Tool for Gathering and Sharing
Metadata on Users’ Activities by Using Peer-to-Peer
Technology. WWW2002 Workshop on Real world RDF
and Semantic web applications (2002).

[Nodine et al., 2000] Marian Nodine, Jerry Fowler,
Tomasz Ksiezyk, Brad Perry, Malcolm Taylor, Amy
Unruh. Active Information Gathering in Infosleuth. In

International Journal of Cooperative Information Systems
9:1/2, 2000, pp. 3-28.

[Arumugam et al., 2002] Madhan Arumugam, Amit Sheth,
I. Budak Arpinar. Towards Peer-to-Peer Semantic Web: A
Distributed Environment for Sharing Semantic
Knowledge on the Web. WWW2002 Workshop on Real
world RDF and Semantic web applications (2002).

[Nejdl et al., 2002] Wolfgang Nejdl, Boris Wolf, Changtao
Qu, Stefan Decker, Michael Sintek et al.. EDUTELLA: A
P2P Networking Infrastructure Based on RDF. In proc. of
WWW11, May 2002,Hawaii.

[JXTA] Project JXTA: An open, innovative collaboration.
White paper, available at www.jxta.org.

[Castro et al., 2002] Miguel Castro, Peter Druschel,
Anne-Marie Kermarrec and Antony Rowstron. Scribe: A
Large-scale and Decentralized Application-level
Broadcast Infrastructure. IEEE Journal on Selected Areas
in Communication (JSAC), Vol. 20, No, 8, October 2002.

[Zhuang et al., 2001] Shelley Q. Zhuang, Ben Y. Zhao,
Anthony D. Joseph, Randy H. Katz and John Kubiatowicz.
Bayeux: An Architecture for Scalable and Fault-tolerant
Wide-area Data Dissemination. In proc. of the Eleventh
International Workshop on Network and Operating
System Support for Digital Audio and Video(N OSSDAV
2001), Port Jefferson, NY, June 2001.

[Maedche and Staab, 2001] Alexander Maedche, Steffen
Staab. Ontology Learning for the Semantic Web. IEEE
Intelligent Systems, 16(2):72-79, March/April 2001.

[Kiryakov and Ognyanov, 2002] Atanas Kiryakov and
Damyan Ognyanov. Tracking Changes in RDF(S)
Repositories. In proc. of 13th International Conference on
Knowledge Engineering and Knowledge Management
EKAW02, Siguenza, Spain, 1-4 Oct. 2002.

