
Towards The Essential Flow Model

Oliver Kopp, Frank Leymann, Tobias Unger, and Sebastian Wagner∗

Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Abstract Many of today’s manufacturing projects are so complex that they cannot
be conducted only by one company anymore. Current approaches for modeling
inter-enterprise processes require an early decision on the way activities are
connected. The modeler has to decide between control flow and message flow.
This implies an early decision on the used IT-technology. We present a modeling
approach where this decision is postponed to a later modeling phase. This enables
modelers to concentrate on the essentials of the model.

1 Introduction

Many of today’s manufacturing projects are so complex that they cannot be conducted
only by one company anymore. These collaborations are mostly modeled and executed
using business processes. State of the art in modeling collaborations is to model (1) a
centralized process model, where the involved partners are represented by swimlanes
and connected by sequence flows or to model (2) a choreography, where each partner
is represented in a separate pool and connected via message flows. Thus, a modeler
has to decide early on how the connection between two activities is established. This
has also implications on the used IT infrastructure: In case a single process is used, a
single workflow engine coordinates the activities. In case multiple processes are used, a
workflow is executed at each participant in the choreography. These workflows have to
exchange the agreed messages in order to coordinate. We argue that the decision whether
to use a single workflow engine or multiple workflow engines should be taken after
capturing the business process. We call such a model “Essential Flow Model”.

The idea of an Essential Flow Model is illustrated in Fig. 1. First, an Essential
Flow Model is modeled. In principle, this model may be implemented by one of the
following infrastructure types: (1) As orchestration, where the workflow is executed by
a single workflow engine and the activities are implemented by services or a human
task manager [17], (2) as choreography, where a group of activities (typically one
lane) becomes a participant in the choreography and thus is executed within a separate
workflows engines, (3) using a distributed workflow engine, where the workflow engine
is distributed across the different participants. A detailed explanation of each option is
provided in the remainder of the paper.

We use BPMN2.0 [20] as illustration for our concept. The concept, however, is
independent of the language used. For instance, it is possible to model an Essential Flow
Model using PM-Graphs [17] and use BPEL as implementation language [5].

∗ The authors contributed equally to this paper.



implementation 
managed by

C
ol

la
bo

ra
tio

n
P

Q

O
rc

he
st

ra
tio

n

Application
Server 2

Human
Task 

Manager

Application
Server 1

Workflow 
Engine

P
2

Q
2

Workflow 
Engine 1

Workflow 
Engine 2

Application
Server 2

Application
Server 1

Human Task 
Manager Distributed 

Worfklow Engine

P3

Q3

Human Task 
Manager

Application
Server 2

Application
Server 1

Implement as 
Orchestration

Im
pl

em
en

t a
s 

C
ho

re
og

ra
ph

y Implement Using a 

Distributed Workflow 

Engine

Essential Flow Model

Orchestration

Choreography

Figure 1. Idea of the Essential Flow Modeling Approach

The remainder of the paper starts with an overview on the Essential Flow Model in
Sect. 2. There, an example model is provided. The different implementation possibilities
are illustrated using this example in Sect. 3. Related work is presented in Sect. 4. Finally,
we conclude and present an outlook on future work in Sect. 5.

2 Designing an Essential Flow Model

An Essential Flow Model (EFM) captures the essential flows in a business process. In
this paper, an EFM is a restricted BPMN process. For modeling control flow, we allow
tasks, sequence flow, data-based gateways, one none start event, and one none end event
only. The process may only be started by one none start event. We allow one pool only,
which may contain multiple lanes. Each lane in the pool is interpreted as distinct entity
having the responsibility for the activities contained in its lane. In future work, we intend
to extend EFMs with other constructs, such as IT system assignments or data access
rules. These extensions are out of scope of this paper.

An EFM is designed by humans to agree on a collaboration. In this paper, we assume
that such a model has been created by business experts. In other scenarios, an EFM might
be created out of existing interacting processes. For instance, a BPMN collaboration
could be transformed to a BPMN process and thus forming an EFM. Such a merging
procedure is part of our future work.

Figure 2 depicts an example scenario of an EFM. In this scenario a train manufacturer
wants to develop a new rail car prototype. In the first activity the requirements of the
rail car prototype are determined (e. g., the number of seats and toilets in the car). Based
on these requirements the chassis of the rail car has to be designed by an engineer of
the train manufacturer. After the design is completed, the wheels and the axes for the



C
ol

la
bo

ra
tio

n Tr
ai

n 
M

an
uf

ac
tu

re
r

W
he

el
 

M
an

uf
ac

tu
re

r

Determine 
Rail Car 

Requirements

Design 
Wheels

Construct 
Wheels

Deliver 
Wheels

Construct 
Rail Car 
Protoype

Design
Rail Car 
Chassis

Figure 2. Example Scenario Modeled as Essential Flow Model

rail car are ordered from another organizational unit. This wheel manufacturing unit has
to design the wheels in a way such that they fit into the chassis design. Thus, they have
to use the chassis design as foundation. After the wheels are designed, prototypes are
constructed and delivered to the train manufacturer, which is then able to construct a
prototype of the rail car.

In the scenario, each activity has been configured to be a user task. It is also possible
to configure each task as other type or postpone this decision to the implementation
phase.

3 EFM Implementation Approaches

After the EFM was modeled, it has to be transformed to an executable process model.
The first step is to create disjoint sets of the activities. Each set defines the activities
of one workflow. In the following, we use swimlanes to define these sets. In case all
activities should be executed in one workflow, one has to decide on using a standard
workflow engine or a distributed workflow engine. In case the activities are distributed
in more than one set, the choreography approach has to be taken. In each approach, the
generated process models are abstract process models. That means, the process models
are not executable by themselves, but have to be enriched with information needed for
execution. This includes typing of variables, adding tasks for data transformation, and
binding to concrete services.

Implementation as Orchestration The EFM is implemented on a single workflow
engine, i.ė., the activities of each participant are executed on the same engine. The
activity implementations of human activities can be performed by one or several human
task managers (this depends on the binding information). Tasks which have not been
typed, have to be typed. That means, one has to decide whether to use a user task, a
service task, or another specific task type for implementing a task. In case a task has
already assigned a task type, this assignment may not be changed. Figure 3 presents the
orchestration model for our scenario. The final orchestration is executed on a workflow
engine of the Train Manufacturer. The human tasks of the Train Manufacturer are
executed by its human task manager and the human tasks of the Wheel Manufacturer are



O
rc

he
st

ra
tio

n Determine 
Rail Car 

Requirements

Design 
Wheels

Construct 
Wheels

Deliver 
Wheels

Construct 
Rail Car 
Protoype

Design
Rail Car 
Chassis

Human Task Manager of WM1

Human Task Manager of TMWorkflow 
Engine of 

TM

Figure 3. Train Prototype Scenario Implemented as Orchestration

executed by its own task manager, which is coordinated by the workflow engine of the
Train Manufacturer.

Implementation as Choreography This approach splits the implementation of the
EFM into one process model per participant. A workflow engine is assigned to one
or more swimlanes. In our case, the Wheel Manufacturer activities are executed on a
different workflow engine than the Train Manufacturer activities. Each EFM control
flow dependency between activities assigned to different workflows is replaced by an
intermediate message throw event, a message link, and a message catch event. The
intermediate message throw event is connected to the source of the sequence flow to
be replaced and the intermediate message catch event is connected to the target of the
sequence flow. The first intermediate message catch event has to be replaced with a
message start event. The other intermediate message events have to be connected to
the preceding intermediate message throw events. The precedence relation is given
by the precedence relation of the original EFM. It may be the case that this approach
is too straight-forward for workflows where the control flow is split using gateways

TM
W

M
2

Determine 
Rail Car 

Requirements

Design 
Wheels

Construct 
Wheels

Deliver 
Wheels

Construct
Rail Car 
Protoype

Design
Rail Car 
Chassis

Human Task Manager of WM2

Human Task Manager of TM

Workflow 
Engine of 

WM2

Workflow 
Engine of 

TM

Figure 4. Train Prototype Scenario Implemented as Choreography



Determine 
Rail Car 

Requirements

Design 
Wheels

Construct 
Wheels

Deliver 
Wheels

Construct
Rail Car 
Protoype

Design
Rail Car 
Chassis

Human Task Manager of WM3

Human Task Manager of TM

Executed nearby HTM of TM
Executed nearby HTM of WM3

Distributed 
Workflow Engine

Figure 5. Train Prototype Scenario Implemented by a Distributed Workflow Engine

and where multiple intermediate message catch events without a local predecessor are
generated. These aspects have been discussed by Khalaf and Leymann [9,11] in the case
of BPEL (see Sect. 4). A discussion of these aspects regarding BPMN should be tackled
in future work. Figure 4 presents the final transformation result. The result forms a
BPMN collaboration diagram, which is an interconnection choreography model [4]. The
difference to the orchestration is that the activities of the Train Manufacturer are executed
by its workflow engine and the activities of the Wheel Manufacturer are executed by its
own workflow engine. The task manager of the Wheel Manufacturer is coordinated by
its own the workflow engine.

Implementation using a Distributed Workflow Engine In a distributed workflow
engine activities of the same workflow are executed on different nodes (e. g., a physical
or virtual machine instance). For example, the distribution of the activities may be
defined based on certain technical constraints or based on service level agreements.
A technical constraint may be the overall decrease of the amount of data exchanged
remotely between two activities by letting data-intensive activities on the same node.
In our example the activities “Design Wheels” and “Design Train Chassis” might run
on the same node as they exchange data as illustrated by Fig. 5. This means, that the
EFM implementation may not be split by swimlanes (although this is still possible in
this approach) but also by other criteria. Consequently, an appropriate fragmentation that
meets those criteria has to be defined, this can be either done by a workflow designer
or the fragmentation is automatically derived by the distributed workflow engine (e. g.
based on the workload of their nodes). Based on the fragmentation the activities are
distributed. Wutke et al. [18,24] describe concrete runtime behavior and further concepts
of distributed workflow engines.

4 Related Work

Khalaf et al. [9–12] discuss issues when doing a role-based decomposition of a single
BPEL process into multiple BPEL processes. The main difficulties are (1) splitting



the control flow such that the split processes resemble the same order of activities, (2)
correlating exchanged messages to the right the instances of each partner process, (3)
keeping data consistent across partners, and (4) coordinating split scopes and split loops.
The distribution of control flow among the split processes is solved by propagating the
status of each link using messages [11]. Khalaf solves the correlation problem by using
a globally unique correlation set for each process instance [9]. In case tasks read from
and write to the same variable in the unsplit model and are placed in different partners
in the split model, the data has to be kept consistent. A solution is to separate data flow
from control flow [10]. In case of split scopes, the fault handling has to be coordinated:
A fault occuring on one partner has to lead to a proper handling in the respective parts of
the other part [12]. A transfer of these concepts to BPMN is part of our future work.

Koschmider et al. [16] discuss perspective-compliant business process design. One
perspective is the view-based perspective. The EFM model may be regarded as one view
on the collaboration, whereas the choreography model may be regarded as another view.
When going from abstract process models to executable process models, the modeling
perspective changes (analysis vs. execution). Koschmider et al. propose a tool supporting
different perspectives by using process fragments. In our work, we do not focus on
different views, but argue that the decision on the concrete connection between activities
should be delayed to the implementation phase. The concrete mapping between the
different views is left as future work.

Werth [23] presents a method, a metamodel, and a notation for “collaborative busi-
ness processes”. In his method, the designer has to distinguish between material flow,
information flow, energy flow, and control flow between organizations. Werth leaves the
implementation as future work. In our work, control flow is the only connection between
tasks and we sketch a way from the model to an implementation.

Van der Aalst et al. [1] propose a method to describe a business process spanning mul-
tiple partners. They use open worfklow nets (oWFNs [19]) to model a “process-oriented
contract which can be seen as the composition of the public views of all participating
parties.” [19]. The decision whether a place is an interface place is an integral part of the
method. In our approach, this decision is deferred to the implementation phase. Decker
et al. [5] describe a method for going from a choreography to executable processes.
The starting point is a choreography, where the realization choice has been made in the
starting model. The same applies for the methods proposed by Barros et al. [2], Dijkman
and Dumas [6], Greiner et al. [8], and Werth [23].

Barros et al. [3] reason about possible interaction types between participants. In
the current version of the EFMs, request-for-bid scenarios cannot be directly expressed.
Thus, our current research is to investigate whether and how those scenarios have to be
supported by EFMs.

Kiepuszewski et al. [13] reason about fundamental control flow structures in work-
flows. In contrast, our paper focused on the overall fundamental ingredients of a model
where a workflow (possibly involving multiple parties) is modeled. Patig and Casanova-
Brito [21] conducted a survey on general requirements of process modeling languages.
Users mostly started modeling by capturing the interactions between departments. The
survey did not distinguish between control flow and data flow.



Zimmermann et al. [25] present a concrete reusable architectural decisions framework
for enterprise application development. Our decision on whether to use one process
engine or a set of engines falls in the class RADM-C, where conceptional decisions have
to be tackled.

We assumed that the modeling starts by defining an EFM model. Another start might
be existing processes, which are merged into an EFM. Regarding merging, Steinmetz [22]
shows how an interconnection choreography model can be generated out of multiple
interacting processes. Kopp et al. [15] show how an interconnection choreography model
can be converted to an interaction choreography model. This approach might also be
used to merge multiple pools into a single pool, which is out of scope of this paper.

When generating process models, which need to be modified by a process modeler,
the consistent and clear layout becomes important [14]. In this paper, we do not investi-
gate on appropriate process visualization techniques and process layouting techniques [7],
but leave their application as future work.

5 Conclusion and Outlook

We have presented the idea of an “Essential Flow Model”. This model captures the
most basic flows between activities required for communicating the model between the
involved modelers and with the persons responsible for the implementation of the model.
We have presented three different approaches to implement an EFM. Each mapping from
an EFM to a skeleton for each implementation approach has been explained using an
example. Thus, our next step is to provide a formal presentation of the transformation.

The presented EFM is very basic. In industrial settings, the participants have to
agree to use certain IT systems or agree on data access rules. We are going to integrate
these issues in a refined version of the EFM. The result is a concrete description of the
ingredients of an EFM. In addition, we assumed that an EFM is created from scratch
by humans. An EFM might be created out of an existing BPMN collaboration. This
conversion is part of our future work.

Acknowledgments This work is partially funded by the projects ALLOW (http://
www.allow-project.eu/), COMPAS (http://www.compas-ict.eu), and MAS-
TER (http://www.master-fp7.eu/). They all are part of the EU 7th Framework
Programme (contract no. FP7-213339, FP7-215175, and FP7-216917).

References

1. Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty Contracts:
Agreeing and Implementing Interorganizational Processes. Comput. J. 53(1), 90–106 (2008)

2. Barros, A., Decker, G., Dumas, M.: Multi-staged and Multi-viewpoint Service Choreography
Modelling. In: SEMSOA (2007)

3. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: BPM. Springer
(2005)

4. Decker, G., Kopp, O., Barros, A.: An Introduction to Service Choreographies. Information
Technology 50(2), 122–127 (Feb 2008)

5. Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting services: From specification to
execution. Data & Knowledge Engineering 68(10), 946–972 (Apr 2009)



6. Dijkman, R., Dumas, M.: Service-oriented Design: A Multi-viewpoint Approach. International
Journal of Cooperative Information Systems 13(4), 337–368 (2004)

7. Effinger, P., Jogsch, N., Seiz, S.: On a study of layout aesthetics for business process models
using BPMN. In: Second International Workshop on Business Process Modeling Notation.
Springer (2010)

8. Greiner, U., Lippe, S., Kahl, T., Ziemann, J., Jkel, F.W.: Designing and Implementing Cross-
Organizational Business Processes - Description and Application of a Modelling Framework,
pp. 137–147. Springer (2007)

9. Khalaf, R.: Supporting business process fragmentation while maintaining operational se-
mantics: a BPEL perspective. Doctoral thesis, University of Stuttgart, Faculty of Computer
Science, Electrical Engineering, and Information Technology, Germany (2008)

10. Khalaf, R., Kopp, O., Leymann, F.: Maintaining Data Dependencies Across BPEL Process
Fragments. International Journal of Cooperative Information Systems (IJCIS) 17(3), 259–282
(September 2008)

11. Khalaf, R., Leymann, F.: Role-based Decomposition of Business Processes using BPEL. In:
ICWS 2006. IEEE Computer Society (2006)

12. Khalaf, R., Leymann, F.: Coordination for Fragmented Loops and Scopes in a Distributed
Business Process. In: BPM. Springer (2010)

13. Kiepuszewski, B., ter Hofstede, A., van der Aalst, W.: Fundamentals of control flow in
workflows. Acta Informatica 39(3), 143–209 (2003)

14. Kitzmann, I., Konig, C., Lubke, D., Singer, L.: A Simple Algorithm for Automatic Layout of
BPMN Processes. E-Commerce Technology 0, 391–398 (2009)

15. Kopp, O., Leymann, F., Wu, F.: Mapping interconnection choreography models to interaction
choreography models. In: ZEUS (2010)

16. Koschmider, A., Habryn, F., Gottschalk, F.: Real Support for Perspective-Compliant Business
Process Design. In: Aalst, W., Mylopoulos, J., Sadeh, N.M., Shaw, M.J., Szyperski, C.,
Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management Workshops. Springer
(2009)

17. Leymann, F., Roller, D.: Production Workflow – Concepts and Techniques. Prentice Hall PTR
(2000)

18. Martin, D., Wutke, D., Leymann, F.: A Novel Approach to Decentralized Workflow Enactment.
In: EDOC. IEEE Computer Society (2008)

19. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the SOA. Annals
of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

20. Object Management Group (OMG): Business Process Model and Notation (BPMN) Version
2.0 (2011), OMG Document Number: formal/2011-01-03

21. Patig, S., Casanova-Brito, V.: Requirements of Process Modeling Languages – Results from
an Empirical Investigation. In: Wirtschaftsinformatik (2011)

22. Steinmetz, T.: Generierung einer BPEL4Chor-Beschreibung aus BPEL-Prozessen. Student
Thesis: University of Stuttgart, Institute of Architecture of Application Systems (2007)

23. Werth, D.: Modellierung unternehmensübergreifender Geschäftsprozesse – Modelle, Notation
und Vorgehen fr Geschäftsprozesse. Salzwasser Verlag (2007)

24. Wutke, D., Martin, D., Leymann, F.: Tuplespace-based Infrastructure for Decentralized
Enactment of BPEL Processes. In: Wirtschaftsinformatik. OCG, Vienna, Austria (2009)

25. Zimmermann, O., Zdun, U., Gschwind, T., Leymann, F.: Combining Pattern Languages and
Reusable Architectural Decision Models into a Comprehensive and Comprehensible Design
Method. In: WICSA (2008)


