
Towards A Semantic & Domain-agnostic
Scientific Data Management System

Yuan-Fang Li, Gavin Kennedy, Faith Davies, Jane Hunter

School of ITEE
The University Of Queensland

Brisbane, Queensland 4072, Australia
{uqyli4,g.kennedy1,f.davies,j.hunter}@uq.edu.au

Abstract. Data management has become a critical challenge faced by
a wide array of scientific disciplines in which the provision of sound
data management is pivotal to the achievements and impact of research
projects. Massive and rapidly expanding amounts of experimental data
combined with evolving domain models contribute to making data man-
agement an increasingly challenging task that warrants a rethinking of
its design. In this paper we present PODD, an ontology-centric data
management system architecture for scientific experimental data that is
extensible and domain independent. In this architecture, the behaviors
of domain concepts and objects are specified entirely by ontological enti-
ties, around which all data management tasks are carried out. The open
and semantic nature of ontology languages also makes PODD amenable
to greater data reuse and interoperability. To evaluate this architecture,
we have developed a data management system and applied it to the
challenge of managing phenomics data.

1 Introduction

Data management is the practice of managing (digital) data and resources, en-
compassing a wide range of activities including acquisition, storage, retrieval,
discovery, access control, publication and archival. For many data-intensive scien-
tific disciplines such as life sciences and bioinformatics, sound data management
informs and enables research and has become an indispensable component [2].

The need for effective data management is, in a large part, due to the fact
that massive amounts of digital data are being generated by modern instruments.
Furthermore, the fast evolution of technologies/processes and discovery of new
scientific knowledge require flexibility in handling dynamic data and models in
data management systems. Among others, there are three core challenges for
effective data management in scientific research.

– The ability to provide a data management service that can manage large
quantities of heterogeneous data in multiple formats (text, image, and video)
and not be constrained to a finite set of experimental, imaging and measure-
ment platforms or data formats.



– The ability to support metadata-related services to provide context and
structure for data within the data management service to facilitate effec-
tive search, query and dissemination.

– The ability to accommodate evolving and emerging knowledge, technologies
and processes.

Database systems have traditionally been used successfully to manage re-
search data [9] in which database schemas are used as domain models to capture
attributes and relationships of domain concepts. One implication of the above
approach is that domain models need to stay relatively stable as database ex-
tension and migration is often an error-prone and laborious task. Consequently,
this approach is not suitable for domains where data and model evolution is the
norm rather than the exception.

Ontology language OWL possesses expressive, rigorously-defined semantics
and non-ambiguous syntaxes. it has been designed to be open and extensible
and to support knowledge and data exchange on the Web [1, 8, 10]. These intrin-
sic characteristics make them an ideal conceptual platform on which a flexible
scientific data management system can be built.

In this paper, we present our work in designing PODD (Phenomics Ontology
Driven Data Management), a semantic, domain-agnostic architecture for systems
managing data generated from scientific experiments that employes ontologies as
domain models. The ontology-based domain model is at the core of PODD as it
defines the behavior of entities in scientific experiments. Logical structure of data
is therefore maintained and enforced via ontological definitions and reasoning,
and not via database schemas and associated constraints.

In [7] we described an early version of the PODD data repository to meet
the above challenges facing the Australian phenomics research community. We
would like to emphasize that although the PODD system presented in [7] is
geared towards phenomics research, the ontology-centric architecture we propose
in this paper is actually domain-independent and can be applied in any scientific
discipline where research activities and output can be conceptually organized in
a structured manner.

The rest of the paper is organized as follows. In Section 2 we present related
work and give a brief overview of the motivation and goals of the PODD project.
Section 3 presents the ontology-based architecture for data management systems.
In Section 4, we discuss the PODD ontologies in more detail and show how the
ontology-based modeling approach is used in the life cycle of repository concepts
and objects. In Section 5, we describe the PODD data management system we
developed based on the ontology-driven architecture. Finally, Section 6 concludes
the paper and identifies future directions.

2 Overview

In this section, we survey a number of related systems and architectures. Fol-
lowing the survey, we present the motivation behind the ontology-centric ar-



chitecture and the goals we wish to achieve with the PODD data management
system.

2.1 Related Work

A number of ontology repositories and search engines have been developed.
Repositories such as NCBO Bioportal1 and Cupboard2 publish ontologies and
usually support functionalities including full-text & faceted search, hierarchical
browsing, visualization and cross references. Ontology search engines such as
Swoogle3 and Watson4 index and store large numbers of ontologies and make
them searchable.

There are also prior works in developing content repository systems. Fe-
dora Commons5 is a widely used open-source, general-purpose digital resource
management system based on the principles of modularity, interoperability and
extensibility. In Fedora Commons, abstract concepts are defined as models, on
which inter-relationships and behaviors can be further defined. Data in Fedora
Commons repositories are organized into objects, which have datastreams that
stores either metadata or data. PhenomicDB [3] is a multi-organism phenotype-
genotype database for a number of model organisms. It contains data from a
number of primary databases including FlyBase, Phenobank, OMIM and NCBI
Gene. More recently, an ontology-based approach has been taken in VIVO [6]
to model, organize and integrate research activities and researcher profile in an
institutional setting.

The Ontology for Biomedical Investigations (OBI)6 is an ongoing effort aimed
at developing an integrative ontology for biological and clinical investigations. It
takes a top-down approach by reusing high-level, abstract concepts from other
ontologies. It includes 2,600+ OWL classes and 10,000+ logical axioms (in the
import closure of the OBI ontology). OBI is very comprehensive and is suitable as
an annotation vocabulary for structured data. However, its size and complexity
(SHOIN (D)) makes reasoning and querying of OBI-based ontologies and RDF
graphs computationally expensive and time consuming7, making it impractical
as a domain model for a data management system where such reasoning may
need to be performed repeatedly.

Functional Genomics Experiment Model (FuGe) [5] is an extensible model-
ing framework for high-throughput functional genomics experiments, aiming at
increasing the consistency and efficiency of experimental data modeling for the
1 http://bioportal.bioontology.org/
2 http://kmi-web06.open.ac.uk:8081/cupboard
3 http://swoogle.umbc.edu/
4 http://watson.kmi.open.ac.uk/
5 http://www.fedora-commons.org/
6 http://purl.obolibrary.org/obo/obi
7 On a MacBook Pro with 2GB memory and an Intel Core 2 Duo 2.4 GHz processor,

classifying the OBI ontology (version “2009-11-06”) takes more than 6 minutes using
Pellet in Protégé. Such performance is clearly inadequate for a data management
system.



molecular biology research community. Centered around the concept of exper-
iments, it encompasses domain concepts such as protocols, samples and data.
FuGe is developed using UML from which XML Schemas and database defini-
tions are derived. The FuGe model covers not only biology-specific information
such as molecules, data and investigation; it also defines commonly used con-
cepts such as audit, reference and measurement. Extensions in FuGe are defined
using inheritance of UML classes.

We feel that the extensibility we require is not met by FuGe as any addi-
tion of new concepts would require amendment of database schemas and code.
Moreover, the concrete objects reside in relational databases, making subsequent
integration and dissemination more difficult.

2.2 Motivation & Goals

Phenomics is a fast-growing, data-intensive discipline with new technologies and
processes rapidly emerging and evolving. As a result, its domain model and
data management systems must also be able to evolve to handle the complexity,
dynamics and scale of the data.

In phenomics, data is usually captured and measured by both high- and
low-throughput phenotyping devices. The scale of measurement can be from the
micro or cellular level, through the level of a single organism, and up to the
macro or field level. Imaging, measurement and analysis of organisms on such a
large scale will produce an enormous amount of data.

Phenomics research makes use of a large variety of imaging and measurement
platforms. For example, in mouse histopathology and organ pathology research,
the Zeiss “Mirax Scan” scanner is used to scan microscope slides. In clinical
pathology, a Flow Cytometer is used to capture laser diffraction images of blood
samples. In plant research, the Lemnatec Scanalyzer is used to capture RGB im-
ages of plants in growth cabinets. The Fluorogroscan system is used in quenching
analysis: the partitioning of light energy used in photosynthesis on model plants
such as Arabidopsis. Other devices, such as the Infrared Thermography Camera
are used to capture leaf temperature and the SPAD Meter is used to measure
the chlorophyll content of plant leaves. New devices and instruments will also
be employed as they become available. Moreover, existing instruments may be
upgraded so that they can capture more information. The PODD domain model
needs to be flexible to accommodate these continual changes in the formats,
resolution and source of the data.

Because an organism’s phenotype is often the product of the organism’s ge-
netic makeup, its development stage, disease conditions and its environment,
any measurement made against an organism needs to be recorded in the context
of these other metadata. Consequently the opportunity exists to create a repos-
itory to record the data, the contextual data (metadata) and data classifiers in
the form of ontological or structured vocabulary terms. The structured nature
of this repository will support both manual and autonomous data discovery as
well as provide the infrastructure for data based collaborations with domestic
and international research institutions. Currently there are no such integrated



systems available. The goals of PODD are to capture, manage, annotate and
distribute the data generated by mouse and plant phenomics research activities.

3 The Architecture of the Ontology-Centric Data
Management System

The most distinguishing characteristic of PODD is the central role that ontolo-
gies play. In this architecture, raw data is not stored in a flat structure but
is attached to domain objects organized in a logical, hierarchical system, de-
fined according to the domain model that represents the structure of research
activities.

Current content management systems typically have a relatively static do-
main model and hardwire it as relational schemas and foreign key constraints in
a custom relational database independent from the underlying repository sys-
tem. Consequently, the information pertinent to each concrete object is stored
in this custom database as well. As stated in the previous section, this approach
is unsuitable for dynamic environments where conceptual changes are common.

To effectively support a dynamic conceptual framework, the domain model
in the proposed architecture is defined using OWL ontologies, in which: OWL
classes represent domain concepts; OWL properties define concept attributes
and their relationships; OWL restrictions specify constraints on concepts and
finally; OWL individuals define concrete domain objects where attributes and
relationships are defined using OWL assertions. Raw data files are attached to
concrete domain objects.

Such a conceptual architecture alleviates the problem of imposing hard rela-
tional constraints in a database which is difficult to extend/change.

Another drawback of existing systems is that there can be only one domain
model. When a concept needs to be updated, all the existing objects defined by
that concept need to be updated accordingly, which may be undesirable, inap-
propriate and time-consuming. This is, unfortunately, unavoidable as long as the
domain model is defined using database schemas. In our proposed architecture,
as concept and object definitions are stored in the repository, such changes can
be versioned so that existing instance objects can remain legitimate when in-
tegrity validation is performed as they can still refer to the previous conceptual
definitions.

The high-level design of ontology-centric architecture takes a modular and
layered approach, as can be seen in Figure 1. At the foundation is the data ac-
cess layer, consisting of an underlying repository system, an RDF triple store,
an in-house database that stores essential information and a full-text search en-
gine. This layer is responsible for low-level tasks when the creation, modification
and deletion of concepts and objects occur. The business logic layer in the
middle is responsible for managing concepts and objects, such as versioning,
object conversion and integrity validation. The security layer controls access
(authentication and authorization) to concepts and objects and guards all oper-
ations on them. At the top of the stack is the interface layer, where the data



Business Logic Layer

Object 
Management

Concept 
management

Reasoning 
Service

Security Layer

Interface Layer

Object 
Services

Metadata 
Services

Publishing 
Services

Search & 
Query

Data Access Layer

Repository RDF Triple 
Store

Database

users, roles

Search 
Index

Fig. 1. A high-level depiction of components in the ontology-driven architecture.

management system can be accessed using a number of interfaces such as a Web
browser or API calls.

In developing the ontology-centric architecture, the following design decisions
have been made to balance expressivity, flexibility and conceptual clarity. These
decisions have also been based on a survey of user requirements from scientists
within a range of research organizations including the Australian Plant Phe-
nomics Facility (APPF) as well as the Institute of Molecular Biology (IMB),
Queensland Brain Institute (QBI) and Australian Institute of Bioengineering &
Nanotechnology (AIBN), working on collaborative research projects that involve
large scale data and distributed teams:

– There is a top-level domain concept, called Project , under which other
concepts (such as Investigation and Material) reside in a hierarchical manner.

– Access control (authorization) is defined on the Project level but not on an
individual object level, i.e., a given user will have the same access rights for
all objects within a given project.

– Within a Project hierarchy, objects are in a parent-child relationship in a
tree structure such that each child can only have one parent. This ensures
that access rights are properly propagated from parent to child and there is
no chance of confusion.

– Additionally, inter-object, many-to-many reference relationships can be de-
fined to enhance flexibility of the architecture as it allows arbitrary links
between objects to be established.

– Objects cannot be shared across Projects. Instead, objects must be copied
from one project and pasted into another one. Such a rule simplifies object
management with the elimination of possible side-effects caused by sharing
object between projects.

– There should be no interference between different versions of a given concept
and between objects that are instances of different concept versions.



4 Ontology-based Domain Modeling

As we emphasized previously, the domain model should be flexible enough to
accommodate the rapid changes and dynamic nature of scientific research. In
this section, we present the base ontology and the roles it plays in the ontology-
centric architecture. It should be noted that the architecture proposed here is
domain-independent and it can be applied to any scientific discipline that shares
a similar high-level domain model.

Note that concepts in the ontologies presented here are models of entities
(activities and objects) in scientific investigations: they define the logical struc-
ture of investigations - objects in an investigation and logic relationship between
these objects. In a sense, the ontologies serve as a data model of the investigations
in the scientific domain for which the data management system is developed. In
other words, the ontologies are used as a model for the data management system
implementation.

4.1 The Base Domain Ontology

Inspired by FuGe [5] and OBI8, we created the base domain ontology in OWL to
define essential domain concepts, their attributes and inter-relationships in an
object-oriented fashion. As stated in the previous section, domain concepts will
be modeled as OWL classes; relationships between concepts and object attributes
will be modeled as OWL object and datatype properties. Concrete objects will
be modeled as OWL individuals.

Project

Project Plan Investigation

Design

Design
Event

Environment

Environment
Event

Container

Container 
Event

Material

Material
Event

Treatment
Event

Observation

Treatment 
Material

Data

Data 
Event

Investigation
Event

Platform Analysis Process

Protocol

Fig. 2. Main concepts in the base ontology in the parent-child relationship contains.

For an overview, inter-relationships of some of the domain concepts in this
ontology are shown in Figure 2. It is worthing pointing out that concepts in
this figure are shown in the logical hierarchy but not the inheritance hierarchy:
it describes the structure of a scientific investigation and how different activ-
ities/objects in it are related to each other. For brevity reasons, OWL object
properties and cross references between classes are not shown. We also defined
the following design principles for the domain ontology.
8 http://purl.obolibrary.org/obo/obi



– All essential domain concepts are modeled as sub-classes of an abstract top-
level OWL class PODDConcept that captures common attributes and rela-
tionships.

– All relationships between domain concepts are captured by domain prop-
erties, which can be further divided into two property hierarchies, one for
parent-child relationships and the other for reference relation-ships. Each of
the two hierarchies have an abstract top-level property, called contains and
refersTo, respectively.

– All parent-child relationships are modeled in a property hierarchy as sub-
properties of the abstract property contains, and all reference relationships
are modeled in another property hierarchy as sub-properties of the abstract
property refersTo.

– For each domain concept C, one property is defined in each of the above
hierarchies with its range defined to be C. The domains of such properties
are not specified so that they can be used by any applicable domain concept
to establish a relationship between them.

– Class attributes are modeled using OWL restrictions.
– Essential domain concepts can be sub-classed to provide more specialized

and refined information.
– To ensure that each object can have at most one parent object, the inverse

property of contains, isContainedBy, is defined so that a max cardinality
restriction can be added to the top-level concept PODDConcept to enforce
it.

The definitions of some top-level constructs are summarized in Figure 3, in
OWL DL syntax [4].

PODDConcept v > > v ∀ contains.PODDConcept

isContainedBy v (−contains) PODDConcept v≤ 1 isContainedBy

> v refersTo.PODDConcept

Fig. 3. Top-level ontology constructs in the PODD ontology

In our model, we use OWL properties to model object attributes. When the
possible values of a particular attribute can be enumerated, such as project status
(active, inactive and completed), an enumerated OWL class is used to represent
all the values. When an attribute represents a grouping of some values, such
as accessions, where an accession has a source and a number, an OWL class is
also defined to represent the grouping. In this case, auxiliary OWL properties
are defined to project out specific values in the grouping. In all other cases,
attributes are modeled using datatypes.

Figure 4 shows the partial definition of the OWL class Project . Restric-
tion (1), for example, states that any Project instance must have exactly one
ProjectPlan (through the predicate hasProjectPlan, the range of which is ProjectPlan).
The other 3 restrictions are similarly defined.



Project v = 1 hasProjectPlan u (1)

v ≥ 1 hasInvestigation u (2)

v = 1 hasStartDate u (3)

v ≤ 1 hasPublicationDate (4)

Fig. 4. Partial OWL Definition for the Project concept.

4.2 Roles of Domain Ontologies in Object Life Cycle

The base ontology defines essential concepts independent of the domain. Domain-
specific knowledge can be incorporated by extending the base ontology for discipline-
specific systems.

As stated in Section 1, the ontology-based domain model is at the center of
the whole life cycle of objects. In this subsection, we briefly describe the roles
that the domain ontologies perform at various stages of the object life cycle.

Ingestion When an object is created, its definition is expressed in ontological
terms. Such definitions will be used to (a) guide the rendering of object
creation interfaces and (b) validate the attributes and inter-object relation-
ships the user has entered before the object is ingested. When an object is
ingested, its definitions are stored as RDF assertions.

Retrieval & update When an object is retrieved from the repository, its at-
tributes and inter-object relations are retrieved from its RDF assertions,
which are used to drive the on-screen rendering. When any value is updated,
it is validated and updated in this object’s RDF assertions.

Query & search An object’s assertions will be stored in an RDF triple store,
which can be queried using SPARQL. Similarly, ontological definitions are
indexed to provide functionalities such as full-text search and faceted brows-
ing.

Publication & export When an object is published or exported, its metadata,
in RDF, will be retrieved and exported.

5 The PODD Data Management System

Based on the ontology-centric architecture presented in Section 3 and the base
ontology presented in Section 4 we implemented the PODD data management
system - with the aim being to meet the data management challenges faced by
the Australian phenomics research community.

To describe domain knowledge in phenomics, we extend the base ontology by
defining additional concepts including Genotype, Gene, Phenotype and Sequence
as subclasses of PODDConcept. Additional OWL object and datatype properties
are also defined to model the attributes and relationships of these concepts, as
shown in Figure 5. Note that Phenotype is a subclass of Observation.



Project

Project Plan Investigation

… Material

Observation/
Phenotype

Measurement

Measurement 
Parameter

Material
Event

Treatment
Event

Sex

Treatment 
Material

Data

Data 
Event

Investigation
Event

Platform Analysis Genotype

Gene

Allele

Marker

Sequence

…

Fig. 5. Extended Domain Ontology for phenomics.

Figure 6 shows some new definitions in the domain ontology. Note that the
last two definitions integrate the new definitions with those in the base ontology.

Also note that the concepts defined in the PODD ontologies do not necessarily
represent real-world entities/reality. For example, the OWL class Gene does not
intend to be a class that describes genes in general. Rather, it is used to describe
genes that are observed/involved in scientific investigations.

Genotype v PODDConcept

v ∀ hasGene.Gene

v≤ 1 hasEcotype

v≤ 1 hasSubspecies

· · ·
Project v ∀ hasGenotype.Genotype

Material v ∀ hasPhenotype.Phenotype

v ∀ refersToGenotype.Genotype

Gene v PODDConcept

v ∀ hasSequence.Sequence

v≤ 1 hasAlias

v≤ 1 hasChromosome

· · ·

Fig. 6. Domain-specific OWL definitions.

In developing the PODD system, we chose to employ a number of mature
technologies. (1) We use Fedora Commons for the storage and retrieval of do-
main objects. Together with raw data files, the OWL (for concepts) and RDF
(for objects) definitions of each concept and object are stored in a versioned
datastream PODD, which is used by the PODD system in various tasks such
as object creation, rendering, validation, update and visualization. (2) We in-
corporate the Sesame triple store9 to support complex query answering using
SPARQL. Sesame contexts are used to give scope to the RDF triples for each
domain object. As described in Section 3, access control needs to be enforced on
a per project level. Similarly, it also needs to be enforced on query answering
in the triple store. By identifying triples of individual objects, we are able to

9 http://www.openrdf.org/



control contexts a user can access through query expansion. (3) Lastly, we use
the Lucene and Solr open-source search engine platform10 to provide full-text
search and faceted browsing capabilities. Similar to the structure of the Sesame
triple store, there is a one-to-one correspondence between domain objects in the
repository and the Solr documents, the logical indexing units.

Fig. 7. The browser view of a plant project in the PODD repository.

Although the architecture and the system are based on ontologies, the inter-
face is designed to hide ontology-related complexity from the user and present
information in an easy to use manner for all repository functions. For example,
Figure 7 shows the browser view of a plant phenomics project that investigates
salt tolerance of wheat. In this view, the objects are shown in a tree-like struc-
ture by following property assertions of subproperties of contains defined in the
base and domain ontologies.

We have started to deploy the PODD system in Australian phenomics re-
search centers including APPF and APN and begun engaging users in the evalu-
ation of the performance, flexibility, usability and scalability of the system. User
feedback to date has shown that the system is intuitive and efficient.

6 Conclusion

In summary, our contribution to scientific data management is three-fold: firstly,
the proposal of the ontology-centric architecture for developing data manage-
ment systems; secondly, the development of a base ontology that defines essential
10 http://lucene.apache.org/



domain knowledge; and thirdly, the development of the PODD data management
system (based on both existing and new technologies) that validates the feasi-
bility of the proposed approach.

We have identified a number of future work directions that we would like to
pursue. Firstly, we will investigate integration with existing domain ontologies
such as the Gene Ontology and the Plant Ontology. One possibility would be
to use terms defined in these ontologies to annotate metadata objects. Secondly,
we would like to investigate the generalization of the ontology-centric approach
so that it can be applied to other areas such as workflow management systems.
Thirdly, we will continue the development of the PODD system to provide addi-
tional functionalities such as data visualization, automated data integration and
Linked Data-style data discovery and publication.

References

1. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia: A
Nucleus for a Web of Open Data. In Proceedings of 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference (ISWC+ASWC 2007), pages
722–735, November 2008.

2. J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and G. Heber.
Scientific data management in the coming decade. SIGMOD Rec., 34(4):34–41,
2005.

3. Groth, Philip, Pavlova, Nadia, Kalev, Ivan, Tonov, Spas, Georgiev, Georgi,
Pohlenz, Hans-Dieter, Weiss, and Bertram. Phenomicdb: a new cross-species geno-
type/phenotype resource. Nucleic Acids Research, 35(Supplement 1):D696–D699,
January 2007.

4. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The Making of a Web Ontology Language. Journal of Web Semantics,
1(1):7–26, 2003.

5. A. R. Jones, M. Miller, R. Aebersold, et al. The Functional Genomics Experiment
model (FuGE): an Extensible Framework for Standards in Functional Genomics.
Nature Biotechnology, 25(10):1127–1133, October 2007.

6. D. B. Krafft, N. A. Cappadona, B. Caruso, J. Corson-Rikert, M. Devare, B. J. Lowe,
and VIVO Collaboration. VIVO: Enabling National Networking of Scientists. In
Proceedings of the WebSci10: Extending the Frontiers of Society On-Line, Apr.
2010.

7. Y.-F. Li, G. Kennedy, F. Davies, and J. Hunter. PODD: An Ontology-driven
Data Repository for Collaborative Phenomics Research. In Proceedings of 12th
International Conference on Asian Digital Libraries (ICADL 2010), pages 179–
188. Springer-Verlag, June 2010.

8. A. Ruttenberg, J. Rees, M. Samwald, and M. S. Marshall. Life Sciences on the
Semantic Web: the Neurocommons and Beyond. Briefings in Bioinformatics,
10(2):193–204, 2009.

9. A. Shah, M. Singhal, K. Klicker, E. Stephan, H. Wiley, and K. Waters. Enabling
high-throughput data management for systems biology: The bioinformatics re-
source manager. Bioinformatics, 23(7):906–909, 2007.

10. B. Smith, M. Ashburner, C. Rosse, et al. The OBO Foundry: Coordinated Evolu-
tion of Ontologies to Support Biomedical Data Integration. Nature Biotechnology,
25(11):1251–1255, November 2007.


