
Fixing generalization defects
in uml use case diagrams

Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Philippe Reitz

LIRMM, CNRS and Université Montpellier II, Montpellier
{dolques,huchard,nebut,reitz}@lirmm.fr

Abstract. Use case diagrams appear in early steps of a UML-based de-
velopment. They capture user requirements, structured by the concepts
of use cases and actors. An admitted good modeling practice is to de-
sign simple, easy-to-read use case diagrams. That can be achieved by
introducing relevant generalizations of actors and use cases. The paper
proposes an approach based on Formal Concept Analysis and one of its
variants, Relational Concept Analysis, to refactor a use case diagram as
a whole in order to make it clearer. We developed a tool and studied the
results on about twenty examples, concluding on the relevancy of the
approach on our benchmark.

Keywords: Formal Concept Analysis, uml use case diagrams

1 Introduction

Within a UML-based development, the very first model to be designed is the
use case diagram, that is later used all over the modeling process. For example,
in the Rational Unified Process [11], the development process is driven by the
use cases: the use cases are continuously used to inject further functionalities in
static models, they guide the testing plan, etc. Thus even if the use case diagram
is probably the furthest one from implementation, it takes a large place in the
design of many artifacts. Use case diagrams model the boundary of a system, the
actors that interact with the system, and the use cases (main functionalities of-
fered to actors by the system). Use cases are linked to the actors interacting with
them, and use cases may be organized using three types of relation: inclusion,
extension (that can be seen as conditional inclusion), and generalization.

As mentioned in the UML user guide [2], “Organizing your use cases by ex-
tracting common behavior (through include relationships) and distinguishing
variants (through extend relationships) is an important part of creating a sim-
ple, balanced, and understandable set of use cases for your system.” A good
practice for use case diagrams is to make them simple to read [1], so as to catch
at first glance the boundaries of the system, its main actors and main func-
tionalities. Thus a tangled use case diagram (e.g. with numerous and tangled
relations linking use cases to actors and to other use cases) will regularly brake
the development since a designer, each time he or she will consult it, will have a
delay to understand (again) the use case diagram.

248 Dolques et al.

In this paper, we investigate an approach to make use case diagrams clearer
by introducing generalized actors and use cases to factorize relations. Our ap-
proach is based on several refactoring patterns (e.g. when two use cases include
the same third one, they can be generalized by a new use case including this third
use case), that are globally combined using Formal Concept Analysis (FCA)
and one of its variant Relational Concept Analysis (RCA). The approach is im-
plemented in an Eclipse-integrated tool that takes as input a UML diagram,
encodes it into FCA (or RCA) contexts, generates the corresponding concept
lattices, and finally produces as output the refactored use case diagram. We
studied the results of this approach on several examples, comparing the pairs of
input diagram/output diagram, and FCA versus RCA.

The following of the paper is structured as follows. We first illustrate in
Section 2 the use case diagram refactoring with an example that will later be
used to illustrate our approach. Section 3 details the used refactoring patterns,
and Section 4 explains how they are globally applied using FCA or RCA. Results
of our experiments on examples are given in Section 5. Section 6 compares our
approach w.r.t. related work.

2 A motivating example

This section presents a motivating example. We briefly recall the main elements
involved in UML use case diagrams, and then illustrate the use case generaliza-
tion defects. The application we are interested in should allow various users to
buy products or apply for interships. Figure 1 shows a use case diagram for this
application. Actors represent the role(s) played by external persons or systems

Fig. 1. A use case diagram for the internship example

that interact with the modelled system. They are depicted using a “stick man“
icon (or a box stereotyped <<actor>> with the name of the actor). Here, three
roles are identified: a company, a registered client, and a registered company.

Fixing generalization defects in uml use case diagrams 249

Use cases, depicted by named ellipses, model large functionalities. In our exam-
ple, we find the use case Apply for Multi-Period Internship, modelling the
functionality corresponding to the possibility to apply for internships organized
over several periods (for example a day per month). Use cases are associated
(graphically by a continuous line) to the actors involved in them: actors to which
the functionality is dedicated or secondary actors that interact with the system
during the achievement of the functionality. In our example, the use case Apply
for Multi-Period Internship is linked to the Registered Client and the
Registered Company actors, since both of those actors can apply for such in-
ternships (whereas non-registered companies cannot). A use case may include
another one. Graphically, it is shown by a dashed oriented arrow stereotyped by
<<include>>. Semantically, that means that the including use case explicitly
incorporates the behaviour of the included use case. For example, the use case
Buy with Bank Transfer includes the use case Send Recapitulative Email.
A use case may be extended by another one. Graphically, it is shown by a dashed
oriented arrow stereotyped by <<extend>>. Semantically, that means that the
extended use case may include the behaviour of the extending use case. In our
example, a recapitulative email may be sent while realizing an appliance for a
multi-period internship. Conditions for the extension and extension points can
complete the extension relationship, as discussed later in the paper. UML pro-
vides two generalization mechanisms in use case diagrams: for actors and for use
cases. Figure 2 shows a refactored use case diagram for the internship example, in
which those two mechanisms appear. A use case may generalize another one: the

Fig. 2. A refactored use case diagram for the internship application using FCA

child use case inherits the behaviour of the parent use case, as well as its meaning.
It is graphically represented by an edge ended by a triangle, like for class inheri-
tance. In the refactored example of Figure 2, the use case Buy generalizes the use
cases Buy with Bank Transfer and Buy with Fidelity Card. An actor may

250 Dolques et al.

generalize another one: the child actor inherits the roles of the parent actor,
i.e. its interactions with use cases. In Figure 2, the actor RegisteredCompany
specializes the actor Company.

The initial diagram of Figure 1 suffers from the large number of crossed links
from actors to use cases, and to a lesser extent, from the large number of links
from use cases to use cases. The actor RegisteredCompany is linked to four use
cases. Introducing a generalization from this actor to the actors Company and
RegisteredClient is semantically correct and factorizes the four links: in the
refactored diagram proposed in Figure 2, the actor RegisteredCompany inherits
its links to the use cases from its two parent actors. Similarly, the two inclusions
of the use case Client Identification (resp. Send Recapitulative Email)
by the use cases Buy with Fidelity Card and Buy with Bank Transfer can
be factorized introducing the sound use case Buy. Last, the two extensions can
be factorized introducing the sound Apply For Internship use case.

The approach we propose aims at detecting the possible relevant generaliza-
tions in a use case diagram, and introduces them in order to obtain a simpler use
case diagram. For that, we first identify (in refactoring patterns) situations for
which introducing a generalization may be useful. Then to automatically apply
these patterns, we use Formal Concept Analysis (FCA) or one of its variants
Relational Concept Analysis (RCA). The refactoring patterns are presented in
the next section while the FCA/RCA application is detailed in Section 4.

3 Local refactoring patterns

To correct generalization defaults, we propose a systematic approach that in-
troduces more general elements (actors or use cases) based on the detection of
shared relations. However, this does not guarantee the relevance of factorizing
the relations using more general use cases or actors. In this section, we study
several refactoring proposals. We consider here a simple set-based semantics, as-
sociating to a use case diagram the set of its actors and for each actor the feasible
sequences of leaf use cases. The use cases having specializations are supposed to
be abstract, i.e. replaced by one of their specializations during a concrete usage
of the system.

Refactorings between use cases. Table 1 presents the refactoring patterns for
use cases. The pattern I considers the situation of two use cases A and B including
the same use case C. In this situation, all the sequences that can be performed
by an actor and that contain A (resp. B) will also contain C. We propose to refac-
tor the two inclusions as seen in the refactored pattern: a sequence that can be
performed by an actor and containing A will still contain C, since A specializes N
that contains C. In situation II, when the two conditions of extension CA and CB
are identical and that the extension points (that roughly specify when the ex-
tension should occur) are also identical, then a generalization can be introduced.
It frequently occurs that extension points and conditions are not specified for
the extensions, in this case we propose to apply the refactoring, whereas if the
extension conditions or the extension points are different, this refactoring does

Fixing generalization defects in uml use case diagrams 251

not apply. The situation III introduces a specialization refactoring. The source
pattern owns a use case A for which the sets of outgoing include relations and
incoming extend relations are strictly included in those of another use case B.
The proposed refactoring derives B from A and removes from B the inherited
relations. Situations to factorize incoming include relations or outgoing extend
relations were studied but rejected since they were not pertinent. Refactorings

Table 1. Refactoring patterns between use cases

source pattern refactored pattern

I

A

B

C

«include»

«include»

N

A B

C

«include»

outgoing include

II

A

EA

B

EB

C

Condition : CA
ExtensionPoint : EA

Condition : CB
Extension Point : EB

«extend»

«extend»

N

Ext

A B

C

Condition : Cond
Extension Point : Ext

«extend»

incoming extend

III
shared extend and include

between actors. Table 2 presents two refactoring patterns between use cases and
actors. The first one (I) introduces a specialization relation between actors when
the set of associations of one actor is strictly included in the associations of an-
other actor, and then removes the inherited associations. The second one (II)
adds an abstract actor when the sets of associations of two actors have a non-
empty intersection but each actor has associations that the other one does not
have.

252 Dolques et al.

Table 2. Refactoring patterns between actors and use cases

source pattern refactored pattern

I

Actor1

Actor2

A

B

Actor1

Actor2

A

B

Actors and use cases with specialization

II

Actor1

Actor2

A

B

C
Actor1

Actor2

Actor3

B

A

C

Actors and use cases with factoring

4 Global refactoring through Formal Concept Analysis

The refactoring schemas presented in the previous section do not give a unique
solution to deal with a use case diagram as a whole. For that, we use Formal
Concept Analysis [7] which systematically groups objects owning common char-
acteristics in a minimal generalization structure.

Refactoring with FCA. We build two formal contexts (Table 3). In one con-
text, we associate an actor with a use case when the actor is involved in the
use case. In the second context, use cases are described by inclusion of another
use case, extension by another use case and names. Figures 3 and 4 present the
lattices. In the lattice of actors (Fig. 3), a generalization relationship is intro-
duced: C2, which represents RegisteredCompany, is indeed a subconcept of C1
(RegisteredClient) and C3 (Company). This is an application of the first actor-
use case refactoring. The lattice of use cases (Fig. 4) highlights two refactorings.
The outgoing-include refactoring appears on the left: C5 generalizes the concepts
that introduce Buy with Fidelity Card (C8) and Buy with Bank Transfer
(C11) because these two use cases include Send Recapitulative Email and
Identify Client. C7 shows an opportunity to apply the incoming extend refac-
toring (II): it factorizes the characteristic of being extended by Send Recapitu-
lative Email, which is shared by Apply for Multi-Period Internship (C10)
and Apply for Customized Internship (C12). The final use case diagram (Fig.
2) is deduced from the two lattices. The (non-trivial) concepts are interpreted as
actors or use cases and the lattice partial order as generalization/specialization
as illustrated just before. In our example, no new actor is created, but it hap-

Fixing generalization defects in uml use case diagrams 253

Table 3. Contexts for FCA refactoring (use case names have been shorten)

IsInvolvedIn
BFC AMPI BBT ACUI

RegisteredClient × ×
Company × ×
RegisteredCompany × × × ×

Includes IsExtendedBy Name
SEE IC SEE BFC SEE AMPI BBT ACUI IC

BFC × × ×
SEE ×
AMPI × ×
BBT × × ×
ACUI × ×
IC ×

pens in other diagrams of our benchmark. Two new use case factorizations are
introduced: Buy (from C5) and Apply for internship (from C7) that appear
in the final diagram and increase its abstraction level and reusability.

C0 (S: 0)

C1 (S: 0)
(IsInvolvedIn,BFC)
(IsInvolvedIn,AMPI)

RegisteredClient

C2 (S: 0)

RegisteredCompany

C3 (S: 0)
(IsInvolvedIn,BBT)
(IsInvolvedIn,ACUI)

Company

Fig. 3. The lattice of actors
built using FCA

C4 (S: 0)

C5 (S: 0)
(Includes,SEE)
(Includes,IC)

C6 (S: 0)

C8 (S: 0)
(Name,BFC))

BFC

C9 (S: 0)
(Name,SEE)

SEE

C10 (S: 0)
(Name,AMPI)

AMPI

C11 (S: 0)
(Name,BBT)

BBT

C12 (S: 0)
(Name,ACUI)

ACUI

C13 (S: 0)
(Name,IC)

IC

C7 (S: 0)
(IsExtendedBy,SEE)

Fig. 4. The lattice of use cases built using FCA

Refining the refactoring with rca For further refining of the result, we applied
Relational Concept Analysis (rca) [9], one of the extensions of Formal Con-
cept Analysis that takes into account relationships between formal objects in
the classification process. The input of Relational Concept Analysis is a set
of tables (a relational context family or rcf) such that some tables represent
object-attribute relations and some tables capture object-object relations. In the
encoding we choose (Table 4), the non-relational part of the rcf is composed
of two object-attribute tables: actors with no description (empty attribute set),
and use cases described by their names. The relational part of the rcf is com-
posed of three object-object tables: Includes relation, IsExtendedBy relation
and IsInvolvedIn relation. The choice of these relations is guided by the refac-
toring patterns that we have identified as relevant, and by preliminary experi-
ments that highlighted cases where combinatorial explosion occurred.

One lattice is built for each object-attribute table, in our case a lattice for
actors, and a lattice for use cases. Those two lattices integrate the attributes
and the relations. rca iterates on two successive steps: building of lattices with
classical fca framework (on each object-attribute table concatenated with the

254 Dolques et al.

C0 (S: 0)
IsInvolvedIn : C1

IsInvolvedIn : C12
IsInvolvedIn : C13

C9 (S: 1)
IsInvolvedIn : C2
IsInvolvedIn : C5
RegisteredClient

C10 (S: 1)

RegisteredCompany

C11 (S: 1)
IsInvolvedIn : C6
IsInvolvedIn : C7

Company

Fig. 5. The lattice of ac-
tors built using RCA

C1 (S: 0)

C2 (S: 0)
(Name,BFC)

BFC

C12 (S: 1)
Includes : C1
Includes : C4
Includes : C8

C3 (S: 0)

C4 (S: 0)
(Name,SEE)

SEE

C5 (S: 0)
(Name,AMPI)

AMPI

C6 (S: 0)
(Name,BBT)

BBT

C7 (S: 0)
(Name,ACUI)

ACUI

C8 (S: 0)
(Name,IC)

IC

C13 (S: 1)
IsExtendedBy : C1
IsExtendedBy : C4

Fig. 6. The lattice of use cases built using RCA

corresponding object-object tables) and integration of the concepts discovered
at the current iteration in the relational part (to be used at the next itera-
tion). The integration of the concepts discovered at the current iteration uses
scaling operators, here the existential operator has been used. For the integra-
tion, an object-object relation (e.g. Includes) is transformed by replacing the
objects which are in the columns by the concepts of the lattice built at the
current iteration on these objects. Then a relation is established in the new,
existentially scaled, table, between an object and a concept, when the object is
in relation with at least one object in the extent of the concept. For example,
RegisteredClient IsInvolvedIn BFC in the original relation. Then, when at an
iteration BFC is in the extent of a concept, say C12, in the scaled IsInvolvedIn
relation, RegisteredClient is considered as participating in one of the use cases
grouped by C12. A pair (RegisteredClient, C12) is added in the scaled table
IsInvolvedIn. This pair enriches the description of the three actors and at the
next fca step, it is factored out in C0, top of the actor lattice. That highlights
the opportunity to define a more generalized actor, this opportunity did not
appear in the one-step fca building.

Table 4. Relational Context Family for RCA refactoring

Name
use case BFC SEE AMPI BBT ACUI IC
BFC ×
SEE ×
AMPI ×
BBT ×
ACUI ×
IC ×

Includes BFC SEE AMPI BBT ACUI IC
BFC × ×
SEE
AMPI
BBT × ×
ACUI
IC

IsExtendedBy BFC SEE AMPI BBT ACUI IC
BFC
SEE
AMPI ×
BBT
ACUI ×
IC

IsInvolvedIn BFC SEE AMPI BBT ACUI IC
RegisteredClient × ×
Company × ×
RegisteredCompany × × × ×

actor
RegisteredClient
Company
RegisteredCompany

At each step, new concepts can appear, as well as new pairs relating these
new concepts. The process iterates until no new concept or description emerge.
Figures 5 and 6 show the final lattices. Lattices are interpreted as in the fca

Fixing generalization defects in uml use case diagrams 255

analysis, adding an interpretation of the references between the two lattices. The
result of rca improves the result of fca on this example by adding the new,
more general actor (Fig. 7). Furthermore, the interpretation of the concepts is
used to interpret the references between lattices. For example, the characteristic
isInvolvedIn:C12 which appears in C0 of the actor lattice signals that the actor
which will be created to interpret C0 will participate in the use case resulting
from the interpretation of the use case C12, that is the general use case Buy.

Fig. 7. The internship example refactored using RCA

5 Case Study

We present in this section the current implementation of our approach and the
results obtained by running it on different kinds of data.

The Eclipse Modelling Framework (EMF) is a facility from the Eclipse IDE
to implement modelling languages and generate tools to manipulate instances of
those languages from programs. We use in our tool two Eclipse plugins based on
EMF: UML21 and eRCA2. UML2 is an implementation of UML and therefore
allows us to load, modify and save use case diagrams. eRCA is an implementation
of FCA and RCA algorithms which uses EMF to implement contexts and lattices.
We have developed a tool implementing both the FCA and RCA approaches
for use case refactoring. For both of them we developed the same three steps
described in Section 4: first the tool loads a use case diagram using UML2
plugin and encodes it as contexts in eRCA format; second it uses the eRCA tool
1 http://www.eclipse.org/uml2/
2 http://code.google.com/p/erca/

256 Dolques et al.

to generate lattices in eRCA format; finally lattices are automatically analyzed
to create back a use case diagram in the UML2 plugin format and to save it.

We present here the results obtained using data gathered from different
sources such as student projects or UML courses taken from the internet3. We
encoded these diagrams using the UML2 plugin in Eclipse. Then we applied our
two processes in all of them and automatically processed the results to compare
them with the original diagrams. We computed the density of the diagram which
is, if we consider the diagram as a graph G = (V,E), the number of edges over
the number of possible edges |E|/|V |2. We assume that the lower density we have
the clearer the diagram is. Of course, this is just indicative. We present in Fig-
ure 8 how the density can be changed by our approach on all our data. The last
five diagrams considered (test1 to test5) are used to test specific situations.
We see that in most of the diagrams the density is lowered by using FCA and
RCA, but with better results for FCA. Density goes down due to the creation of
new use cases or actors and to the factorization of the relationships. An inverse
situation can occur if the number of generalization links created is higher than
the number of links removed by factorization. This is why FCA seems to be
better here than RCA, because RCA creates more concepts. Nevertheless, the
density for RCA usually remains better than the original density. We also see
that density is not improved for the diagram Invoice. Indeed, we assume that
each actor involved in a use case has the same role, so they can be factored into
the same concept. But in the case of this diagram, many actors are involved in
the same use cases but with different roles. This may be allowed depending on
the interpretation of the UML specification, but results in the merging of many
actors into one. By removing those actors and thus not adding new abstractions
among actors, the density is then increased. This can be partly solved by adding
an identifier for each actor when creating the contexts, but this prevents us to
find new generalizations of actors since none of them would share in their intent
the same identifiers.

6 Related Work

Literature dealing with designing use cases is prolific, but usually concentrates
on textual use cases [13, 3], and not on UML use case diagrams. It is generally
admitted that use cases should be described by quite a lot of information that
does not appear in use case diagrams, such as the nominal and exceptional flows
of events or scenarios corresponding to a use case, and many research activities
studied how to structure each use case, in particular with dedicated templates
[3] or natural language techniques [6]. Fewer work [14, 10] deal with the way to
structure the relations linking uses cases to actors, or use cases to other use cases.
In [14] a metamodel is proposed for use cases, extending and grouping existing
metamodels, and detailing relations between use cases: composition, dependency,
precedence, extension, generalization, etc. Our work focuses on the relations
introduced in the use case part of the UML specification, however it should be
3 all data available at http://www.lirmm.fr/%7edolques/publications/data/cla10

Fixing generalization defects in uml use case diagrams 257

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Account

ProjectM
anage

NeuralDevKit

Order

ChocolateFactory

CDsales

Sim
ple-forum

InternshipSystem
2

TCM
S

Internship-article

ecom
m

erce

StudentRegistation

Patient

HEapplicants

Jam
betHotel

Invoice

BalevChocolate

DataAnalysis

Internship

test1
test2

test3
test4

test5

Density init
Density fca
Density rca

Fig. 8. Experimental results on the evolution of the density

interesting to investigate how use case models conform to the metamodel of [14]
could be refactored. Issa [10] proposes refactoring the scenario part of a use case,
for example by separating a use case into several use cases. Henderson-Sellers
et al. [8] introduce metrics to compare various versions of a use case, mainly
consisting of graph metrics.

FCA has already been applied to use cases [12, 5] but not with the objective
to refactor use case diagrams. In [12] use cases written in a controlled natural
language are classified into a lattice using the terms contained in the use cases,
with a visualization objective. In [5] use cases are classified using their important
terms, in order to detect main notions that can become classes. A preliminary
version of this work can be found in the french-written reference [4]. The new
contributions of this paper consist in the comparison of results obtained with
RCA and FCA (while reference [4] focuses only on FCA), in the case study, and
in a new tool integrating RCA and FCA.

7 Conclusion

UML use case diagrams can be seen as the functional cornerstone of UML mode-
ling. In this paper, we proposed an approach to refactor such use case diagrams
in order to make them clearer. The principle is to use FCA or RCA in order to
detect new abstractions that, when introduced in the diagram, can reduce its
visual complexity. Using the tool we developed to implement this approach, we
carried on experiments using a set of about 20 use case diagrams to measure
its efficiency in terms of density of relations in the diagram. It results that both
FCA and RCA processes decrease the density of realistic-size use case diagrams,

258 Dolques et al.

the density obtained with FCA being lower than with RCA. However, RCA
discovers more abstract use cases or actors that can be relevant. To go further
in this study, we are studying accurately other metrics, both quantitative as
average degree, and qualitative, as precision.
Acknowledgments. Authors would like to thank L. M. Hakik for a preliminary
study, K. Bouzroud, I. Dagha, H. El Assam, M. El Asri, and J. Ruiz-Simari
for their help in the implementation of the current tool, and the anonymous
reviewers for their suggestions on evaluation metrics.

References

1. Ambler, S.W.: The Object Primer: Agile Model-Driven Development with UML
2.0. Cambridge University Press, New York, NY, USA (2004)

2. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide,
chap. 16. Addison-Wesley Prof. (2005)

3. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional (2000)
4. Dolques, X., Madiha Hakik, L., Huchard, M., Nebut, C., Reitz, P.: Correction des

défauts de généralisation dans les diagrammes de cas d’utilisation UML. In: Proc.
of LMO’10 (Langages et Modèles à Objets). pp. 51–66 (2010)

5. Düwel, S., Hesse, W.: Bridging the gap between use case analysis and class structure
design by formal concept analysis. In: Proceedings of Modellierung 2000. pp. 27–40.
Fölbach-Verlag (2000)

6. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Application of linguistic techniques
for use case analysis. In: IEEE International Conference on Requirements Engi-
neering. p. 157. IEEE Computer Society, Los Alamitos, CA, USA (2002)

7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer (1999)

8. Henderson-Sellers, B., Zowghi, D., Klemola, T., Parasuram, S.: Sizing use cases:
How to create a standard metrical approach. In: OOIS. Lecture Notes in Computer
Science, vol. 2425, pp. 409–421. Springer (2002)

9. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery
in structured datasets. Ann. Math. Artif. Intell. 49(1-4), 39–76 (2007)

10. Issa, A.: Utilising refactoring to restructure use-case models. In: Proc. of the World
Congress on Engineering, 2007. pp. 523–527. LNCS (2007)

11. Kruchten, P.: The Rational Unified Process: An Introduction, Second Edition.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2000)

12. Richards, D., Böttger, K., Aguilera, O.: A controlled language to assist conversion
of use case descriptions into concept lattices. In: Australian Joint Conference on
Artificial Intelligence. pp. 1–11. LNCS, Springer (2002)

13. Rolland, C., Achour, C.B.: Guiding the construction of textual use case specifica-
tions. Data Knowl. Eng. 25(1-2), 125–160 (1998)

14. Rui, K., Butler, G.: Refactoring use case models : The metamodel. In: ACSC’03.
CRPIT, vol. 16, pp. 301–308. ACS (2003)

