
Parallelization Techniques for Semantic Web
Reasoning Applications

Alexey Cheptsov, Matthias Assel

1 HLRS - High Performance Computing Center Stuttgart, University of Stuttgart,

Nobelstrasse 19, 70569 Stuttgart, Germany
{cheptsov, assel}@hlrs.de

Abstract. Performance is the most critical aspect towards achieving high
scalability of Semantic Web reasoning applications, and considerably limits the
application areas of them. There is still a deep mismatch between the
requirements for reasoning on a Web scale and performance of the existing
reasoning engines. The performance limitation can be considerably reduced by
utilizing such large-scale e-Infrastructures as LarKC - the Large Knowledge
Collider - an experimental platform for massive distributed incomplete
reasoning, which offers several innovative approaches removing the scalability
barriers, in particularly, by enabling transparent access to HPC systems.
Efficient utilization of such resources is facilitated by means of parallelization
being the major element for accomplishing performance and scalability of
semantic applications. Here we discuss application of some emerging
parallelization strategies and show the benefits obtained by using such systems
as LarKC.

Keywords: Semantic Web Reasoning, LarKC, parallelization, multi-threading,
message-passing

1 Introduction

Current Semantic Web reasoning systems do not scale to the requirements of the
rapidly increasing amount of data, such as those coming from millions of sensors and
mobile devices or the terabytes of scientific data produced by automated
experimentation.

The latest attempts to overcome the above-mentioned limitations resulted in
infrastructures for large-scale semantic reasoning, such as one set up by LarKC (the
Large Knowledge Collider [1]) which focuses on reasoning over billions of structured
data in heterogeneous data sets. Along with a number of original solutions for
obtaining Web scale by semantic applications, LarKC offers services for transparently
accessing diverse computing architectures, including multi-core (many-core) multi-
processor, and cluster-based computer architectures as well as dedicated high-
performance computers.

Parallelization enables simultaneous execution of independent computational
operations and thus resolves the conflicts occurring between the concurrent operations

while performing computation. Given the large problem sizes that are addressed by
LarKC, and considering the benefits of parallelization, it seems natural to explore use
of the main parallelization strategies for semantic applications, too. Here we discuss
some major parallelization techniques for providing parallelism on task-, instruction-,
and data-level, applied for LarKC’s pilot applications. However, the investigated
approaches and techniques are quite generic and can be potentially applied for any
other Semantic Web engine.

2 Parallelization Patterns

There are several parallelization techniques, which have proven their usability for a
wide range of optimization tasks and might be beneficial for semantic applications.
They can be roughly classified according to the level at which the parallelism takes
place (Fig. 1):
1) between loosely-coupled components (workflow level) – implementation of

parallelism by running multiple instances of the same plug-in simultaneously
o task-level parallelism

• workflow branching
2) within a separate component (“plug-in” level) – implementation of parallelism in

the concurrent regions of the component’s algorithms
o instruction-level parallelism

• shared-memory systems: multi-threading
• distributed-memory systems: message-passing

o data and instruction-level parallelism
• MapReduce data processing

Fig. 1. For the semantic applications, which are described through complex
workflows, parallelization can be applied on different levels: workflows (task- and
data-level parallelism), or single components/plug-ins (data- and instruction-level
parallelism).

Workflow branching

Identifier Identifier

Selecter 1Selecter 1

ReasonerReasoner

DeciderDecider

Selecter 2Selecter 2

Query
Transformer

Query
Transformer

Plug-in parallelization

multi-threading
MPI

P
ro

ce
ss

1

P
ro

ce
ss

2
P

ro
ce

ss
2

P
ro

ce
ss

3
P

ro
ce

ss
3

P
ro

ce
ss

4
P

ro
ce

ss
4

MapReduce

3 Main Instruction-Level Parallelization Techniques

The techniques presented in Section 2 differ by complexity of their implementation
and obtained performance impact. In this section we discuss only the approaches,
which allow obtaining considerable performance impact with a minimum of
implementation efforts for sequential code. In particular, we consider multi-threading
and message-passing. The achieved performance impact is discussed as well.

3.1 Multi-threading

Most of today’s CPUs are equipped with multiple cores. Unfortunately, many
applications are still using only one of them for their processing (i.e., applications are
still sequentially programmed) instead of distributing particular tasks to different
processor cores concurrently. In order to make use of the capabilities provided by
modern CPU architectures, applications must align their tasks according to the
number of available cores.

Implementation of multi-threading for a sequential code is to large extent trivial
and does not require much development efforts. For evaluation purposes, we
implemented multi-threading support for the Urban Computing application of LarKC
[2]. Realization of multi-threading for the most time consuming component of the
investigated workflow allowed us to obtain a considerable performance speed-up
(Table 1).

Table 1. Performance characteristics after applying multi-threading

Intel @ 1.8 GHz, 2 cores Xeon @ 2.8 GHz, 8 cores
Tested

realization Time, ms % of total
execution

Time, ms % of total
execution

Single thread 4400 80 3400 74
Multiple
threads 1100 37 900 36

Speed-up,
times 3.8 3.7

3.2 Message-Passing

The Message-Passing Interface (MPI) is the most widely used parallel
programming paradigm for highly-scalable parallel applications. MPI enables sharing
the application workload over various nodes of a parallel system (both shared and
distributed memory architectures are supported). The synchronization between the
nodes is achieved by means of the messages passed among the involved processes
through the network interconnect. Implementations of MPI in Java (such as MPIJava
or MPJ-Express) have enabled use of MPI also for Java applications. MPI is highly
beneficial for computing-intensive applications, whereby scalability within a shared-
memory space is not sufficient for obtaining the necessary performance.

For evaluation purposes, we implemented message-passing for the “Airhead”
library from the S-Space package1. The parallelization technique was evaluated for
the Linked Life Data subset used by University of Sheffield within the LarKC project.
The obtained performance characteristics, collected in Table 2, prove great benefit of
distributed-memory parallelisation not only for the investigated application, but also
for similar ones coming from other areas of the Semantic Web.

Table 2. Performance characteristics after applying message-passing

Intel @ 1.8 GHz, 2 cores Xeon @ 2.8 GHz, 8 cores Number of
computing

nodes
Time, s. Speed-up (to

1 CPU case)
Time, s. Speed-up (to 1

CPU case)
1 750 1 57 1
2 - - 20 2.85
4 - - 10 5.7
8 - - 5 11.4

4 Conclusions

In our tests we investigated the impact of the main instruction-level parallelization
strategies, namely multi-threading and message-passing, on performance of two
typical Semantic Web use cases. The first application was taken from the urban
computing use case, where parallelization facilitates meeting real-time requirements.
Whereas message-passing was not very useful for this application due to real-time
performance requirements, applying multi-threading allowed the application to
greatly benefit from the multi-core CPU architecture. The second application -
random indexing - was much more complex as the first one, and made great benefit of
message-passing that leveraged a cluster of shared-memory nodes for the application.
Our future investigations will concentrate on further approaches presented here (such
as MapReduce [3]) as well as hybrid algorithms combining them (e.g. multi-threading
inside a shared-memory node combined with message-passing among nodes).

References

1. Fensel, D., van Harmelen, F., Andersson, B., Brennan, P., Cunningham, H., Della Valle, E., et al.
Towards LarKC: A Platform for Web-Scale Reasoning, In: Proceedings of the 2008 IEEE
international Conference on Semantic Computing ICSC, pp. 524--529, IEEE Computer Society
(2008)

2. Della Valle, E., Celino, I., Dell'Aglio, D. The Experience of Realizing a Semantic Web Urban
Computing Application, Transactions in GIS 14,2 (2010)

3. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F. Scalable Distributed Reasoning Using
MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) The Semantic Web - ISWC 2009, LNCS, vol. 5823, pp. 634--649, Springer
(2009)

1 http://code.google.com/p/airhead-research/

