

Developing Software Families

Silva Robak

Institute of Organization and Management
University of Zielona Góra

ul. Podgorna 50,
PL-65-246 Zielona Gora, Poland

S.Robak@iiz.uz.zgora.pl

Abstract: There is a lack of a systematic, generic, domain independent object-
oriented software engineering process for software familes. In such process a
system family should be treated as a whole (opposite to multiple products
maintained separately) and the reuse should be planned with assets developed for
reuse. Particularly important is the embedding the domain engineering methods
within object-oriented methods, especially the feature modeling for modeling
variability. In the paper the problems associated with developing software familes
and handling variability are presented and some aspects of generic development
process for software families are introduced.

1 Introduction

The object-oriented paradigm has brought the new concepts like classes and objects,
inheritance, dynamic polymorphism and dynamic binding to software engineering.
Despite the advantages of above concepts the object-oriented software paradigm has not
reached productivity, which had been expected on the area of reuse, adaptability and
management of complexity [We95]. The object-oriented approach is concerned with a
development of a one system at a time and mainly supports reuse of assets (especially a
code), in the next versions of a single software product. A software asset is a description
of some partial solution (e.g. component, design document, model or knowledge) that
engineers use to create or modify software products [Wi96]. The object-oriented reuse
concepts embrace the ideas like class libraries (e.g. STL, [Br98]), frameworks [Jo97],
patterns [Ga95] and components [Sz98] (e.g. COM+, CORBA, EJB). In the object-
oriented approach a single system is developed “with reuse”, and that is an opportunistic,
small-grained reuse and the object-oriented software projects tend to excess the foreseen
budgets and delivery times [Bo00].

Besides the object-oriented also another approaches towards improving efficiency of the
software development are known. There are generative techniques and the new software
paradigm the Generative Programming (GP) [CE00]. Further, based on OOP raised the
Aspect Oriented Programming (AOP) [Ki97] and the Subject Oriented Programming

(SOP) [Os95]. Furthermore, based on the ideas of the Domain Engineering and
Application Engineering (see below), there are methods like Reuse-driven Software
Engineering Business (RSEB) [JGJ97] Organization Domain Modeling ODM [Si96],
etc. Feature driven techniques like Feature Oriented Domain Analysis (FODA) [Ka90],
FORM [Ka98], and FeatuRSEB [GFD98] are other ways using the advantages of the
feature modeling. Features are essential characteristic of systems within a system family
and are organized in different kinds of diagrams containing hierarchies of feature trees.

A development of a group of systems built from common generic software assets is a
goal by building software product-lines upon the product families. The fundamental
reason for creating program families has been already presented in early works by
Dijkstra [Di72] and by Parnas [Pa76]. Program families were defined by Parnas as “sets
of programs, whose common properties are so extensive that it is advantageous to study
the common properties of the programs before analyzing individual members”
[Parnas76]. Building the sets of related systems helps to achieve the remarkable gains in
productivity and improves time-to-market and product quality [CN99]. A product family
may extend across several domains. According to Software Engineering Institute (SEI) a
software product line (PL) is “a set of software-intensive systems sharing a common
managed set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of a core assets in a prescribed way”
[CN99]. In the paper the terms software product line and software family will be used
interchangeable, but it has to be emphasized, that a product line bears always some
business goals.

There are some known process models like: the waterfall approach, evolutionary
development, formal transformation and system assembly from reusable components
[So95]. Current accepted object-oriented software development process models are no
more waterfall-like, but spiral, iterative-incremental process models, e.g. the quasi-
standard The Unified Process (UP). The explicit consideration of the risk is the most
important distinction between the spiral models and the other process models. Software
development process for product lines is alike a software development process for a
single system. However, there are some significant differences (see below), caused by
the strategic, large-grained reuse.

There are three basic activities by developing a software PL:
− Domain Engineering (DE),
− Application Engineering (AE),
− Management.
The three fundamental, interrelated activities: Domain Engineering i.e. platform (i.e.
generic architecture) development, Application Engineering i.e. product development
from the platform, and Management on technical and organizational level are presented
at Fig. 1-1. As shown, there is a strong feedback between reusable assets and products.
The Management on technical and organizational level is a part connecting the whole
together. The reuse is planned, enabled and enforced - as opposed to opportunistic small-
grained reuse by development of a single software system. Product family assets are
developed for reuse, in contrast to a case of a single system developed with reuse. All

Scoping DE
Domain Analysis
(Feature Modeling)

Architecture Design

Product Engineering
Family Evolution

Management

Assets
Scoping

DOMAIN
ENGINEERING

Domain Analysis
(Feature Modeling)

Architecture Design

PRODUCT
Engineering

Family Evolution

Management

Assets

Fig. 1-1. Basic Activities By Developing System Families with Domain Engineering.

family members together are regarded as a whole. By the development of a single
system there are separately maintained releases and versions of a single product. In
software family (especially in product-line context) the evolution of products is planned
and all (also the early) versions of the products are feasible family members. The
product line architecture is merely one of the core assets in the repository and contains
components, which will be assembled in a prescribed way according to the architecture
and the given production plan. Important is that in system family the architecture and its
components should include the built-in variability mechanisms allowing instantiating the
multiple family members.

In the following sections variability modeling with feature models is summarized.
Development of software product lines with RUP and a SEI framework will be nearer
considered in the beginning of Section 3. Then a generic development process, as a
framework with high degree of built-in variability is presented. The last section
concludes the paper.

2 Variability Modeling With Feature Models

Different products as also product evolution in time cause common and variable
products characteristics. Software family is characterized by [WL99] as "a set of items
that have common aspects and predicted variabilities." According to Weiss and Lai, the
term variability is defined, as “an assumption about how members of a family may differ
from one another and commonality is “an assumption that is true for all members of a
family”. The feature models introduced in FODA provide an abstract, independent and

concise representation of common and variable parts of the software family.
Determining, what will constitute the common parts and what the variable parts in a
product-line, has more strategic then technical nature and can change over time.
Commonality constraints the size of the family, but is an important way for the future
standardization within an organization and allows better reaching of productivity and
efficiency goals. Variability (as optional or alternative features) enlarges the family size,
but later at generic (i.e. parameterized) places also increases the systems’ complexity.

A feature is a stakeholder (e.g. users, customers, developers, managers, etc.) visible
characteristic of concept (e.g. system, component, etc.), which is used to describe and
distinguish system family members. Some features relate to end-user visible
characteristic, while others relate more to a structure of a system and system capabilities
also including non-functional requirements [RFP02]. The feature model indicates the
intention of the described concept. The set of instances described by feature model is the
extension of the concept.

3 Developing System Families

Such typical object-oriented processes as UP, designated for a development of the one
system at time bear some significant lacks, if they would be applied for the development
of the software family. First, there is no distinction between DE and AE Phases. The
evolution of products and the resulting feedback (for the whole family) are not
comprised in the process. Useful and necessary domain analysis activities like domain
scoping and feature modeling are not included. Moreover, in the RUP methodology
there is a basic conflict between “use-case driven” and “architecture centric” approach.
The strengths and deficiencies of the Rational UP are summarized in Fig. 3-1.

Domain engineering (DE) activities (see Fig.1-1) are impacted by the product
constraints, provided styles, patterns, frameworks, production constraints and strategy,
and the content of the repository of preexisting assets. Product constraints originate from
the commonality and differences (variability) between the products, the product
properties (current as also foreseen), as well as from the enforced use of existing
standards, assigned performance limits, interfaces and quality requirements (like
performance, reliability, modifiability, and security). Production constraints and strategy
include the wide range of items like: accepted standards, time- to-market, the use of
legacy components, underlying infrastructure, COTS, etc. Especially important is also
the chosen general approach for developing the core assets i.e. assembling or generating
of family members. The main DE artifacts include: the product-line scope, the core
assets and the production plan for the family members. Product-line scope i.e. the
products (family member) that will constitute a product-line, is defined within the
scoping activity. The core assets i.e. architecture, components (also COTS) contain a
process for their use in development of products including the variation requirements for
variation points and methods for resolving variability. A variation point is a point
identifying one or more locations, at which the variation will take place [JGJ97]. The
inputs for application engineering (AE) form the DE-artifacts and together with the

Fig. 3-1. RUP Strengths and Deficiencies.

requirements for a particular product, which are expressed as deltas or variations to an
established base. AE results are the various products. Technical management is
dedicated to plan the creation and evolution of core assets and products. Furthermore,
the organizational management is necessary for the synchronization of the entire
software family development effort.

3.1. Generic Development Process for Software Families

The SEI-Framework [CN02] (see Fig. 3-2) is a proposal of the standard framework
process for software families. It also does not integrate some important (in the opinion of
the author) DE items like the feature modeling and applying of the generative
approaches. It has also no as connection with the Model Driven Architecture (MDA)
from OMG [OMG online]. The description of the process is too intertwined to prove in
the praxis. The SEI-Framework Practice Areas are depicted in Fig. 3-2. The use of the
cooperating Practice Areas in form of hierarchical patterns is described in [CN02a]. Fig.
3-3 summarizes the cooperation of the proposed patterns with the main pattern –
Factory. Other known processes designated for software families like PuLSE [Ba99]–
Fraunenhofer IESE, TrueScope [De00], Family-oriented Abstraction, Specification and
Translation (FAST) [WL99] and industrial experiences of Jan Bosch [Bo00] are narrow,
oft domain dependent , specific approaches. E.g. the main drawback of RSEB [JGJ97] is
the fact that the domain analysis activities are not included.

Strengths

Drawbacks

RUP

Quasi Standard (Industrial)

Based on
 "Best Practices"

Use-case centric

Iterative Development

Visual Modeling

 Verified Quality

(Component) Architecture
-centric

Changes Control

Tool Support

Reduced Risk

Not Intended
for Software Families

No Distinct
Development phases

"for reuse"

"with reuse"

No Domain Scoping Phase

No Feature Analysis No Feature Models

No Evolution phase

No Support for Multi-Projects Large-Scale Reuse Impossible

Missing Concepts for
Operation

Support

Fig. 3-2. SEI Practice Areas.

The software development process for software families has a top-down nature, and is
continuous, incremental-iterative meta-process with a dual nature (as well for family as
for its members), with a high degree of the built-in variability, which has to be resolved
for particular family members.

The dual nature of the process signifies that it embraces as well the development of a
whole family (generic parts) as concrete products (family members). The process
components (phases) have a sequential nature: the output from one phase provides input
for the next one. The top-level view of the process phases is following:
− Business Goals and Scoping,
− Domain Analysis Activities (with Feature Modeling),
− Platform Architecture Evaluation,
− Assets Integration (Components and other assets),
− Product Instantiation and Testing,
− Products Deployment and Maintenance,
− Evolution (Feedback).

Types

Description

SEI Framework
PRACTICE AREAS

Software
Engineering

Domain Understanding

Requirements Engineering

Mining Assets

Architecture
Definition

Evaluation

Component
Development COTS

System Integration

Testing

Organizational
Management

Scoping

Process
Definition Assets

Technical
Planning what, when...

Configuration Management

Tool Support

...

Technical
Management

Business Case

Market Analysis

Organizational
Planning Org.

structure

...

Aspects
specific to PL

Specific practices

Known risks

References

Work plan

who

what

when, ...

Metrics
Tracking

Measuring

Artifacts

Keeping Current (Plans)

Stackholders

Evolution &
Sustainment (Plans)

Core Assets
Attached
Process

Use

Modification

Instantiating

Table 3-1: Process Components (phases) of Software Products Family and its Members.

Process
Component

Domain/Family Product/Member

Analysis Business Goals & Scoping

Domain Analysis
(Feature Modeling)

Products Requirements
Analysis,

Choice of Products’
Features
(Feature model)

Design

Platform Architecture Product Architecture:
- Fitting of Platform
Architecture, or
- Development of Product-
specific Architecture

Development
(other Assets)

Generic Components

Product Components:
- Fitting of Generic
Components,
- Development of Product-
specific Components

Testing and
Integration of

Assets

Assets
Implementation

Generic Assets Product Instantiation and
Testing

Production Product Deployment
Product Operation and
Maintenance

Evolution

Whole Family Evolution and
Organizational Transformation

Embedding New Features

Within the phases the development is highly iterative, especially for the architecture
evaluation. The partition of the process for the family and the product is depicted in the
Table 3-1. Business Goals & Scoping contained in the Analysis Phase is obligatory for
market oriented planning for the software product line. Changes during Products
Deployment and Maintenance Phases cause feedback for the product as well as the
integration of the changes into the family. Thus the process phases and their content are
highly interwoven what is caused by the nature of the continuous evolution of the
product family and influence of changes in one part reflected in other parts.
The top-down principle by the development of the product line artifacts is necessary and
the only possible way of development for the product-line [Bo00]. The assets contained
in the product line are created, evaluated, maintained and evolved and they have their

own life cycle that is orthogonal to the whole process for product line. The life cycle of
the products is contained in the life cycle of the family.

PL Patterns

SEI
Patterns

Context

Problem

Solution

Template

Name

Example

Context

Problem

Solution

Application

Variants

Consequences

FACTORY

What to build

 Cold Start CS Warm Start

WTB Analysis

WTB Forced March

Products Parts

Each Assets (EA)
AE Apprentice

Evolve EA

PP Green Field

PP Barren Field

PP Plowed Field

Product Builder

Assembly Line In Motion

PB Product Gen

Monitor

Other patterns

Essential Coverage

Curriculum

Parts of EA

Requirements

Architecture

Components

Testin

Software System Integration

Process

Fig. 3-3. SEI Cooperating Patterns.

The process may be seen as a meta-process with itself a high degree of variability for
building its instances. The sources of variability in the process itself are following facts:
− Preliminary against continued product line,
− Existence of legacy systems,
− Chosen type of development,
− Available staff.
For the new software product-line (that will be possibly developed from scratch) its
scope should be first determined, in contrast with the existing product-line, which scope
has only to be changed. There also may be (or not) a legacy system to be integrated in

the product-line. With the chosen type of development is meant, how the core assets
become instantiated, i.e. different possible ways like: mining, building, buying (e.g.
COTS), or commissioning. The staff may be inexperienced in product line approach; the
assets may only need modifications, not a full development.

Lifecycle phases

Process Workflows

Core Supporting Workflows

RUP
Lifecycle & Workflows

Inception

Elaboration

Construction

Transition

PRODUCTION

EVOLUTION

DECOMMISSIONING

Business Modeling

Requirements

Analysis & Design

Implementation

Test

Deployment

OPERATION AND SUPPORT

Configuration & Change Mgmt

Project Management

Environments

REUSE INFRASTRUCTURE
MANAGEMENT

Fig. 3-4. RUP Lifecycle Phases and Process Workflows –Suggestion for Extensions.

The proposed process forms a framework into which elements may be plugged-in to
enhance the capability of the skeleton, which is containing common parts for assets. The
process framework includes following common parts:
− Resources assessment,
− Planning (for developing and using assets),
− Monitoring,
− Deficiency identification and resolving,
− Change control.

The sub-processes consist of specific activities required for a particular (core) asset. The
common parts of sub-processes are:
− Work plan (for Tracing and Controlling),
− Tool support,

− Test Cases,
− Configuration Management.

Furthermore, family specific development includes:
− Description of variability within the asset (variation points contained in the asset

and methods for resolving variability in concrete products),
− Process prescribing how to create an asset as well as how to derive products from

the asset.
In the process there are also plans for evolving and maintaining the family members
(products). The plans and tests are handled as other assets with contained commonality
and variability.

In the Fig. 3-4 depicts the Lifecycle phases of RUP together with the Core Process and
Supporting Workflows. The missing elements required for a system family are denoted
with capital letters. The family (and product) life cycle is not restricted to deployment, as
proposed in RUP. As long as a family exists, the products are maintained and the
feedback causes the evolution - see Production and Evolution as the “last” Lifecycle
phase, and Operation and Support Process Workflow in Fig. 3-5. The lifecycle is
continuous and not ending with a deployment of a single product. Besides, the partition
in Family and Member- Development is needed. In the Supporting Workflows the
Management of the whole Reuse Infrastructure is necessary to enable the large-scale
reuse opportunities.

For description of commonality variability, not only for the generative purposes, but also
as a general notation for description of system (parts) containing commonality and
variability the feature diagram is recommended. The description should contain
mandatory and optional parts (features) and possibility for following choices: all (AND),
within the alternatives as one-of-many (XOR) and n-of-many (OR) choices (e.g. as
proposed in [CE00]). Embedding of feature diagrams in UML allows besides using the
widely known standard object-oriented notation, the description of the composition rules
within the diagrams.

4 Conclusion

The known processes designated for software families do not cover all the demanded
aspects as the use of the domain analysis activities (especially the feature modeling),
handling variability in the way allowing reuse above the code level, and possible wide
applying of the generative approaches in the AE phase. In the paper is a contribution to
improvement of the generic development process in product lines engineering (i.e. for
the software system families) is presented. It integrates the best (in the opinion of the
author) parts of the known in the world, existing domain-modeling methods and
contributes some new improvement aspects to the process, seen itself also as a
framework with common and variable parts. For the fulfillment of the generic system
architecture the use of generative techniques (e.g. frame technology) is recommended,
what especially supports the reuse in the evolution and maintenance of system family
members.

The problems like description of the of feature model semantic (especially feature
interactions) and determining generic software product line architectures according to
OMG Model Driven Architecture ideas should be further investigated.

References

[Ba99] Bayer, J. et. al: A Methodology to develop software product lines. In Proceedings of the

Symposium on Software Reuse. May 1999, pp. 122-131.

[Bo00] Bosch, J.: Design and Use of Software Architectures. Adopting and evolving product-

line approach. Addison-Wesley , New York, 2000.

 [Br98] Breymann, U.: Designing Components with The C++ STL - A New Approach To

Programming. Addison-Wesley , New York, 1998.

[CE00] Czarnecki, K.; Eisenecker U.: Generative Programming Methods, Tools and

Applications. Addison-Wesley , New York, 2000.

[CN02a] Clements, P.; Northrop, L.M.: Software Product Lines. Practice and Pattern. Addison

Wesley, New York, 2002.

[CN02] Clements, P.; Northrop, L.M.: A Framework for Software Product Line Practice -

Version 3.0 [online]. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University. March 2002. Available WWW:
<URL: http://www.sei.cmu.edu/plp/framework.html>.

[De00] DeBaud , J.M.: The Truescope Approach to Software Product Family Engineering. The

First Software Product Line Conference (SPLC1), 2000. Denver, USA.

[Di72] Dijkstra, E.W.: Notes on Structured Programming. In: Structured Programming (O.J.
Dahl, E.W. Dijkstra and C.A.R. Hoare, Eds). Academic Press, London, 1972.

[Ga95] Gamma, E. et. al: Design Patterns - Elements of Reusable Object-Oriented Software.

Addison-Wesley, New York, 1995.

[GFD98] Griss, M. L.; Favaro, J. ; D’Alessandro, M.: Integrating Feature Modeling with the

RSEB. Proceedings of ICSR98, Victoria, BC, IEEE, June 1998. pp.36-44.

[JGJ97] Jacobson, I.; Griss, M.L. ; Jonnson, P.: Software Reuse: Architecture, Process and
Organization for Business Success. Addison –Wesley Longman, New York, 1997.

[Jo97] Johnson, R.E.: Frameworks = (Components + Patterns). Comm. of the ACM, Vol.40,

No.10, 1997. pp.39-42.

[Ka90] Kang, K. et. al: Feature-Oriented Domain Analysis (FODA) Feasibility Study.

Technical Report No. CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, 1990. Pennsylvania.

[Ka98] Kang K.C. “FORM: a feature-oriented reuse method within a domain-specific

architectures” in Annals of Software Engineering, V5, 1998. pp.354-355.

[Ki97] Kiczales, G. et. al: Aspect-Oriented Programming. Proceedings of ECOOP97 – 11th
European Conference of Object-Oriented Programming, Jyväskylä, Finland, June 1997,
(M. Aksit and S. Matsuoka, Eds.), LNCS 1241. Springer Berlin, New York, 1997.

[OM00] OMG, Object Management Group, http://www.omg.org, 2000

[Os95] Osherr, H. et. al: Subject oriented Composition Rules. In Proceedings of 10th

Conference of OOPSLA’95, ACM SIGPLAN Notices, vol. 30, no 10, 1995, pp.235-
250.

[Pa76] Parnas, D.L.: On the Design and Development of Program Families. IEEE Transactions

on Software Engineering, March 1976. pp.1-9.

[RFP02] Robak, S.; Franczyk, B.; Politowicz K.: Extending The UML For Modelling Variability

For System Families, International Journal of Applied Mathematics and Computer
Science, 12(2), 2002.

 [Si96] Simos, M. et. al: Organization Domain Modeling (ODM) Guidebook, Version 2.0,

Informal Technical Report for STARS, STARS-VC-A025/001/00, June 14, 1996.

[So95] Sommerville, I.: Software Engineering. Addison-Wesley Publishing Company,

Wokingham, 1995.

[Sz98] Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-

Wesley, New York, 1998.

[We95] Webster, B.: Pitfalls of Object-Oriented Development: A Guide to the Wary and the

Enthusiastic. M&T Books, New York, 1995.

[Wi96] Withey, J. : Investment Analysis of Software Assets for Product Lines. Technical

Report No. CMU/SEI-96-TR-010, ADA 315653. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1996.

[WL99] Weiss D.M.; Lai C.T.R.: Software Product-Line Engineering: A Family Based Software

Development Process. Addison-Wesley, New York, 1999.

