
Petri Net Markup Language: Implementation and
Application

Christian Stehno

Carl von Ossietzky Universit¨at Oldenburg
FB Informatik, Parallel systems group

D-26111 Oldenburg
Stehno@informatik.uni-oldenburg.de

Abstract: We present a twofolded view to the Petri Net Markup Language (PNML).
On the one hand we describe the current state of PNML seen while adopting PNML
for an existing tool. The extension allows easy exchange of examples between the
PEP tool and other Petri net tools. On the other hand we show how to benefit from the
versatility of the Extensible Markup Language (XML). We present a translator from
PNML to the Scalable Vector Graphics format (SVG), which may be used for display
of Petri nets on the Web.

1 Introduction and Motivation

The PEP tool [Be96, Pe02] provides an integrated development and verification environ-
ment for a selection of formal modelling techniques. All of these techniques are based on
Petri net models, for which PEP offers complete support by simulation and verification as
well as editing. The Petri net part of PEP builds the core component of the tool, which
glues together specification and verification components. For programming and specifi-
cation languages, the semantics of each one is given in terms of Petri nets. These are
further transformed into appropriate representations or directly checked, depending on the
analysis tool.

Tools included within the PEP system use file based interfaces, where each tool reads input
from one or more files and produces result files analogously. Most of the files are simple
text files using proprietary file formats. Details can be found in the PEP manual [BG98].

The PEP file formats for high and low level Petri nets are used in a large number of tools,
some of which are even not part of the PEP system (e.g. the Petri Net Kernel [KW01b] or
the Model Checking Kit [Mo02]). Still, the PEP formats are not commonly used in other
tools, as they are not easily extensible and despite their textual layout quite hard to read by
humans as well as by computers. A common interchange format for Petri net tools would
allow simple access to a lot of tools for various purposes and a great number of examples
available. It would also facilitate the comparison and integration of different approaches
to all kinds of Petri net usage.



Some proposals for a common Petri net file format have been made (e.g. [Ba00, BKK95]).
From all of these, PNML [JKW00] has shown to be the most developed and most flexible
format. It is, such as many other recent exchange formats, based on XML [Ra01]. XML
offers a standardised and easily parsable syntax for an arbitrary number of user-defined
document formats, called markup languages. Markup languages extend plain text files
with meta information about the semantics of text parts.

This paper describes the pros and cons of PNML found while implementing the PNML
interface of PEP. Furthermore it proposes a set of PNML tags and their meaning, to be
used as a reference for other implementations and customisations of the PNML syntax to
tool specific needs.

The second part of the paper describes a typical application of XML, tailored to the PNML
format. We present a transformation scheme from Petri nets in PNML representation into
a second XML based format, SVG [Ei02]. Applying this scheme layouts the text based
net descriptions into displayable graphics. The scheme may be generally used with any
application supporting the XML transformation mechanism Extensible Stylesheet Lan-
guage Tranformation (XSLT [Ti01]). Thus, it is not bound to a specific tool and moreover
platform independent.

The paper is organised as follows. Section 2 introduces markup languages in general and
the XML and PNML formats. The particular properties of PEP wrt. the integration of
PNML are discussed in Sect. 3. In Sect. 4 we describe the implementation of the new
functions for reading and writing PNML in detail. Section 5 presents the transformation
scheme from PNML to SVG. Finally, Sect. 6 concludes the paper and points to some future
work.

2 Markup Languages

Markup languages are special text formats enriched by a set of symbols, used to identify
certain parts of the text and define some meaning for those parts. The symbols are directly
attached to the marked text or surround a larger area by labelling its beginning and its end.
The clear separation of parts which differ from each other by their meaning gives much
more power and flexibility to text formats than to rely to text positions or syntax, usually
used for computer based file formats.

Originally, markup languages have been designed for human readable text documents,
where neither positions within the text, nor contents may give an unambigous hint on the
intention of the text parts. Thus, the text has to be extended by additional information, and
one method to accomplish this are markup languages.

The first markup languages were designed in the late 1960s by IBM. In 1983, the ANSI
committee proposed the Standard Generalized Markup Language (SGML [Go90]), a large
and complex framework for development of user-defined markup languages for special
purposes. Most of the markup languages used today are based on SGML, including
XML and one of the most ever used markup language, the Hypertext Markup Language
(HTML).



Although HTML did not comply with the concept of separating contents and layout, most
markup languages store only contents and meaning of the text. The text may then be
transformed into a layouted document by fixing a general layout scheme for each possible
markup element. Depending on the markup of a given part and the desired output format,
an appropriate layout is chosen, e.g. links may be transformed into clickable hypertext
links if translated to HTML or into underlined text if translated to some printable form.

2.1 XML

Like SGML, XML is a framework for development of specialized markup languages. Al-
though its syntax is based on SGML, it is much easier to use and to implement. This
section will just point some basic parts of the XML syntax, due to to large number of
books on this topic.

XML files contain tags to define markup. The tags are delimited by� and� and exist in
three different types. If tags are used to surround some text or include more tags inside,
they are used pairwise. In such a case, both tags have the same name, and the second
tag’s name is preceeded by a slash. If the tag does not contain text or further tags, it may
be abbreviated to a single tag with a slash as last character before the closing bracket.
Tags may be optionally supplemented by attributes inside the brackets, using the form
attribute="value". An example of this syntax can be found in Fig. 1.

Creation of a new markup language involves the specification of available tags and their
attributes. Furthermore, the order of the tags and the objects each tag may contain (i.e.
enclose) have to be fixed. To be able to check, if a given document adheres to the language
specification, the latter is usually given in a special way, such that it may be tested auto-
matically. The most common format for such specifications is Document Type Definition
(DTD), which is to be replaced by the standard XML Schema (cf. [Wo02]), and allows to
specify the markup language in terms of XML and provides a more expressive data type
description.

2.2 PNML

This section will shortly introduce PNML. More details on the language may be found in
e.g. [JKW00, KW01a].

PNML has been designed to provide a common interchange format for all types of Petri
nets and all tools available for these types. To cope with the large number of different Petri
nets and the special needs for distinct programs, the design was kept very flexible. Each
Petri net type is build from a collection of predefined components. To create a new type,
only the choice of elements and their order has to be fixed. This is done by means of DTDs
or XML Schemas, such that a Petri net may be checked against its type definition. Besides
the Petri net type, another Schema is provided for the general PNML file structure. This
scheme contains just the very basic nodes which are part of every Petri net.



<pnml>
<net id="net1">

<place id="pl1">
<name><value>Place 1</value></name>
<initialMarking>

<value>1</value>
</initialMarking>
<graphics>

<position page="1" x="10" y="10"/>
</graphics>

</place>
<transition id="tr1">
<name><value>Trans 1</value></name>
<graphics>

<position page="1" x="10" y="30"/>
</graphics>

</transition>
<arc id="a1" source="pl1" target="tr1"/>

</net>
</pnml>

Figure 1: Petri net in PNML syntax.

The overall layout of PNML files consists of places, transitions and arcs, whereof each is
uniquely identified by a special attribute and an identically named tag. All tags may be
equipped with additional tags such asinitialMarking andname, if appropriate. The
basic syntax also offers tags for graphical information, specifying positions absolute or
relative to their parent, and tags to separate net nodes on different pages.

More specific properties and net elements require newly defined tags. Although all tags
for a particular net type may be arbitrarily chosen, such a Petri net type would not be
any easier to exchange among different tools than with any other file format. Instead,
the syntax and meaning of each tag have to be defined in a global document to ensure
soundness between different but similar net types. This global document is commonly
referred to as theconventions.

Unfortunately, the current PNML implementation still lacks conventions, and thus a thor-
ough foundation of the used tags. Examples for different Petri net types are always given
without the use of conventions, which fosters an impression of ad hoc definiton of the
language.



3 Specific Properties of PEP

PEP supports a number of different Petri net types. Besides plain P/T nets, these are Petri
boxes [BDK01], high level M-nets [Be98] and timed versions of the former three types
(according to [MF76]).

Petri boxes are the low level counterpart of M-nets. Both use specific net operations to
compositionally combine simple nets to larger ones. Synchronous and asynchronous com-
munication is also provided by these means. The operators use special labels added to
places, transitions and arcs for their functionality. M-nets use coloured tokens like other
high level Petri nets.

Introduction of time to Petri nets is well known (cf. [St90]) and became very popular for
the last years, due to the demand for real-time specifications and tools. PEP allows time
intervals, specifying earliest and latest firing times, at high and low level transitions.

Still, PNML does not provide support for these extensions and the use of time Petri nets
requires further additions to the language. Thus, the PNML syntax has to be extended in
every basic node to support the new net classes. A complete overview of all newly defined
tags can be found in Sect. 4.

Using a file format like PNML enforces development of a standalone converter to and from
some already existing file format, or of a reading and writing routine as part of the tool.
We chose the latter approach, as PEP allows easy integration of new file formats through a
general reading and writing routine accessed by most of the Petri net tools throughout PEP.
A standalone converter may be easily build using already existing routines for the original
PEP formats together with the newly implemented PNML functions. Such a converter has
been created and is part of the PEP tool, now.

Another approach for a conversion tool is shown in Sect. 5. The transformation of PNML
described there could have been instead implemented for some exisiting Petri net file for-
mat. While the flexibility of the PEP reading and writing functions facilitates the addition
of new formats, and an external converter would force additional program logic to auto-
matically convert all defined formats into the appropriate ones, we stayed with the decision
for some internal routines. Application of the XSL transformations may give a fast adap-
tion of PNML to commercial systems though, where the source code is not available, or
where it is not this easy to add new routines to every component of the tool.

4 Integration of PNML

Before PNML can be used with some tool, the basic PNML syntax has to be enlarged
as mentioned in Sect. 3, since PNML offers just a small set of predefined tags. From
these tags, only plain P/T nets may be build, but more sophisticated concepts such as
time Petri nets are not supported. PNML allows tool specific data to be stored within a
special tag, which inhibits further use by other programs, though. Some extensions have
been described in [KW01a, JKW00], but only by means of examples rather than general



definitions.

For the extensions of PNML to be consistent for different tools, and thus interchangable,
they have to be standardised the same way as the basic PNML elements. For this purpose,
conventions have to be established, but do not yet exist. Therefore each tool creates its
own PNML dialect for each Petri net type, which makes file exchange among different
tools almost impossible.

Besides a strict syntax for all defined elements, the convention paper also has to define
the meaning of such tags. Otherwise, different tools may produce syntactically correct,
but semantically incompatible net descriptions by overloading predefined tags. A typical
problem of overloading is the question for the name of a node. Some tools use self-
explanatory identifiers for their nodes while others, such as PEP, use a special meaning tag
for this purpose. As the current documentation of PNML does not give any information on
the use and intention of tags, the decision is left to the programmer. Although this usually
works for a particular tool, it foils usability of the interchange format.

Nevertheless, we chose our own tags for most properties, only reusing well known and
unambiguous tags such asinitialMarking. The newly introduced tags are shown
in Fig. 2, which states name, syntax and intended use of each tag. As most of the tags
declare additional labels, they can be augmented by a graphics tag, to indicate its absolute
or relative position.

As PNML allows arbitrary tags inside net nodes, there is no need for special handling of
newly declared tags, except for using them. To write such customised PNML files is rather
easy. The PNML file is build corresponding to the general net structure, i.e. each node and
arc is visited once and all information available is written to respective tags.

Although readability is greatly enhanced by indentation, XML does not rely on such in-
formation. Still, the PEP export module creates a nicely indented layout, cf. Fig.1.

To read from a file is usually more complex than to write to, as the internal data structure
does not map to files in general. Exceptions from this are object serialisations used in
object-oriented databases, where complete objects are written directly from memory to
a file. For all other files, to read into the internal representation requires scanning and
parsing to gain a thorough knowledge about each word of the file.

Scanning PNML, i.e. the separation of the file into the smallest useful elements, called
tokens, is rather easy, due to the simple and structured syntax of XML.

The difficult part while reading PNML is parsing, as there is no such tool such as yacc
[LMB92], which automatically produces a parser from some grammar description. But
tool support exists for building parsers based on standardised XML APIs, namely DOM
and SAX, cf. [Wo02]. Using SAX is very complicated for more sophisticated application
formats, including PNML, as it is a one go parse method, which reads the file in a serial
way. PNML does not restrict the order of the nodes, and thus PNML files may include for-
ward references, which can not be resolved by the SAX API without additional overhead.
Furthermore, the SAX API heavily relies on manually written state encodings, while it
does not offer many advantages over DOM except memory savings.

Thus, we implemented the PNML parser of PEP using DOM. This API works on an auto-



Tag name Syntax Meaning
meaning String An arbitrary string which explains the node’s mean-

ing in detail. Available for places and transitions.
Tags for places

type String Type of high level marking. Usually a subset of inte-
gers, booleans and black tokens, or tupels thereof.

label String Place node type for M-nets and Petri boxes. May be
entry or exit.

Tags for transitions
actionterm String Multiset of synchronisation symbols for M-nets and

Petri boxes.
guard String Expression which must evaluate to true, if transition

fires.
timelabel empty The time interval is stored in the attributes eft and lft,

which state earliest and latest firing time, resp.
Tags for arcs

label String Multiset of variables, which are bound to high level
tokens during firing of transitions.

visibility Cardinal A number that specifies a visibility degree. The set
of arcs may be shown only partially, depending on
the selected numbers to be displayed.

weight Cardinal The weight of the arc.

Figure 2: New PNML tags supported by PEP

matically build tree representation of the structure of the XML file. Parsing the file is done
by traversing the tree, calling user provided functions for the different node types. As the
whole tree is always accessible from each node, references are easily resolved. The state
of the parser is given implicitly by the current node, and nested tags are easily parsed by
recursion.

Since references are introduced at the XML level, some APIs facilitate their use by means
of automatic lookup routines. For the implementation of the API used within PEP, the
libxml2 library from the Gnome framework [Gn02], this is at least partially true. The
programmer may declare attributes destination of a reference. By this declaration, an at-
tribute may be referenced from any point of the tree by the unique id given as its attribute’s
value. Uniqueness of the id is obligatory and is tested during declaration, but may also be
checked during the wellformedness check by any validating parser.

PNML uses references to specify arc source and destination and for relation of nodes
and reference nodes. During tree traversal, all place and transition ids are registered as
XML ids, thus all references are resolvable by the parser. Furthermore, the order of nodes
while reading the file is chosen in such way, that nodes which may be referenced later are
processed before those using references, i.e. places and transitions before arcs.

A typical parse routine can be found in Fig. 3. Only the parse part for some tags is shown,



but other tags are processed analogously. Parsing is done in three steps. First the unique
identifier is registered for references, e.g. by arcs. Then, each child of the place node is
checked for a usable type. According to that type, the handler function is called. Most
elements have their value stored in another element named<value>. The strings stored
inside these tags are gained through thegetValue() function. Additionally stored coor-
dinates are parsed by theparseGraphics() function. The example shows the flexible
use of such functions. Since graphical information may be part of subtags and the parent
tag, it is called from the main loop and within subtags. Tags that store their information
differently may be handled by specific functions. When all information is gathered for a
place, the data has to be stored in the internal representation. This conversion is highly
tool dependent and thus not shown in the example.

void parsePlace(xmlDocPtr doc, xmlNsPtr ns,
xmlNodePtr node, LMPNet net)

{
xmlChar *id;
xmlNodePtr placenode=node;
char *imark=NULL, *mean=NULL;
Coords placepos=NULL, meanpos=NULL;

/* Register new identifier for references */
id=xmlGetProp(node, "id");
xmlAddID(NULL, doc, id, xmlHasProp(node, "id"));

/* Process subnodes */
for (node = node->xmlChildrenNode; node != NULL;

node = node->next) {
/* check subnode’s type and call function */

if ((!xmlStrcmp(node->name, "initialMarking")))
imark = getValue(doc, ns, node);

if ((!xmlStrcmp(node->name, "meaning"))) {
/* meaning node has more childs to process */
mean = getValue(doc, ns, node);
meanpos = parseGraphics(doc, ns,

node->xmlChildrenNode);
}
if ((!xmlStrcmp(node->name, "graphics")))
placepos = parseGraphics(doc, ns, node);

}
/* add new place to internal data structure... */
}

Figure 3: Parse routine for place nodes.



5 Transformation from PNML Nets to SVG Images

Petri nets are quite often chosen as models, since they are easily understandable due to their
graphical representation. Although they may be presented in many (more ore less formal)
ways through textual descriptions, the most intuitive and usually preferred way remains a
graphical description using a graph-like structure. Thus, we decided to establish a general
transformation from PNML into a graphics format, instead of another text format.

Most commonly used graphic formats are pixel based, i.e. every coordinate of the two-
dimensional image is given a colour, which creates a fine-grained mosaic (e.g. JPEG,
PNG or GIF). Thus, a transformation into such formats requires rendering. PNML, like
vector based graphic formats, describes only the place of the building blocks of the image.
To display such an image, all nodes have to be drawn, maybe covering some nodes by
others. Due to this analogy, we decided to translate PNML into a common vector graphic
format. For the sake of simplicity, we chose the XML based SVG format. Nevertheless,
this format is well usable through a lot of available applications, and may emerge as the
forthcoming standard of vector graphics. Being based on XML, this format also keeps the
advantages of XML, such as readability and flexibility. As a vector graphic format, SVG
images are scalable without loss of detail and thus usable on different displays.

Transformation from XML into other formats is done using XSLT. Due to the XML con-
cept, no specific application is used for this translation, but a stylesheet called description
of PNML to SVG translation grammar. This scheme is written in XSL, using a template
mechanism. Nodes of the XML tree may be matched by some pattern. To each of these
nodes, a transformation template (i.e. macro) is applied, which specifies how to handle
the contents of the node. Besides for printing, the attributes and the contents of the nodes
may be used to define conditional branches and loops. Since the complete XML structure
is accessible and templates may be applied recursively, transformations are usually easily
implementable.

For the proposed transformation from PNML to SVG, we have to define three top-level
templates for places, transitions and arcs. All other tags defined in PNML are part of one
of these three, and thus called from one of these templates.

Places and transitions are directly transformed into circles and rectangles, using the coor-
dinates from the graphics tag found in the children nodes. Other labels found for place
or transition tags are transformed into plain text, again printed to the stated coordinates,
except for some special tags such as inital markings.

Arcs are very different, compared to the former two nodes. They do not provide coordi-
nates for start and end position, but source and destination nodes. Furthermore there is no
graphic primitive within SVG for arrows. Instead a line and a polygon are used, i.e. the
arc and arrow head are drawn seperately. To create such new primitives is quite easy using
the define function of SVG, but requires additional transformation of the primitive when
used. Circles and squares always have the same rotation, but arcs have to be rotated into
the correct orientation and have to be scaled to the desired length to connect the two nodes
of arbitrary distance.

A simplified version of the place transformation template is shown in Fig. 4. First, the tem-



plate matches nodes named place on the same level like it was called from. The template
is thereupon applied to each node it has been matched with. The text within each template
is printed to the output file. Before, all XSL instructions are executed and replaced by
their results. These instructions consist of special tags within the xsl namespace (denoted
by <xsl:...>), where the instruction name is the tag name and all attributes form the
parameters of the command. Even the templates are XSL instructions where the parameter
specifies the set of elements to process.

<xsl:template match="place">
<g>

<xsl:attribute name="transform">
translate(<xsl:value-of select="@x"/>,

<xsl:value-of select="@y"/>)
</xsl:attribute>
<circle cx="0" cy="0" r="10" />
<xsl:if test="child::initialMarking">
<circle cx="0" cy="0" r="3" fill="black" />

</xsl:if>
<xsl:apply-templates select="name"/>

</g>
</xsl:template>

Figure 4: Transformation template for places

The overall structure of the result is fixed by the template’s order. Only variable values
may be changed according to the values found in the processed tag. The result of an XSL
instruction is thereby not restricted to one word, but may contain arbitrary text even from
different elements of the PNML file.

The place template creates a new group of graphic elements, surrounded by<g> tags. This
group contains all displayed items for the place, e.g. its name and initial marking, besides
the place itself. To simplify the relative positioning of the place labels, etc., the group is
moved to its correct position only after the complete construction.

SVG allows to move complete groups by specifying an additional attribute to the group
tag. This attribute has to be added by an XSL instructions, since tags can not be created
partially. Thus, an open tag<g is not allowed, even if it is closed later on by a closing
bracket. Only fixed attributes may be printed directly with the tag, such as done for the
circle attributes. Instead of a fixed attribute, the transform parameter is read from the two
attributes specified for the place tag in PNML. Contents of attributes is referenced by a
trailing @ sign, otherwise tags are chosen. For enhanced readability, in the example it is
assumed that coordinates are stated directly in the place tag, not in subtags.

The place is drawn as a circle at position (0,0). The correct position is reached by the
move operation described above. The following instruction shows the ability to test for
special tags contained at any position in the PNML structure and proceed depending on
the test result. The initial marking is drawn as a black token, if a tag with the correct name



exists. This test would normally check the number of initial tokens, but this is left out due
to space restrictions.

To process further tags inside the place tag, different templates may be called and matched
against the child tags. The example shown only features one such call, but any number
may be included analogously. The template used for the name tag is realised in such a
way, that it can be used for any tag that should be displayed as plain text. It just creates a
text field at the position found in its accompanying positions tag. Thus, only tags which
need special treatment require additional templates.

6 Conclusion and future work

We presented two ways of adapting PNML for different purposes. Implementation of a
new I/O routine for some tool is a very common technique. Therefore we concentrated on
general problems with and a proper way of implementing PNML. The second contribution
of this paper is a uniform transformation mechanism from PNML to SVG. This allows easy
display of Petri nets on the Web and in various tools. It extends the flexibility and power
of PNML and opens new fields for application of PNML.

There are many open problems with the use of PNML, though. First of all, the syntax has
to be fixed by conventions. The number of defined tags has to be enlarged, facilitating the
development of new Petri net types within PNML.

The current implementation of PNML within PEP still lacks some parts of the language.
Most promising seems support for pages, although this could be incompatible with the
block concept of PEP. The newly defined PNML net types will get a proper syntax in
terms of XML Schema, which is not yet fixed.

The proposed transformation scheme to SVG should be enhanced to support all PNML
tags defined, maybe on a more generic level. This also includes the page concept, besides
different arc types and many other properties. Of course, this will be an ongoing task such
as further development of PNML.

Literaturverzeichnis

[Ba00] Bastide, R. et al (eds.): Meeting on XML/SGML based Interchange Formats
for Petri Nets. Aarhus, Denmark, 21st ICATPN. (2000). Also available from
http://www.daimi.au.dk/pn2000/Interchange/index.html

[BDK01] Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. EATCS Monographs on Theo-
retical Computer Science Series. Springer-Verlag (2001)

[Be96] Best, E.: Partial Order Verification with PEP. In Proc. of POMIV’96. American Math-
ematical Society (1996) 305–328



[Be98] Best, E., Fra¸czak, W., Hopkins, R.P., Klaudel, H., Pelz, E.: M-Nets: An Algebra of
High-Level Petri Nets, with an Application to the Semantics of Concurrent Program-
ming Languages. Acta Informatica35(10). Springer-Verlag (1998) 813–857

[BG98] Best, E., Grahlmann, B.: PEP Documentation and User Guide Version 1.8. University
of Oldenburg (1998)

[BKK95] Bause, F., Kemper, P., Kritzinger, P.: Abstract Petri Net Notation. Petri Net Newslet-
ters, No. 49 (1995) 9–27

[Ei02] Eisenberg, D.: SVG Essentials. O’Reilly (2002)

[FG98] Fleischhack, H., Grahlmann, B.: A Compositional Petri Net Semantics for SDL. In
Proc. of ATPN’98. Volume 1420 of LNCS. Springer-Verlag (1998)

[Gn02] The Gnome Project: http://www.gnome.org/

[Go90] Goldfarb, C.F.: The SGML Handbook. Oxford University Press (1990)

[JKW00] Jüngel, M., Kindler, E., Weber, M.: The Petri Net Markup Language. In Proc. 7.
Workshop AWPN. Universit¨at Koblenz-Landau (2000) 47–52

[KW01a] Kindler, E., Weber, M.: A Universal Module Concept for Petri Nets – an implemen-
tation-oriented approach –. Technical Report. Informatik-Berichte 150, Humboldt-
Universität zu Berlin (2001)

[KW01b] Kindler, E., Weber, M.: The Petri Net Kernel. International Journal STTT3. Springer-
Verlag (2001) 486–497

[LMB92] Levine, J., Mason, T., Brown, D.: lex & yacc. O’Reilly (1992)

[MF76] Merlin, P., Farber, D.J.: Recoverability of Communication Protocols. IEEE Transac-
tions on Communications. 24:9 (1976) 1036–1043

[Mo02] The Model Checking Kit:
http://wwwbrauer.informatik.tu-muenchen.de/gruppen/theorie/KIT/

[Pe02] The PEP tool: http://parsys.informatik.uni-oldenburg.de/˜pep

[Ra01] Ray, E.T.: Learning XML. O’Reilly (2001)

[St90] Starke, P.: Analyse von Petri Netzen. Teubner-Verlag, Stuttgart (1990)

[Ti01] Tidwell, D.: XSLT. O’Reilly (2001)

[We00] Weber, M.: An XML-based Approach towards an Interchange Format for Petri Nets.
In Proc. Workshop CS&P. Informatik-Berichte 140, Humboldt-Universit¨at zu Berlin
(2000) 251–353

[Wo02] The World Wide Web Consortium: http://www.w3c.org/


