
Monitoring Executions on Reconfigurable
Hardware at Model Level

Tobias Schwalb1, Philipp Graf2, and Klaus D. Müller-Glaser1

1 Karlsruhe Institute of Technology, Institute for Information Processing Technology,
Germany, {tobias.schwalb,klaus.mueller-glaser}@kit.edu
2 FZI Forschungszentrum Informatik, Germany, graf@fzi.de

Abstract. Development, debugging and test of embedded systems get
more and more complex due to increasing size and complexity of im-
plementations. To dominate this complexity, nowadays designs are often
based on models. However, while the design is on model level, the mon-
itoring and debugging are still either on signal or on code level. This
paper presents a continuous concept that allows monitoring and real-
time recording of executions on reconfigurable hardware at model level.
Besides developed hardware debugger modules, a development environ-
ment has been integrated. It allows on model level generation of the
implementation, control of the recording and monitoring at runtime and
visualization of the execution. An algorithm, running in the background,
maps acquired data from the hardware to the model and commands from
the model-based development environment to the hardware. The method
is demonstrated using the example of statechart diagram monitoring.

Keywords: debugging, model-based control, monitoring, back annota-
tion, real-time recording

1 Introduction

In software and hardware development costs, time-to-market and quality are
often contradicting to each other, which increase with the complexity of the
system. The complexity arises mainly by the increasing demands in terms of
functionality, energy efficiency and the ongoing integration on hardware. This
affects especially the possibilities to monitor embedded systems at runtime. To
dominate the increasing complexity, more and more abstract approaches for
the development of embedded systems come up. One option is model-based de-
velopment using graphical languages, for example Unified Modeling Language
(UML)[1], statecharts[2] or signal flow graphs[3]. These models can be used to
automatically generate source code for programming embedded systems.

To preserve the benefits of flexible development and simultaneously achieve
high performance, reconfigurable hardware devices (e.g. Field Programmable
Gate Arrays - FPGAs) are deployed. These offer the possibilities to implement
algorithms in hardware and parallel execution, to gain more computing power.
However, developing reconfigurable systems is more complex, especially in the
area of debugging and testing with regard to real-time conditions.

The challenge is to combine these domains into a continuous model-based
development process that allows debugging and monitoring on model level [4].
In a previous paper [5] an initial concept for model-based debugging of recon-
figurable hardware has been presented. The paper focused mainly on the overall
concept and the on-chip hardware architecture for real-time recording. This pa-
per presents an advancement of the concept and focuses on the control of the
functionality at runtime and the mapping between the different abstraction lev-
els. In this context, the next chapter describes the state of the art in terms of
monitoring and debugging reconfigurable hardware. In Section 3 the concept
allowing model-based debugging on reconfigurable hardware is described, while
Section 4 gives a brief overview of the on-chip architecture. The following sec-
tion focuses on the software used for instantiation and runtime control. Section 6
introduces the method to achieve a mapping between hardware implementation
and model to allow back annotation to model level and control of the debug-
ging. The next section shows carried out tests and their results. We close with
conclusions and outlook on future work in Section 8.

2 State of the Art

2.1 Simulation vs. Debugging

In the FPGA development process simulation[6] and debugging[7] are used for
the identification of errors. Simulation, compared to debugging, has the advan-
tage that a hardware system is not necessary, therefore it can be performed
earlier in the development process. Using simulation, all signals of the design
are directly accessible and their behavior can be displayed. Using debugging,
the access to internal signals is limited, because the signals need to be either
recorded on-chip (limited memory) or forwarded to output pins (limited num-
ber) for external processing. In general, an embedded system exists in context of
its peripherals and surroundings. In a simulation all these need to be additionally
integrated and it is very complex to consider all parameters. Therefore, there
is always an uncertainty if the simulation represents the real system. With de-
bugging, peripherals and surroundings are present in the real system and do not
need to be simulated. In addition, using simulations it is difficult to determine
non-functional parameters, for example real-time conditions or performance.

2.2 Debugging Reconfigurable Hardware

For debugging FPGAs [8] it has to be mainly distinguished between real-time and
non real-time debugging. In the latter, breakpoints3 stop the clock of the design
under test or it is executed step by step. When the design stops, the status of
the on-chip registers is read back and interpreted to determine the system state.
Disadvantages are that performance and timing cannot be analyzed and it is not
possible to obtain the status of signals before stopping the system. For real-time

3 Configurable event triggered by a set of conditions that halt the system

debugging essentially two different methods exist: the first forwards the signals of
interest to output pins of the FPGA. Recording and processing is performed by
external hardware (e.g. digital logic analyzer). The number of signals is limited,
because every signal requires an extra output pin. The advantage is that on-chip
logic or memory is not needed. The second option integrates additional on-chip
modules to record the signals and transfer the data via an interface to a PC.
An example is ChipScope[9] by Xilinx, it stores the signal flow in on-chip Block-
RAM and transfers data via the JTAG interface. This method can record many
signals, but recording time is limited by on-chip memory.

All discussed debuggers work and get controlled during runtime on signal
or code level, i.e. breakpoints or trigger conditions for recording are set with
respect to the signals in the design. This it is not suitable for a model-based
design process, because the developer designs the system on model level and
does not know about signals or source code, as this is mostly automatically
generated according to the developed model.

2.3 Model-based Debugging

Debugging on model level for embedded systems is possible, but not widely used.
The commercial software Matlab[10] offers model-based debugging in their State-
flow part, it allows the implementation and debugging of statechart diagrams,
but supports debugging only on special microprocessor platforms.

A general approach for model-based debugging on embedded systems has
been presented in [11], [12], [13]. These papers describe a concept which refers
to different abstraction layers in a model-based design process and a frame-
work for a modular system architecture. Also a prototype implementation and a
connection to a real-time in-circuit emulator are shown. In this paper, these prin-
ciples are extended with real-time aspects within reconfigurable hardware and
the automatic generation of the hardware debugging platform. In this context,
a mapping between model and hardware platform is developed, that addition-
ally allows the control of the debugging during runtime from model level. The
concepts of the presented debugging environment [13] are integrated in a new
developing environment that is based on model-based developing frameworks
and extended with interactive control modules.

3 Model-based Design Flow for Debugging

The development of reconfigurable systems is heading towards a model-based
design flow. Hence also monitoring, debugging and control of the debugging
needs to take place on model level. A continuous concept for debugging on model
level is depicted in Figure 1.

The flow shows on the left side the design and transformation, in the middle
bottom the execution and on the right side the mapping and debugging. In the
middle, a direct connection for model-based control is added. In the beginning,
the user designs his system using different models. In this context, the models

4 29.04.2010 © Institut für Technik der Informationsverarbeitung (ITIV)

010101010111001001010100001001111110110000011001101100

010100110111001000101100011100011100011100010010101100

010011010110100111011010000011001010101110111101001101

010011100110101010101110010010101000010011111101100000

110011011000101001101110010001011000111000111000111000

100101011000100110101101001110111010101011100100101010

000100111111011000001100110110001010011011101010000100

111111011000001100110110001010011011100100010110001110

001110001110001001010110001001101011010011101110101010

111001001010100001001111110110000011001101100010100110

111001000101100011100011100011100010010101100010011010

110100111011010000011001010101110111101001101010011100

ARCHITECTURE fsm_SFHDL OF Car_dominated IS

SIGNAL is_Car_dom : type_is_Car_dom;

SIGNAL PedFinished : std_logic;

SIGNAL is_Car_dom_next : type_is_Car_dom;

BEGIN

initialize_Car_dom : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

is_Lights <= IN_NO_ACTIVE_CHILD;

y1_reg <= to_unsigned(0, 3);

ELSIF clk'EVENT AND clk = '1' THEN

y1_reg <= ‘1’;

Monitoring /
Debugging

VHDL-Code Signal-Data

Runtime
Information

Source Code

Code generation

Implementation

Execution

Monitoring

Mapping

Target platform

Model

Binary

Control

Fig. 1. Design flow for model-based monitoring and control [10],[14],[16]

have to be sufficiently detailed to generate executable source code. This auto-
matic code generation is currently supported by various toolsets and mainly
allows the generation of C code and partly HDL code. As we examine recon-
figurable hardware, we concentrate on VHDL code. To enable debugging, the
generation process needs to implement an interface for debugging into the hard-
ware design. After generation, the design is synthesized by the FPGA-specific
tools using mapping and routing algorithms to generate a bitstream, which is
used to program the FPGA. The design, which includes the user implementation
and additional debugger modules, is executed on a FPGA. During execution in
the right branch of the process the signals of interest are captured by the de-
bugger modules. The data is transferred to a PC during monitoring or after
recording. Since the data obtained on-chip relates to signal level, it is mapped
to the model. In visualization the user can monitor the execution.

During the whole process, the user is working on model level, the interme-
diate steps are performed by algorithms. Therefore, developing, debugging and
control of the debugging take place on the same abstraction level. The automatic
interpretation and mapping of signals to the model cannot be regarded as reverse
engineering, since information from the left branch of the process is needed. It
is rather a reversal of the transformation from model to hardware.

4 On-chip Architecture

The modular architecture of the debugger modules is depicted in Figure 2. First
the recorded signals of the designs under test are buffered in a FIFO. This first
FIFO can also run in a ring buffer mode, which allows recording signals before
a trigger is released. This mode allows easier identification of the reason of an
error, because the history of events can be recorded and parts of the system
state reconstructed. After the FIFO, the data can be processed by different

Design

Clock

Design

Reset

Design

Signals

Reset

control

Clock-

control

Controller

FIFO PC

Interface

FPGA

PC

JTAG,

RS232,

Ethernet

Coding

and / or

…

…

Bypass-Switch

Timer
Trigger

(< > =)

FIFO
Com-

pression

Fig. 2. Architecture of the on-chip debugger modules

compression or coding algorithms to get a reduction of the data. This processing
is optional, but allows to use on-chip memory more efficiently and record a longer
period of time. The second FIFO stores the data into on-chip memory, before
it is transmitted to a PC using a communication interface. This architecture is
described in more detail in [5]. In comparison to the original design, the Pseudo-
Random-Generator is excluded and the coding and compression unit is shirked
to decrease the use of logic resources. The DDR-Interface is no longer supported,
because of its speed in comparison with internal memory in the actual system.

Besides recording, a direct monitoring of the design signals is also possible,
since the transmission is independent of the recording. In this mode compression
is bypassed and the FIFOs are directly read out. However, a restriction is the
bandwidth, which depends on the speed of the interface to the PC and the
processing in the model-based development environment. Therefore, real-time
monitoring is only possible within small systems with few signal changes.

The debugger is managed by the controller, which is a small microprocessor.
It monitors the status, controls recording and the design under test as well as
communicates with the PC. To control the design under test, its clock enable
and reset signal can be changed, which allows to stop and reset the design inde-
pendent of the debugger modules. As inputs, trigger modules monitor signals of
the design under test on the occurrence of certain conditions to start or stop the
recording. The modules can trigger on edges or conditions of signals as well as
compare signals to other signals or with fixed values. The trigger module can be
repeatedly instantiated to allow complex chained comparisons. Additionally, the
trigger conditions can be modified at runtime, switching integrated multiplex-
ers or changing memory cells. The controller also communicates with the PC,
receiving commands for control and transmitting recorded data. The design has
been extended by a timer module to enable time-based recordings.

5 Software and Model-based Control

For model-based generation of the platform, visualization of the execution and
control of the debugging at runtime a model-based developing environment
has been implemented. The environment is build on Eclipse[14], extended with
the Eclipse Modeling Framework (EMF) and Graphical Modeling Framework
(GMF) for model-based design and the xPand framework for code generation.

Fig. 3. Meta model for statechart diagrams with monitoring extensions

With regard to statecharts in the first step, a meta model has been developed
(Figure 3). As we use Eclipse the meta model is based on the Ecore meta meta
model. The meta model relies on the design of statecharts in Matlab Stateflow
to get the opportunity to convert Matlab files into the developed IDE. It is
similar to the UML statechart meta model [1], but simplified concerning states
and transitions. The additional class VariableData keeps the inputs, outputs
and internal variables that are used within the statechart for communication.
All main classes, namely Node, Transition and VariableData have an attribute
id, which allows direct identification of the individual element. The classes on the
bottom show enum-classes defining different types of elements within the meta
model. The additional visualization classes (... Vis) store layout information, if

a Matlab Stateflow model is converted. The flag monitor integrated in the class
State and VariableData is used during the generation of the platform to specify
the monitored instances.

According to the meta model, three models are created in the GMF-framework
concerning the graphical editor on model level. The first model describes the
palette in the editor, i.e. the tools that are available to modify the model. In
the example, there are tools to draw simple states, xor-states, and-states and
junctions as well as transitions between states. The second model, the gmfgraph
model, describes the graphical representation of the elements in the model, i.e.
their shape, color etc. The last model layouts a mapping between the three mod-
els, it creates a connection between elements in meta model, tools and graphical
representations. After creation of these models a model-based IDE can be gen-
erated by the framework. The result is depicted in Figure 4 (middle and left
part). In the middle, is the modeling area with the tool palette and on the left
side is the project management. The windows on the bottom and on the right
are additionally implemented and explained in the next paragraph.

Fig. 4. Model-based development environment

The window on the right allows displaying all recorded data with regard to
the model. It displays in addition to the active states, which are shown in the
model, the monitored values of internal variables, inputs and outputs. The view
in the middle below can be used to visualize executions that have already been
recorded and saved to a file. The window on the right below is the controller

for on-chip recording and monitoring. It integrates a connection to the on-chip
debugger to send commands and receive data during runtime.

The controller window allows controlling the reset and clock enable signal
of the design under test. To control the recording start- and stop-conditions
can be specified. The recording can start on the trigger, with the start of the
design or manually. However, in this context, a manual start does not fulfill
real-time conditions, because the time between the click and the actual start of
the recording in the system cannot be exactly determined. The recording can
stop either on a second trigger, on a timer or when the recording memory is full.
Using the timer the recording time can be specified with regard to the number
of clock cycles. Also the pretrigger time can be specified the same way.

Additionally, the trigger conditions are specified in the controller window.
These are described with regard to the model, for example the string in(Go)
and in(SwitchActive) would specify the trigger to release when state Go and
SwitchActive are active at the same time. The trigger can be specified accord-
ing to states, inputs, outputs and internal variables. The complexity have to
match the implemented number of trigger modules, i.e. if the trigger condition
is compound from three statements also minimal three trigger modules have to
be present in the hardware implementation. In the next step, the design un-
der test can be started, i.e. the clock enable signal is released and/or a reset
performed. When recording is finished the data is transferred and stored in a
XML file, which can be directly visualized to perform a postmortem analysis4.
This enables model-based real-time debugging, but as the parameters have to
be setup before recording, some knowledge according to the error needs to be
present.

In another option, the controller can directly monitor the execution on-chip.
The status of all recorded signals are polled every 100ms and the transmitted
data is directly interpreted and visualized. The clock in the design under test
can run continuously or controlled step by step to enable slow execution. No
real-time debugging is possible using direct monitoring, because it only allows
either slow execution (step by step) or slow monitoring (every 100ms).

6 Mapping of Model and Hardware Implementation

In a model-based development process the design of the system is on model level
and the source code for programming is mostly automatically generated from
the model. If there is an error in the system, the user wants to monitor and
debug his system on model level - the same level it has been designed. However,
the data on a FPGA relies on signal level, therefore a mapping between model
and hardware is needed. In addition, in a FPGA internal signals representing
model elements are not directly accessible, therefore during generation of the
system an adapted debugging interface needs to be integrated.

The design flow for generation of the platform and mapping of model and
hardware system is depicted in Figure 5. In the example Matlab Stateflow is

4 Analysis that is performed after an expected event (e.g. an error / a system crash)

4 29.04.2010 © Institut für Technik der Informationsverarbeitung (ITIV)T. Schwalb - FFN Modelle zum Testen

User

3. specify

monitored

elements

6. control &

debugging

2. load

2. load

Model-based

development

environment

ARCHITECTURE fsm_SFHDL OF Car_dominated

IS

SIGNAL is_Car_dom : type_is_Car_dom;

SIGNAL PedFinished : std_logic;

SIGNAL is_Car_dom_next :

type_is_Car_dom;

BEGIN

initialize_Car_dom : PROCESS (clk,

reset)

BEGIN

IF reset = '1' THEN

is_Lights <=

IN_NO_ACTIVE_CHILD;

y1_reg <= to_unsigned(0, 3);

ELSIF clk'EVENT AND clk = '1'

THEN

Extended +

Debugger

VHDL

ARCHITECTURE fsm_SFHDL OF Car_dominated

IS

SIGNAL is_Car_dom : type_is_Car_dom;

SIGNAL PedFinished : std_logic;

SIGNAL is_Car_dom_next :

type_is_Car_dom;

BEGIN

initialize_Car_dom : PROCESS (clk,

reset)

BEGIN

IF reset = '1' THEN

is_Lights <=

IN_NO_ACTIVE_CHILD;

y1_reg <= to_unsigned(0, 3);

ELSIF clk'EVENT AND clk = '1'

THEN

Matlab

HDL-Coder

VHDL 4. generate

Design
under
Test

Inputs

Outputs

5. synthesis

Debug-
ger

Internal

Signals

clk

reset

Interface

1. generate

ARCHITECTURE fsm_SFHDL OF Car_dominated

IS

SIGNAL is_Car_dom : type_is_Car_dom;

SIGNAL PedFinished : std_logic;

SIGNAL is_Car_dom_next :

type_is_Car_dom;

BEGIN

initialize_Car_dom : PROCESS (clk,

reset)

BEGIN

IF reset = '1' THEN

is_Lights <=

IN_NO_ACTIVE_CHILD;

y1_reg <= to_unsigned(0, 3);

ELSIF clk'EVENT AND clk = '1'

THEN

XML-

Mapping

File

Matlab

Model

6. trace data

6. control

commands

6. mapping signal-

and model-level

Fig. 5. Flow for platform generation and mapping of model and hardware

used to design the statechart diagram and the Matlab HDL-Coder to generate
the VHDL code, which represents the functionality of the statechart. If the
model is designed and the VHDL code generated, both is load into the described
development environment (see Section 5). The Matlab file is converted to an
EMF model file which is based on the meta model shown in Figure 3. For efficient
use of the FPGA resources in the next step the user can specify in the model
the monitored elements.

According to the specifications in the model, the (by Matlab) generated
VHDL code is extended to enable monitoring of inner states and variables.
Transitions cannot be monitored directly, but as they form connections between
states, according to changes from one state to the next, the used transition can
be determined. The monitored signals are grouped together into two vectors,
one for recording and a second for the trigger, and integrated as outputs in the
VHDL code. The debugger modules are connected to the statechart module by a
generated interface file. The interface is a top level VHDL structural description
and connects signals from outside to signals in the design and specifies signals
between the debugger modules and the statechart module. As all names of the
signals are known or read from the Matlab file, the interface file can be directly
generated.

To get the mapping between signals and types in the VHDL file and elements
in the model, an algorithm has been developed. This algorithm uses the fact,
that in the VHDL code all signals and types have the same name as in the
model and that all states in a composite state are grouped together. Therefore,
as the model and VHDL always follow the same principles the mapping can
be identified. This mapping is stored in a XML file, because it is needed later
during debugging. The file contains the name, position, size and the function of
the signals in the vectors with regard to the elements in the model. The file also
contains general information concerning the model, which later allows later an
easier identification.

The generated VDHL code is in the next step synthesized by FPGA specific
tools to generate a bitstream, which is integrated on the hardware. When the
design is executed the debugger modules record the specified signals. The de-
bugger modules are independent of the model and all signals, as described, are
forwarded to the debugger in a vector. Therefore, during debugging additional
information is needed for visualization of the execution on model level and con-
trol of the debugging (e.g. setting the trigger conditions). This information is
contained in the XML file generated in the previous step. Therefore, the user
can debug the system on model level and control the debugging according to the
model notation. The back annotation of the recorded signals to the model and
generation of control commands is performed by algorithms in the background
using the mapping information.

In general, the back annotation from hardware to the model follows the
same principles as the back annotation in a general software debugger [15], af-
ter transmitting the data gained on low level, it is combined with the mapping
information to get a representation on high level. However, with respect to re-
configurable hardware it needs to be regard that processes can run in parallel
and that a single element in the model can be represented by many signals. Also
the coding and interpretation of the signals (binary, high-active, low-active, ...)
according to the status of the elements in the model needs to be considered.

7 Integration and Test

Different tests have been carried out to evaluate the functionality and integrity
of the depicted method and platform. The tests are mainly performed using a
development board, including a Xilinx Virtex II Pro FPGA [16] as well as inter-
faces for communication and programming. The size of the debugger modules is
variable and depends on the number of signals for recording and triggering as
well as the possible recording length. It also depends on the number of trigger
modules (i.e. the possible complexity of the trigger condition) and the type of
compression unit.

Different designs were evaluated from small models used with minimal de-
bugger modules up to large systems recording 128 signals. A common example is
described in more detail. It is based on a model, which describes the traffic light
system at a crosswalk and includes 14 states, 1 input, 2 outputs and 2 internal

variables. The model is designed in Matlab Stateflow and according VHDL code
generated. Both is load in the model-based development environment (see model
in Figure 4). In the example every element in the model is selected for record-
ing. After specification the according VHDL and XML files are generated. The
VHDL design is integrated on the FPGA using the Xilinx ISE design suite, some
additional adjustments are carried out according to the FPGA, the clock signal
and external connections. The debugger modules record altogether 32 signals at
100MHz with a depth of 1024 clock cycles. Therefore, the recording data rate is
3.2Gbit/s. After recording or during monitoring the data is transferred to the
PC using a RS232 interface. In the example the debugger modules use approx-
imately 4% of the FPGA resources. The debugger does not include coding or
compression, which would significantly increase FPGA resources.

During debugging the development environment connects to the debugger
modules on the FPGA using the integrated RS232 interface. The XML file pro-
vides a mapping between the hardware implementation and the model and allows
the user to control the debugging according to the crosswalk model. Further, the
XML file is used to visualize the internal execution of the system in the model,
highlighting active states and displaying the value of inputs, outputs and in-
ternal variables. Besides the real-time recording and postmortem analysis the
system could be directly monitored during runtime. The transmission, interpre-
tation and visualization of the status of 32 signals in the design every 100ms
are performed without any timing problems. However, this is only a data rate of
320bit/s, therefore there is no real-time monitoring possible. In another design -
with 128 signals - the transmitting interval even needed to be reduced to 250ms
to process the data before the next is transmitted, the most of that time thereby
is consumed by the graphical visualization.

8 Conclusion and Outlook

A method for model-based real-time recording and monitoring on reconfigurable
hardware has been presented. Therefore, the possibilities of an abstract and
complex functional and algorithmic inspection of reconfigurable system have
been increased. In comparison with present techniques, the user does not only
develop on model level, but can also debug and monitor as well as control the
debugging on the same level. All intermediate steps from the model to hardware
implementation and vice versa are carried out automatically by algorithms.

The underlying hardware modules are capable of monitoring and real-time
recording as well as independent of the reviewed model. The debugger pro-
vides high modularity and adjustability during runtime, allowing several ways
to identify causes of errors without re-synthesizing the design. The integrated
development environment allows automatic integration of the debugger using a
generated interface, control of the debugging during runtime and visualization
of the execution - all on model level. The algorithms in the background convert
the received data from hardware to model level and convert the commands from
model level to hardware.

In future, there will still be many developed modules on code level, there-
fore the concept could be extended to allow mixed debugging on model, code
and signal level. According to the software, the integration of breakpoints on
model level could be added allowing more specific debugging scenarios. Also the
configuration of the debugger in terms of the compression and complexity of
the trigger condition, which is at the moment performed in the VHDL code,
could be integrated into software. In addition, the IDE will be extended to allow
complete code generation of statechart diagrams to get independent of Matlab.

References

1. Object Management Group: Unified Modeling Language (UML) Specification, Ver-
sion 2.2 (2008)

2. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming 8 (1987, 3), pp. 231–274 (1987)

3. Barry, J. R., Lee, E. A., Messerschmitt, D. G., Lee, E. A.: Digital communication.
Springer, New York (2004)

4. Schmidt, D.C.: Model-Driven Engineering. J. Computer. Vol. 39 Iss. 2, pp. 25–31
(2006)

5. Schwalb, T., Graf, P., Müller-Glaser, K.D.: Architektur für das echtzeitfähige De-
bugging ausführbarer Modelle auf rekonfigurierbarer Hardware. In: Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Sys-
temen, pp. 127–137. Berlin (2009)

6. Howe H.: Pre- and postsynthesis simulation mismatches. In: Verilog HDL Confer-
ence, pp. 24-31. IEEE International, Santa Clare (1997)

7. Lach, J., Mangione-Smith, W., Potkonjak, M.: Efficient error detection, localization,
and correction for fpga-based debugging. In: 37th Design Automation Conference,
pp. 207-212. Los Angeles (2000)

8. McKay, N., Singh, S.: Debugging techniques for dynamically reconfigurable hard-
ware. In: Seventh Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines, pp. 144–122. Napa Valley (1999)

9. Arshak, K., Jafer, E., Ibala C.: Testing fpga based digital system using xilinx chip-
scope logic analyzer. In: 29th International Spring Seminar on Electronics Technol-
ogy, pp. 355-360. ISSE06, St. Marienthal (2006)

10. Mathworks: Matlab & Simulink (2010) http://www.mathworks.de/
11. Graf, P., Hübner, M., Müller-Glaser, K.D., Becker, J.: A Graphical Model-Level

Debugger for Heterogenous Reconfigurable Architectures. In: 17th International
Conference on Field Programmable Logic and Applications (FPL), pp. 722–725.
Amsterdam (2007)

12. Graf, P., Reichmann, C., Müller-Glaser, K.D.: Towards a Platform for Debugging
Executed UML-Models in Embedded Systems. In: UML Modelling Languages and
applications, pp. 238–241. Springer, Heidelberg (2004)

13. Graf, P., Müller-Glaser, K.D.: ModelScope Inspecting Executable Models during
Run-time. In: 30th International Conference on Software Engineering, pp. 935–936.
Leipzig (2008)

14. Eclipse Foundation: Eclipse Modeling Project (2010) http://www.eclipse.org/

modeling
15. Rosenberg, J.B.: How Debuggers Work. John Wiley & Sons Inc., New York (1996)
16. Xlilinx: Virtex-II Pro and Virtex-II Pro X - FPGA User Guide v.4.2 (2007)

