
Music Recommendation in the Personal Long Tail:
Using a Social-based Analysis of a Userʼs Long-Tailed Listening Behavior

Kibeom Lee
Graduate School of Culture

Technology, KAIST
Daejeon, Korea

kiblee@kaist.ac.kr

Woon Seung Yeo
Graduate School of Culture

Technology, KAIST
Daejeon, Korea

woon@kaist.ac.kr

Kyogu Lee
Department of Digital Contents
Convergence, Seoul National

University
Seoul, Korea

kglee@snu.ac.kr

ABSTRACT

The online music industry has been growing at a fast pace,
especially during the recent years. Even music sales have moved
from physical sales to digital sales, paving the way for millions of
digital music becoming available for all users. However, this
produces information overload, where there are so many items
available due to, virtually, no storage limitations, it becomes
difficult for users to find what they are looking for. There have
been many approaches in recommending music to users to tackle
information overload. One successful approach is collaborative
filtering, which is currently widely used in commercial services.
Although collaborative filtering produces very satisfying results, it
becomes prone to popularity bias, recommending items that are
correct recommendations but quite "obvious". In this paper, a new
recommendation algorithm is proposed that is based on
collaborative filtering and focuses on producing novel
recommendations. The algorithm produces novel, yet relevant,
recommendations to users based on analyzing the users' and the
entire population's listening behaviors. An online user test shows
that the system is able to produce relevant and novel
recommendations and has greater potential with some minor
adjustments in parameters.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Algorithms – Nonalgebraic
algorithms, analysis of algorithms

General Terms
Algorithms

Keywords
Recommender systems, collaborative filtering, music
recommendation

1. INTRODUCTION
With advances in the Internet, lower hardware costs, increasing
peer-to-peer networks, and the popularity of high-storage portable
media players, the online music industry has been growing
rapidly, especially during the past few years. Gradually, music

sales have moved from physical album sales to digital sales from
online stores. Currently, these services offer millions of tracks to
users, the catalog growing rapidly in size compared to the size
when the services were first announced. For instance, Amazon
offered over 2 million songs to users when the music service
launched, but now offers over 11.8 million songs as of 2010.
Some notable online music stores, including Amazon, are
Amazon MP3 (11,000,000+ songs), iTunes Store (12,000,000+
songs) and Rhapsody (9,000,000+ songs). Apart from music
stores, there are also music streaming services that offer millions
of songs, such as Lala (8,000,000 songs), Spotify (8,000,000
songs), and Last.fm (7,000,000 songs).

These large numbers of songs available to users are a result of the
Long Tail business model [1], contrary to only products that were
in demand being sold in stores. However, as a result, although
paradoxical, users have ended up listening to less music now that
so much is available, simply because it is hard to find new and
relevant music. For instance, digital track sales surpassed the 1
billion sales mark in 2008. However, the Top 200 digital tracks
alone accounted for 17% of the entire track sales (184 million
sales) [2].

2. RELATED WORK
2.1 Collaborative Filtering-based
Recommender Systems
One of the earliest recommender systems based on collaborative
filtering is Tapestry [3]. Stemming from the need to handle
increasing numbers of emails, Tapestry used explicit opinions of
people in a relatively small group, such as an office workgroup, to
filter out incoming email for a given user. However, a drawback
of this system was that users had to be familiar with the
preferences and opinions of other people in their network, which
is why Tapestry worked on small networks like the office.

A more general collaborative filtering approach was developed by
Resnick et al. called GroupLens [4]. The basic idea behind
GroupLens, which aimed to help users find news articles amongst
the vast available numbers, was that "people who agreed in the
past will probably agree again". Using this heuristic, the
GroupLens system was able to predict the ratings of certain news
articles by a given user. An advantage that this provided was that
the collaborative filtering could be scaled, unlike Tapestry,
because a user was not required to actually know other users that
had similar preferences to him. This was done by the system,
which gathered information on the ratings of users, naturally

WOMRAD 2010 Workshop on Music Recommendation and Discovery,
colocated with ACM RecSys 2010 (Barcelona, SPAIN)
Copyright (c). This is an open-access article distributed under the terms
of the Creative Commons Attribution License 3.0 Unported, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

creating another advantage of users being anonymous inside the
whole system.

Research related to, and including, the above studies focused on
filtering a vast amount of text, which were in forms of emails,
news, and messages, to those that were worth reading. Items
would be given to the user with their prediction scores, aiding the
user in which item to read next. The next wave of studies focused
on a more direct approach in recommending items.

Ringo was a system developed to provide personalized music
recommendations [5]. It maintained a user's profile, a history of
ratings on various artists that were essentially explicit labelings on
which artists the user does or does not enjoy listening to. These
profiles were matched by the system to calculate
recommendations on which artists had the highest probabilities of
being liked by the user.

While Ringo was focused on music items, Bellcore's
recommender system focused on movies [6]. Like Ringo, it used a
database of movie ratings by users and matched rating profiles to
provide recommendations by finding similar users and the movies
that they had watched and rated positively. Tests on the reliability
of the recommender system showed that three out of every four
recommendations would be rated highly by the user, and also
showed that the system produced extremely more accurate
recommendations compared to nationally-known movie critics.

While there were numerous advances and algorithms related to
collaborative filtering since then, the most well-known
collaborative filtering system today, however, is probably the
system used in Amazon.com, an electronic commerce company
that sells books, movies, music, etc. Amazon.com offers
recommendations on items that are similar to the item being
purchased, rather than finding similar users and then
recommending the items those users have purchased. This
method, which is called item-to-item collaborative filtering, scales
to extremely large datasets and generates satisfiable results.

2.2 Collaborative Filtering-based
Recommender Systems for Music
Although the collaborative filtering-based approaches above were
designed on specific items, the algorithms can be generalized and
applied to music recommendation. Hence, the results of such
algorithms applied to music are not much different than applied to
the original items.

Apart from recommender systems that use data on the ratings
and/or purchases of items, there are other collaborative filtering-
based recommender systems that take advantage of metadata
produced by users that are found in music.

[7] presents some examples of metadata used in such algorithms,
which include reviews, lyrics, blogs, social tags, bios, and
playlists. Examples of commercial services that use such
approaches are Rate Your Music (reviews), The Hype Machine
(blogs), last.fm (social tags), and playlist.com (playlists).

Social tags, a representative product of online collaboration, has
been used heavily in music recommendation systems. Hu and
Downie explored the mood metadata associated with songs and
their relationships with music genre, artist, and usage metadata
[8]. They found that the genre-mood relationships and artist-mood
relationships showed consistencies, showing the potential of being
utilized in automated mood classification tasks. Eck et. al

proposed a method for generating social tags for music that lack
such tags [9]. Audio features of songs were analyzed and mapped
to tags, using a set of boosted classifiers. These were then utilized
on untagged songs, populating them with the associated social
tags depending on the musical content. This enables unpopular
songs and/or new songs that have no social tags to be used in
music recommenders that use a social algorithm. It also tackles
the cold start problem, a problem found in collaborative filtering-
based recommender systems. Symeonidis et. al analyzed social
tags in order to tackle the problem of the multimodal use of music
[10]. They developed a framework that modeled users, tags, and
items, altogether. This was then used in recommending musical
items (artists, songs, and albums) to users by performing latent
semantic analysis and dimensionality reduction according to each
user's multimodal perception of music. Levy and Sandler inspect
the seemingly ad hoc and informal language of tagging as a high-
volume source of semantic metadata for music. Results show that
tags establish a low-dimensional semantic space, being extremely
polished at the track level, especially by artist and genre. Using
these results, the authors also introduce an interface for users to
browse by mood, through a two-dimensional subspace that
represents musical emotion.

Celma introduces a system that recommends music and the
relevant information associated with the recommended music
[11]. The proposed system uses the Friend of a Friend and RSS
vocabularies for creating recommendations, taking in
consideration the user's musical tastes and listening habits. The
FOAF project provides protocols and a language to describe
homepage-like content and social networks, ultimately providing
the proposed system with the user's profile. The RSS vocabulary
provides the system with syndicated content, which includes data
such as new album releases, album reviews, podcast sessions,
upcoming gigs, etc. Thus, the proposed system improves the
existing recommendation systems by understanding the users
through psychological factors (personality, demographic
preferences, socioeconomics, situation, social relationships) and
explicit music preferences.

3. LIMITATIONS OF COLLABORATIVE
FILTERING
3.1 Popularity Bias
Collaborative filtering-based recommender systems produce good
results and are used widely in commercial services such as
Amazon.com and Last.fm. However, collaborative filtering has
some common limitations that occur naturally due to its roots
lying in the wisdom of crowds. One of the largest problems of
collaborative filtering is popularity bias [12, 13].

This happens when a popular item is associated with many other
related items. Users that interact with these items are then
recommended the popular item. The system recommends the
popular item often, leading to item purchases (or any other form
of positive input from user) and as this item is purchased more, it
is also recommended more. This loop, in which the rich become
richer, creates popularity bias.

Naturally, as a result of the above feedback loop, the
recommender system tends to bias its recommendations towards
popular items. Thus, the recommendations lose their novelty [12,
13] and make it extremely difficult to recommend lesser-known
artists.

In Amazon.com, in which collaborative filtering is heavily used,
the popularity bias can be seen when viewing the
recommendations that are offered when searching for popular
items. For instance, the 98 recommendations that appear when
searching for Harry Potter includes The Da Vinci Code, To Kill a
Mockingbird and 28 other Harry Potter books and DVDs. In the
case of music, searching for The Beatles' Revolver album results
in 33 albums from The Beatles, out of a total of 97
recommendations, as shown in Figure 1. The other recommended
items show well-known artists that user's, who are interested in
The Beatles, will most likely have heard of already such as The
Rolling Stones, Led Zeppelin, and Neil Young. These
recommended artists are correct recommendations but fail to be
novel recommendations.

Due to this popularity bias, a large portion of the recommended
items result in obvious recommendations that may be relevant to
easy-going, casual listeners, but not so helpful for enthusiastic
music listeners, who have a high probability of already being
knowledgeable on the artists being recommended.
The number of high quality, or "correct", recommended items that
are produced with collaborative filtering is verified by [14].
However, the problem of popularity bias was also verified as the
amount of novel recommendations given to a user was the lowest
for collaborative filtering in an experiment comparing
collaborative filtering, content-based, and hybrid methods [14].
Thus, it was confirmed that collaborative filtering results in less
percentage of novel songs but of higher quality.

4. ALGORITHM
In this section, we provide an algorithm that is based on
collaborative filtering, yet overcomes popularity bias, a natural
problem that arises from CF. Also, the algorithm focuses on
providing recommendations that are novel to the user, while also
remaining relevant.

To implement this algorithm, user data from Last.fm, an Internet
service that provides users with streaming music via radio
stations, was used. Reasons for selecting Last.fm was the readily
available developer API and the various, massive amount of data
that was available such as user playlists, playcounts for artists and
individual songs, artist information, song information, and most
importantly, the worldwide popularity of the site.

4.1 Concept of Recommendation Algorithm
4.1.1 Changing Perspectives on Novel
Recommendations
While the goal of recommenders in general is to provide
recommendations that are novel and relevant to the user, as stated
beforehand social-based recommendations, although relevant, fail
in providing novel recommendations to users. In contrast, content-
based recommender systems work better in providing novel
recommendations because they are not affected by popularity or
any other social influence [15].

Another method to provide novel recommendations to users is to
use the long tail popularity distribution of the artists [7]. This idea
can be applied to both content-based and social-based algorithms.
Content-based algorithms can use the long tail distribution to
recommend similar items based on content-analysis and also
found in the tail portion of the distribution. For social-based
algorithms, or collaborative filtering, the idea can be applied by
first obtaining the full list of recommendations and then removing
the recommendations that lie in the head portion of the
distribution. This would result in recommendations being novel to
the user, since it is unlikely that artists residing in the tail portion
of the distribution are known to the user.

However, although strictly recommending artists from the long
tail and avoiding recommending those that are obvious (those that
are located in the head portion of the distribution) have a high
probability of being novel recommendations, we need to take in
consideration that novel recommendations are relative to the user.
In other words, it is naive to assume that the user will be aware of
certain artists just because they are in the head portion of the long
tail distribution. Thus, the fact that even popular artists have a
possibility of being novel recommendations to certain users must
not be overlooked.

4.1.2 User Listening Behavior
As shown in Figure 2, which shows a random Last.fm user's
playlist in descending order of playcount, the listening behavior
shows a distribution that is similar to that of long-tail
distributions. Users tend to listen to an extremely small portion of
their playlists often while the remaining songs seldom get played.
Due to the data available, which is the top 500 played songs in the
user's playlist, all of the songs in the graph are played at least
once.

4.1.3 Defining Experts and Novices
Using this long-tailed distribution of users' listening behaviors, the
users can be divided into two groups: experts and novices. Here,
users are considered "experts" regarding the songs/artists that they
listen to often, i.e. songs/artists that lie in the head portion of the
long-tailed listening behavior. On the other hand, users are
considered "novices" regarding the songs that reside in the tail
portion.

Figure 1. Recommendations from Amazon.com, which
are all quite "obvious" recommendations, although

they are correct recommendations.

Figure 2. The listening behavior of a user and his/her entire
playlist. Although not exact, the graph shows a long-tailed

distribution where the majority of tracks are seldom played.

4.1.4 The Mystery of Unpopular “Loved” Songs
Last.fm provides users with an option to mark songs "loved"
(Figure 3). This kind of feedback from users explicitly shows that
a user enjoys a particular song. One would expect that these
"loved" songs would all lie in the head portion of the listening
behavior distribution. However, these songs that are marked
"loved" can be found scattered throughout the entire distribution.
Here, a paradox can be found: Why are some songs marked
"loved" lying at the tail end of the playcount distribution? One
would assume that a "loved" song would have a high playcount,
but a quick inspection shows that this is not the case. Thus, an
assumption that is made here, a key assumption in this algorithm,
is that songs are marked "loved", yet remain in the tail, because
the user is unfamiliar with that song/artist/genre, i.e. is a novice,
but happened to stumble upon that particular song and liked it.

Among the 21,688 users whose data was used for the algorithm,
78.3%, or 16,973 users, used the "love" function provided in
Last.fm. Among the 16,973 users who utilized the "love" function,
77.8% of the users had "loved" songs in the tail portion of their
playlist's song distribution sorted by playcount.

Upon closer inspection of the random user in Figure 3, the
songs/artists in the "head" portion came from various genres such
as electronic, hip-hop, and reggae. What they did have in
common, however, was that they were all German artists,
including the user herself. Looking at the songs that were marked
"loved" but were not played often, we can see that they too come
from different genres, but are both artists from the U.S.

The previously mentioned assumption that fuels this algorithm
was made after observing such occurrences in users' playlists.
According to our assumption, we assume that the user, who is
German, is a novice in artists from the U.S. and stumbled across
several songs that she liked. However, she did not get to venture
similar songs and/or artists because she was unaware of which
artists/songs were similar.

4.1.5 The Big Picture
Once the basic assumptions are made and the new definition of
novices and experts are established, the concept of the
recommendation algorithm can be explained. As shown in Figure
4, recommendations can be made to novices of certain song sets
using the information that can be obtained by a group of experts
that have those song sets in the head portion of their listening
behavior distribution.

By using the listening behavior of experts to provide
recommendations to novices, the recommended items will be
novel to the user, contrasting to other recommendation systems
that simply recommended artists/songs from the tail of the
popularity distribution of items. In other words, while remaining
novel to the specific user, the recommended items may or may not
be in the far, unpopular end of the popularity distribution. In fact,
even popular items that reside in the head of the popularity
distribution may be recommended, but the user may not be aware
of the recommended item since the recommendations were based
on the user's tail portion of her listening behavior distribution, in
which the user was considered a novice.
In addition to being novel recommendations, the recommended
items will also be relevant to the user since the recommendations
were found using songs that the user had marked "loved",
explicitly stating the user's view on that particular item, and then
using collaborative filtering to find experts on those "loved" songs
to find relevant recommendations.

4.2 Data
User data was collected in order to test the algorithm and evaluate
the results of the recommendations from early March to late April
in 2010. Data was collected from the Last.fm website using a
custom web crawler and the Last.fm API. The user data that was
collected included the songs that the user had listened to overall,
meaning the songs that the user listened to from the day he/she
registered at Last.fm up until the day the data was collected. It
also included the playcount for each song, song title, artist name,
user ID, rank, and whether it was marked "loved" or not. The data
that was collected is summarized below in Table 1.

Table 1. Summary of amount of data collected
Data Count

Users 21,681

Unique Songs 2,001,324

Songs from All Playlists 9,073,681

Figure 4. The overview of the algorithm showing the
concept of novices and experts.

Figure 3. The "tail" portion of a random user’s playlist.
There are two songs marked "loved" by the user, but have

only been played three times.

4.2.1 Last.fm API
All the collected information, except the playlist history, was
gathered via the Last.fm API. Although the algorithm could have
queried the information in real-time, it was decided that having
local data would facilitate in quicker results. After fetching the
data, we had song titles and corresponding artist names of
approximately 2 million songs.

In addition to the user and song data collected with the Last.fm
API, artist popularity was also measured indirectly via the API.
Because the Last.fm API did not provide the artist ranking
directly through the API, we had to collect the number of
Listeners and Plays, which were offered through the API. By
having the Listeners and Plays of a given artist, we would be able
to determine the overall ranking of popularity of the artists. This
will be further explained in the next section.

4.2.2 User Data Crawler
Unfortunately, the Last.fm API query for a given user's listening
history returns the top 50 songs ordered by playcount. This was
not adequate enough since the algorithm needed the entire playlist
in order to utilize the long tail of the playcount distribution.

In order to solve this problem, a custom crawler was implemented
to collect the users' listening history (referred to as ‘playlist’ in
this paper) and playcount information. Although this returned a
maximum of 500 results (Last.fm displays only top 500 songs in
the playlist), the data was adequate to be divided into the short
head and long tail and used in the algorithm.

Data on a total of 21,681 random users were crawled. The
playlists and the according information were also stored for each
user, resulting in 21,681 playlists with a total of 9,073,681 songs.
Because playlists from different users contain lots of duplicate
entries, the number of unique songs that were crawled, as stated
above, was 2,001,324 unique songs.

4.3 Algorithm
As shown in Listing 1, the user that will receive the
recommendations, whom we will call "novice" according to the
algorithm's concept, is given as input to the algorithm. Then, the
listening behavior for the novice is retrieved using data available
at Last.fm. As long as the user is not a new user and has been
listening to his/her playlist, the playcount distribution of his/her
playlist is more than likely to show a long-tailed distribution, in
which a small set of songs have been listened with a heavily
biased frequency while the remaining songs listened only
occasionally. Since we are interested in the songs/artists that the
given user is a novice on (i.e. songs marked “loved” in the long
tail), we discard the head portion of the distribution and from the
remaining songs, which are songs in the tail portion, we discard
all songs except those that are explicitly labeled "loved" by the
novice. These remaining songs, denoted by ‘S_1’, will be the song
set that will be used to create recommendations.

Next, using the listening behavior of the other users from our
database, we find those that listen to the songs in song set S. In
other words, we find the "experts" on song set S by finding users
that have a subset of song set S in the head portion of their
listening behavior distribution. If such users exist, we compare the
songs in the “head” of their playcount distribution with song set S
and use the remaining, non-overlapping songs as recommendation
candidates and assign the weight for those items according to the

strength of the match between the songs in the expert's "head" and
song set S.

These recommendation candidates are accumulated in the global
song set REC, and the weight of the candidate are incremented as
they are recommended to REC. Finally, the recommendations are
given to the user in the order of their weights.

4.4 Parameters
The algorithm is quite flexible as it has many parameters that can
be changed, which greatly influences the recommended items to
the user. Parameters that play a crucial role in the overall quality
of the recommendations include:

• The size of the “head” of experts
• The size of the “tail” of novices
• Weights of recommended items

4.4.1 Expert Parameter
The parameter that influences the outcome most is the size of the
"head" portion of the expert's listening behavior distribution. For
example, if the value for this parameter is set to "10", a user is
considered an expert only if the top ten songs that s/he listened to
contains any number of songs from the set of songs that are
marked "loved" in the novice's "tail" portion of his/her listening
distribution. In other words, this parameter determines the
qualification strictness on which users are considered experts.

The lower the value, the harder it is for a given user to be
considered an expert. Also, as the value is lower, the resulting
recommendations are more novel, in contrast to when the values
are higher, in which the resulting recommendations become those
that are well-known. As the value is set higher, the
recommendations represent those that are from the existing music
recommendations that are offered using traditional collaborative-
filtering methods.

4.4.2 Novice Parameter
The parameter that can be varied for the novice users is the size of
the "tail" portion of the novice's listening behavior distribution.

begin Recommendations REC (aGivenUser U1);
 do
 Result R1 := retrieveListeningBehaviorDistribution(U1);
 SongSet S1 := getSongsInLongTail(R1);
 S1_loved := filterLovedSongs(S1);
 for i := 2 to n (n: number of users) step 1 do
 Result Ri := retrieveListeningBehaviorDistribution(Ui)
 SongSet Si := getSongsInHead(Ri);
 if (Si ∩ S1 ≠ ∅) do

 CandidateSongSet CSi := (Si ∪ S1) – (Si ∩ S1);

 incrementWeight(CSi);
 REC += CSi; od
 od
 od
 printRecommendations();
 end; Listing 1. Pseudoalgorithm for proposed recommender

system.

Opposite of the expert parameter, the novice parameter sets the
range of songs in the user's playlist that the user is a novice on.
Using loved songs that lay near the "head" portion may result in
songs that the user is aware of, leading to the recommendations
being less novel to the novice. However, this parameter does not
have as much influence as the expert parameter has because once
the novice parameter is set, the entire range of songs are not used,
but only those that are explicitly marked "loved" by the user.

4.4.3 Weights of Recommended Items
A formal set of rules and equations to assign weights to the
recommended items can greatly change the songs that will be
presented to the user as recommendations. This is important
because it is inappropriate to present the entire collection of songs
that result from the algorithm, as the number may vary depending
on the two parameters above. Among the final song set that
contains hundreds of candidate songs for recommendations, only
a subset, namely the top N songs are presented to the user. Thus,
assigning the appropriate weights for these candidates can
ultimately influence the outcome of the recommended items.
Currently, the algorithm uses a simple approach in which the
weight is equal to the number of times a song is a member of both
the head of an expert and tail of the novice.

5. USER TEST & EVALUATION
There are many ways to evaluate a recommender system, both
offline and online. A common online method to evaluate a
recommender system is to generate test sets to be evaluated later
[16]. Another popular method is to use cross-validation, in which
the data is partitioned and used as test sets [17].

5.1 Difficulties in Evaluating Novel
Recommendations
However, offline evaluations are not appropriate for recommender
systems where the recommendations of novel items are important.
This is because when a truly novel item is actually recommended
to a user, meaning that the user does not already know about this
item, it is extremely difficult for the user to evaluate the unknown
item without providing any additional information [18]. Because
of this, measuring novelty in the recommended items is a rather
challenging task, leaving no option but to carry out live user
studies where the users explicitly indicate whether the provided
recommendations were novel or not [19].

Thus, in order to measure the novelty and relevance of the
recommended items, an online user test was carried out using a
fully functional website, including a section for explicit user
feedback regarding the recommendations given to the users.

5.2 Design
A fully functional website was created in order to perform an
online evaluation of the recommendations for random users. On
the website, a user has to sign-up and input his/her Last.fm ID.
After receiving a new ID, the server runs the recommendation
algorithm on that particular Last.fm ID. Meanwhile, the user was
requested to come back shortly afterwards, while the
recommendations were being processed. The algorithm had to be
run in real-time online because of the nature of it being heavily
dependent on the user information. Also, pre-calculating the
recommendations for users in the local database offline and then
providing them online was unrealistic as the probability that a new

user would also be one that was pre-calculated was extremely
low. When the user returns, he/she is presented with two sets of
recommendations.

Recommendation Set 1 was the results of the algorithm with the
Expert Parameter, the parameter that determines the size of the
"head" portion of the expert, set to 5. A value of 5 for the Expert
Parameter means that the algorithm is being very strict about
which users are qualified to be experts. This produces dense novel
items. Recommendation Set 2 was the results with the Expert
Parameter set to 10. A value of 10 tends to mix novel
recommendations and well-known recommendations, so is more
of a general setting that aims to resemble recommendations from
Last.fm. After the user views the recommendations, a survey page
was available to provide explicit feedback on the quality of the
recommendations given to them.

Since the goal of the algorithm is to provide novel
recommendations, there had to be an easy way for the user to
evaluate the recommended items, since it is assumed that if the
recommended items are indeed novel, then the user has no
knowledge about the item. Thus, each recommended item was
hyperlinked to the according page in Last.fm, as shown in Figure
5. Through these links, users were able to evaluate the
recommended items that were novel to them by visiting the linked
pages. Last.fm provides related information regarding specific
songs, which include music videos, song previews, and even a
radio for the song's artist. By utilizing these pages, users were able
to listen to the songs that were recommended to them.

5.3 Survey
On the survey page, a set of five questions were given to the user,
each regarding one of the two sets of recommendation results that
were produced by the algorithm. The questions were answered on
a five-point Likert item. The final question was a subjective
question, asking for any comments or feedbacks on the
recommendations. The questions used in the survey are shown in
Table 2.

Figure 5. Screenshot of the recommended items at the user-
test website. Each facet of the recommended items are linked

to pages at Last.fm for supplementary information

Table 2. Questions used in the user survey.

Q. 1 How would you rate the relevance of items?
Q. 2 How would you rate the novelty of the recommended

items?
Q. 3 How would you rate the serendipity of the recommended

items?
Q. 4 How would you rate the recommendations overall?
Q. 5 Provide any comments/feedback about the

recommendations that were given to you.

6. RESULTS & DISCUSSION
A user survey was carried out online accompanying the online
music recommendation service because of the difficulties in
measuring novelty. A total of 24 users tested the
recommendations offered to them on the website. These users
were random Last.fm users that had received private messages
(advertising the user test) through the Last.fm messaging system.
The new recommendation system was also advertised on various
Last.fm groups whose interests were in finding new music or
those who were unsatisfied with current recommender systems
and their quite obvious recommendations. However, because the
users had to answer two surveys for two different sets, some
appeared to have quit abruptly after finishing the first set. As a
result, only 11 users out of 24 completed the second survey.

The private messages were sent to random Last.fm users who
satisfied two conditions: 1) the user used the “loved” function
with his/her playlist, 2) The last time the user logged in was not
more than two weeks ago from the day the private messages were
sent. Despite the advertisements and private messages, the
response rate was extremely low (< 10 %). The results are shown
in Figures 6-8.

Figure 6. Comparison of the relevance ratings for the two sets

Figure 7. Comparison of the novelty ratings for the two sets

Figure 8. Comparison of the overall ratings for the two sets.

The results of the user test on the recommendations produced by
the proposed algorithm are generally positive. The mean value for
the relevance of the items was 3.417 (on a 5 point scale) with a
confidence interval of 0.390 (with alpha value of 0.05). The mean
values of novelty and serendipity were also on the positive side
with 3.667 and 3.625, respectively. The confidence intervals were
0.436 (alpha = 0.05) for novelty and 0.350 (alpha = 0.05) for
serendipity. The overall rating of the recommender system had a
mean value of 3.458 with a confidence interval of 0.263 (alpha =
0.05). In general, the results show that the proposed system has
positive ratings and could be refined to produce better results.

The proposed system was rated higher in both novelty and
serendipity, compared to the second set of recommendations,
which was a set of recommendations that was intended to imitate
existing systems such as Last.fm.

For this study, the parameters of the system were set with values
that we thought produced the desired results after several
iterations of the algorithm. However, a full study focused on
finding the optimal values for the parameters would be an
excellent follow-up study and would greatly enhance the
recommendations of the system.

The score for the novelty of recommended items could have been
higher, because the algorithm did not check whether the
recommended songs existed in the user's library before being
offered. Thus, the user would see some artists that they were
aware of. As implied above, it is quite easy to increase the
percentage of novel items in the entire recommendation list:
simply check whether the artist exists in the user's library and if it
does, exclude it from the recommendations. However, this step
was excluded from the algorithm deliberately to increase the
confidence of the users on the proposed system. The basis for this
was [20], in which the authors found that users liked to see
familiar items in the recommendations, which ultimately led to an
increase of user confidence in the system. Checking to see if the
user is familiar with the recommended item would produce more
"dense" novel recommendations.

Regarding the novelty of items, an unforeseen problem was
revealed after the user test. One user commented, "I have most of
the bands recommended on my computer, I just haven't given
them much of a listen to. Grizzly Bear in particular..." The
problem here is whether, in this user's case, Grizzly Bear is a
novel recommendation. The user states that s/he did not listen to
many of the recommended artists, although those artists were in
his/her library. Because the algorithm depends on the playcount of
the songs in a user's library it is totally blind to tracks that reside
in the library but have a playcount of 0. Thus, it recommends
songs that it believes to be novel to the user, when it could in fact

exist in the library already. Unsurprisingly, the novelty and
serendipity ratings from this user were low (a score of 2 for each),
but the rating on the overall system was positive (a score of 4).
Clarifying such issues on what a novel item is would help
improve the algorithm and the user's perception of the system.

7. FUTURE RESEARCH
The most urgent and important future work on this particular
study would be to find the ideal parameter settings to produce the
desired recommendations. Due to the available time frame for this
study, much of the algorithm analysis including the settings of the
parameters, were done manually, simply by iterating through
different settings and observing the results. By finding the
optimized values on parameters such as Expert Head Size, User
Tail Size, and Item Weights, the quality of the recommendations
in novelty and relevance would be greatly enhanced.

Work on expanding the flexibility of the algorithm can also be
done, creating additional parameters that bring changes to the
recommendations. More parameters would mean that the
algorithm could be suited for each user's needs, bringing the
possibility of creating an evermore-personalized set of
recommendations.

The overall system itself could be further developed to integrate
content-based analysis for better results. Although the proposed
method is at its infancy, we believe that the only way to improve
it further (after it has fully developed independently) will be to
incorporate a content-based algorithm to improve on its remaining
weaknesses as an algorithm that is based on user profiles.

8. CONCLUSION
In this paper, a novel approach to recommending unfamiliar artists
relative to each user was proposed in order to tackle the problem
of the high density of obvious items in the list of
recommendations found in today's recommender systems. The key
concept in this approach was that novel items did not always have
to be items that reside in the long tail of the popularity
distribution. Although novel or unfamiliar items, more often than
not, do indeed reside in the long tail of the popularity distribution,
it is important to acknowledge that even well-known artists could
be unknown to users who are (a) interested in different genres and
(b) are in different cultures and/or countries.

A system that produced recommendations was implemented and
was available online for users to use and rate. The
recommendations were produced using data collected from
Last.fm. Results of the user surveys show that the proposed
system succeeds in providing novel recommendations to users,
while keeping those items also relevant. This study shows the
potential of such an approach to recommending novel items, while
maintaining a collaborative filtering algorithm without the support
from content-based algorithms.

9. ACKNOWLEDGEMENTS
The authors would like to thank Professor Sangki ‘Steve’ Han at
the Graduate School of Culture Technology, KAIST and Sheayun
Lee for their valuable comments and feedback.

10. REFERENCES
[1] Chris Anderson. The Long Tail: Why the Future of Business

Is Selling Less of More. Hyperion, 2006. ISBN 1401302378.

[2] Nielsen Soundscan, State of the Industry. National
Association of Recording Merchandisers, 2008

[3] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. Using
Collaborative Filtering to Weave an Information Tapestry.
Commun. ACM, 35(12):61-70, 1992. ISSN 0001-0782.

[4] Resnick P., Iacovou, N., Suchak, M., Bergstrom, P., and
Riedl, J. Grouplens: An Open Architecture for Collaborative
Filtering of Netnews. In CSCW 1994, pages 175-186.

[5] Shardanand, U. and Maes. P. Social Information Filtering:
Algorithms for Automating “word of mouth”. In CHI `95,
pages 210-217.

[6] Hill, W., Stead, L., Rosenstein, M., and Furnas, G.
Recommending and Evaluating Choices in Virtual
Community of Use. In CHI `95, pages 194-201.

[7] Celma, O. and Lamere, P. If you like the Beatles you might
like…: a tutorial on music recommendation. ACM
Multimedia, pages 1157-1158, ACM, 2008.

[8] Hu, X and Downie, J. S. Exploring mood metadata:
Relationship with genre, artist, and usage metadata. ,
September 2007.

[9] Eck, D., Lamere, P., Bertin-Mahieux, T., and Green, S.
Automatic generation of social tags for music
recommendation. In Advances in Neural Information
Processing Systems 20. MIT Press, 2008.

[10] Symeonidis, P., Ruxanda, M. M., Nanopoulos, A., and
Manolopoulos, Y. Ternary semantic analysis of social tags
for personalized music recommendation. ISMIR, pages 219.

[11] Celma, O. Foafing the music: Bridging the semantic gap in
music recommendation. In Proceedings of the 5th
International Semantic Web Conference, pages 927-934,
Springer, 2006.

[12] Celma, O. and Herrera, P. A new approach to evaluating
novel recommendations. In RecSys `08: pages 179-186, New
York, 2008.

[13] Celma, O. and Cano, P. From hits to niches?: or how popular
artists can bias music recommendation and discovery. In
NETFLIX '08: Proceedings of the 2nd KDD Workshop on
Large-Scale Recommender Systems and the Netflix Prize
Competition, pages 1-8, New York, NY, USA, 2008.

[14] Celma, O. Music Recommendation and Discovery in the
Long Tail. PhD thesis.

[15] Pampalk, E. and Goto, M. Musicrainbow: A new user
interface to discover artists using audio-based similarity and
web-based labeling. ISMIR, pages 367-370, 2006.

[16] Duda, R. O. and Hart, P. E. Pattern classification and scene
analysis. New York, 1973.

[17] Stone, M. Cross-validatory choice and assessment of
statistical predictions. Roy. Stat. Soc., 36:111-147, 1974.

[18] Herlocker, J. L., Konstan, J. A., and Riedl, J. T. Evaluating
collaborative filtering recommendations. In Computer
Supported Cooperative Work, pages 241-250, 2000.

[19] Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S.
Collaborative filtering recommender systems, 2007.

[20] Singha, S., Rashmi, K. S., and Sinha, R. Beyond algorithms:
An HCI perspective on recommender systems, 2001

