
Evaluation experiment for the editor of the WebODE
ontology workbench

Óscar Corcho, Mariano Fernández-López, Asunción Gómez-Pérez

Facultad de Informática . Universidad Politécnica de Madrid
Campus de Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. Spain

{ocorcho, mfernandez, asun}@fi.upm.es

Abstract. We summarize our design decisions on the conceptualization of a
travelling ontology, when building it with the ontology editor of the WebODE
ontology engineering workbench. This ontology editor is composed of a set of
HTML forms, a graphical taxonomy editor called OntoDesigner and an axiom
editor called WAB (WebODE Axiom Builder).

1 Introduction

This paper presents the results of using the ontology editor of the WebODE ontology
engineering workbench to conceptualize an ontology in the domain of travelling and
lodging. This is the first experiment for the evaluation of ontology tools’ editors,
performed in the context of the Special Interest Group (SIG) on Enterprise-Standard
Ontology Tools of the European IST OntoWeb thematic network (IST 2000-29243).
This experiment is described in section 2.5 of the OntoWeb Deliverable 1.3 [6].

In section 2 we will briefly describe the WebODE ontology environment, its
ontology editor and its knowledge model. Section 3 will present the design decisions
that we have made to model this ontology in WebODE, focusing on those pieces of
knowledge that we have been able to model and on those pieces of knowledge that we
have not been able to model with it. Section 4 briefly comments on the formats used to
deliver the ontology: the XML representation of WebODE and RDF(S). Finally,
section 5 will present some conclusions that can be derived from this experiment.

2 The WebODE ontology engineering workbench

WebODE [4] is an ontology engineering workbench developed by the Ontology
Group at the Technical University of Madrid (UPM). It is the successor of the
ontology design environment ODE [2].

WebODE is easily extensible and scalable, supported by an application server. The
core of WebODE is its ontology editor. Ontologies are browsed and edited either with
HTML forms (which allow editing ontology components and which provide
“copy&paste” functionalities) or with a graphical user interface, OntoDesigner (which

allows managing different views, where we can edit concept taxonomies with subclass-
of relationships, disjoint and exhaustive subclass partitions and part-of relationships,
and ad-hoc binary relations, and where we can either show or hide the different kinds
of relationships in the ontology to highlight parts of it). The ontology editor also
provides constraint checking capabilities, axiom and rule creation and parsing (with
the WAB editor [4]), documentation in HTML, ontology merge, and ontology
exportation and importation in different formats (XML, RDF(S), OIL, DAML+OIL,
CARIN, Flogic, Java and Jess). Finally, its built-in inference service uses Prolog and a
subset of the OKBC protocol [3].

2.1 WebODE’s knowledge model

The WebODE’s knowledge model [1] is based on the intermediate representations
proposed in Methontology [6]. It allows modelling concepts and their attributes (both
class and instance attributes), concept taxonomies, disjoint and exhaustive class
partitions, ad-hoc binary relations between concepts, properties of relations,
constants, axioms and instances of concepts and relations.

Bibliographic references can be attached to any of the aforementioned ontology
components. Besides, it is possible to import terms from other ontologies. Imported
terms are referred to by means of URLs.

Finally, the WebODE's knowledge model supports views and instance sets . Views
highlight specific parts of the ontology in OntoDesigner. Instance sets make possible
to populate a conceptual model for different applications or scenarios, maintaining
different, independent instantiations of the same conceptual model in WebODE.

3 Conceptualization of the travelling ontology in WebODE

The ontology that we present has been conceptualized using Methontology.
Methontology proposes to conceptualize the ontology using a set of tabular and
graphical intermediate representations (IRs), and recommends the following order to
assure the consistency and completeness of the knowledge already represented. First,
we must identify the main concepts in the ontology and build the concept
classification tree. Second, we create the ad-hoc binary relations between concepts in
the same taxonomy or in different taxonomies. Then, we add the class attributes and
instance attributes to the concepts, and finally we create axioms and rules. This is just
a recommendation: this process is not necessarily sequential.

Therefore, our first task consisted of extracting concept taxonomies and their ad-
hoc relations from the ontology description. We created five different views :
?? Trip view. A customer makes one or more trips, which use some kind of

transport and accommodation. Here we understand by trip a combination
of one or several transports and (possibly) an accommodation. That is, in the
example, John will make three different trips: the one from Madrid to NY, the one
from NY to Washington DC, and the one from Washington DC to Madrid.

?? Means of transport view, which contains all the concepts relevant to
means of transport, classified by air, ground and sea transportation.

?? Plane view, which presents the concept taxonomy under the concept plane,
which is contained in the previous view. This is done since the concept plane is
the only one being more specialized in the ontology.

?? Location view, which contains the concepts city, airport and
importantPlace, and their ad-hoc relations: a city may have several
nearest airports, and several important places worth to visit.

?? Accommodation view, which contains the concepts related to accommodation.
The most general concept is accomodation, which specializes in hotels and
bed and breakfasts, as proposed in the NL description of the example.

In these views we modelled, if possible, disjoint and exhaustive partitions instead of
simple subclass-of concept taxonomies. For instance, in the accommodation view we
created an exhaustive partition of the concept hotel in the different hotel categories
(from 1 star to 5 stars). And in the same view, we created a disjoint partition of the
concept accommodation in hotel and bed and breakfast, since there are
other types of accommodation that have not been included in the ontology.

Another important design decision related to the concept taxonomies was that of
transport. We defined two different concept taxonomies for transports, considered as
services (flight, city bus, taxi, rental car, etc.) and means of transport
(plane, car, bus, underground, etc.). Both taxonomies are connected with the
ad-hoc relation usesTransportMean, which is defined between the most general
concepts in both taxonomies (from the concept transport to the concept
transportMean) and specialized in some of the more specific concepts. For
instance, between the concepts taxi and car, between flight and plane, etc.

Besides, another important issue is how to define flights from one city to another.
We classified flights according to the air company in charge of them (this does not
prevent a specific flight being subclass of several air companies’ flights, in case of
joint flights), and created a class for each flight code, that is, aa0415, us1453, etc.
Instances of these concepts will be the specific flights in a specific date.

Once that we defined concept taxonomies and ad-hoc relations between concepts,
we deepened in the description of concepts by defining concept attributes. We have
selected the attributes that we considered most relevant for each concept, according
to the description provided in the example. For each attribute, we provided its NL
description, its value type, its minimum and maximum cardinalities, and its
measurement unit, precision, minimum and maximum values for numerical attributes.

Class attributes define properties that describe the concept. For instance, the
number of stars of each kind of hotel, the economy, first and business
class standard prices of each kind of flight, the air companies of a
flight or the typical cruise speed of a kind of airplane. These attributes have
also their corresponding values.

Instance attributes define properties that will take their values in instances of the
concept. For instance, in the concept accommodation we defined as attributes the
address, URL, phone number, number of rooms, number of
available rooms, dogs allowed, distance to the beach and
distance to a ski resort. In the concept flight, we defined the air
company, and the departure and arrival dates. In the concept place, we
defined longitude and latitude, which can be used later to compute distances.

Later, we moved to the logical axioms , which are defined in first order logic,
according to the WAB syntax. We created the following seven axioms:

?? Two axioms stating that the business class standard price of a flight is always
more expensive than the first class standard price of the same flight, and for
stating that the first class standard price of a flight is always more expensive
than the economy class standard price of the same flight.

?? One axiom to obtain a flight’s arrival city from the flight’s arrival airport
?? Two axioms to establish that the only kind of transport that can be used for

going from America to Europe, and vice versa, is a flight.
?? One axiom to state that in every kind of city transport the arrival city and

departure city are the same.
?? One axiom to obtain the preferences of a customer for a trip, depending on the

distance between two cities, as presented in the NL description of the example.
Many other constraints could have been inferred from the NL description of the

problem. However, we have tried to restrict to the most relevant ones and those
defined explicitly in the text.

A bibliographic reference was used to obtain many of the NL descriptions of
concepts, attributes and relations: the Merriam-Webster on-line.

Finally, we created two instance sets : one for an agency in New York and another
one for an agency in Madrid. We have created all the instances in the first one: an
instance for John, three instances for John’s trips, instances for the two hotels to be
used, for the cities that he will visit, for the Statue of Liberty and for John’s
flights. We also created the instances of relations between these instances.

As a summary, we created in this ontology 58 concepts (organized in concept
taxonomies with 23 subclass-of relations, 6 disjoint and 3 exhaustive partitions), 19
class attributes, 28 instance attributes, 21 relations, 0 constants, 1 reference and 7
axioms. We created 23 instances in the New York Agency instance set.

We found the following difficulties when modelling our ontology in WebODE:
Enumerated types cannot be represented in WebODE, in the sense of allowed

values for an attribute in a class. For instance, they would be useful for representing
the allowed values of the attribute hotel chain in the concept hotel, or for the
continents in the attribute continent of the concept city.

We cannot represent attributes attached to ad-hoc relations. For instance, the
number of rooms of each room type in a hotel. To represent this, we should create an

intermediate concept that represents the relation, and define the corresponding
instance attributes in it. However, we lose clarity and legibility in the representation.

WebODE cannot compute distances between places. This calculation must be done
by external systems (such as inference engines or traditional software systems), which
would be in charge of creating the corresponding instances of the concept
distance.

4 Formats in which the ontology has been delivered

We have this ontology in two formats, automatically generated from the WebODE
ontology editor: (1) WebODE’s XML (in which we have all the components of the
ontology that we have presented in the previous section), and (2) RDF(S). In the
transformation to RDF(S), we lose much of the knowledge of the WebODE ontology,
since the RDF(S) knowledge model is less expressive than WebODE’s. Hence, in
RDF(S) we do not represent partitions, some attribute’s information (cardinalities,
measurement units, precision, minimu m and maximum values), axioms and views.

5 Conclusions

In this experiment we have developed an ontology from a short NL description of the
problem to be solved. It is clear that the ontologies that will be presented in this
workshop will be very different from each other, since the problem description left
open many modelling issues, so as to allow exploiting each ontology tool features.

This experiment is the starting point of a set of experiments that can be conducted
by the ontology community. The domain of the experiment can be enriched, and also
this experiment can be used for multiple purposes. For instance, it can be used: (1) to
evaluate the tools’ knowledge models, so that we can determine which components
can be represented in each tool and which components cannot be represented, (2) to
evaluate the possibilities of integrating the output generated by these tools with other
ontology techonology (parsers, inference engines, etc.); (3) to analyze the possibilities
of interoperability among tools; (4) to evaluate the usability of each tool; etc.

Acknowledgements

This work has been partially funded by the OntoWeb thematic network (IST-2000-
29243) and by a FPI (Formación de Personal Investigador) grant from UPM.

References

1. Arpírez JC, Corcho O, Fernández-López M, Gómez-Pérez A (2001) WebODE: a scalable
ontological engineering workbench. First International Conference on Knowledge Capture
(K-CAP 2001). Victoria, Canada.

2. Blázquez M, Fernández-López M, García-Pinar JM, Gómez-Pérez A (1998). Building
Ontologies at the Knowledge Level using the Ontology Design Environment, Proceedings of
the Eleventh Knowledge Acquisition Workshop, KAW98, Banff, 1998.

3. Chaudhri VK, Farquhar A, Fikes R, Karp PD, Rice JP (1997) The Generic Frame Protocol
2.0. Technical Report, Stanford University.

4. Corcho O, Fernández-López M, Gómez-Pérez A, Vicente O (2002) WebODE: an
integrated workbench for ontology representation, reasoning and exchange. 13th
International Conference on Knowledge Acquisition and Knowledge Management
(EKAW’02). Sigüenza. Spain.

5. Fernández-López M, Gómez-Pérez A, Pazos J, Pazos A (1999) Building a Chemical
Ontology using methontology and the Ontology Design Environment. IEEE Intelligent
Systems and their applications 4(1):37-45.

6. Gómez-Pérez A (editor) (2002) Deliverable 1.3: A survey on ontology tools . OntoWeb
deliverable.

