
Preface

During the recent decade, handling uncertainty has started to play an impor-
tant role in ontology languages, especially in application areas like the Semantic
Web, Bio-medicine, and Artificial Intelligence. For this reason, there is currently
a strong research interest in Description Logics (DLs) that allow for dealing
with uncertainty. The subject of the First International Workshop on Uncer-
tainty in Description Logics (UniDL ’10) was how to deal with uncertainty and
imprecision in DLs. This encompasses approaches that enable probabilistic or
fuzzy reasoning in DLs, but the workshop was also open for approaches based
on other uncertainty formalisms. The workshop focused on the investigation
of reasoning problems and approaches for solving them, including especially
tractable ones. For classical DL reasoning problems such as subsumption and
satisfiability, algorithms that can handle uncertainty exist, but they are still
less well-investigated than in the case of standard DLs without uncertainty. For
novel reasoning services, such as query answering, computation of generaliza-
tions, modules, or explanations, it is not yet clear how to realize them in DLs
that can express uncertainty.

Topics of interest included but were not limited to: (1) modeling of uncertain
knowledge in DLs; (2) different formalizations of uncertainty for DLs; (3) formal
semantics for uncertain information in DLs; (4) extensions of DL reasoning prob-
lems to uncertainty; (5) reasoning algorithms for DLs with uncertainty; in partic-
ular, (6) tableau algorithms for probabilistic DLs or fuzzy DLs; (7) tractable DLs
with uncertainty; (8) complexity of uncertain reasoning; (9) system descriptions
for implemented reasoning algorithms in uncertain DLs; and (10) novel applica-
tions of DLs with uncertainty.

These proceedings contain the papers presented at the First International
Workshop on Uncertainty in Description Logics (UniDL ’10), which was held in
Edinburgh, UK, July 20, 2010. It contains 5 technical papers and 2 system de-
scriptions, which were selected in a careful reviewing process, where each paper
was reviewed by at least three program committee members. These proceed-
ings also contain an extended abstract of the invited talk.

We wish to thank all authors who submitted papers and all workshop partic-
ipants for fruitful discussions. We are grateful to Ralf Möller for his invited talk
at the workshop. We would like to thank the program committee members and
external referees for their timely expertise in carefully reviewing the submissions.
Many thanks also to the developers of the EasyChair Conference System, which
we used for the reviewing process and the preparation of these proceedings.

July 2010 Thomas Lukasiewicz
Rafael Peñaloza

Anni-Yasmin Turhan

Workshop Organization

Program Chairs

Thomas Lukasiewicz (Oxford University, UK)
Rafael Peñaloza (TU Dresden, Germany)
Anni-Yasmin Turhan (TU Dresden, Germany)

Program Committee

Eyal Amir (University of Illinois, Urbana-Champaign, USA)
Fernando Bobillo (University of Zaragoza, Spain)
Simona Colucci (Technical University of Bari, Italy)
Fabio G. Cozman (University of Sao Paulo, Brazil)
Manfred Jaeger (Aalborg University, Denmark)
Pavel Klinov (University of Manchester, UK)
Ralf Möller (Hamburg University of Technology, Germany)
Mathias Niepert (University of Mannheim, Germany)
Guilin Qi (Southeast University, China)
Stefan Schlobach (Vrije Universiteit Amsterdam, The Netherlands)
Luciano Serafini (IRS Trento, Italy)
Giorgos Stoilos (Oxford University, UK)
Umberto Straccia (ISTI-CNR, Italy)

External Referees

Abner Guzman-Rivera (University of Illinois, Urbana-Champaign, USA)

Sponsors

This workshop was generously supported by Elsevier’s Artificial Intelligence
Journal.

A Probabilistic Abduction Engine for Media Interpretation
based on Ontologies

Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolski, Michael Wessel

Hamburg University of Technology, Germany

Abstract. For multimedia interpretation, and in particular for the combined interpretation
of information coming from different modalities, a semantically well-founded formalization is
required in the context of an agent-based scenario. Low-level percepts, which are represented
symbolically, define the observations of an agent, and interpretations of content are defined as
explanations for the observations.
We propose an abduction-based formalism that uses description logics for the ontology and Horn
rules for defining the space of hypotheses for explanations (i.e., the space of possible interpre-
tations of media content), and we use Markov logic to define the motivation for the agent to
generate explanations on the one hand, and for ranking different explanations on the other.
This work has been funded by the European Community with the project CASAM (Contract
FP7-217061 CASAM) and by the German Science Foundation with the project PRESINT (DFG
MO 801/1-1).

1 Introduction

For multimedia interpretation in the context of an agent-based scenario, and for the combined inter-
pretation of information coming from different modalities in particular, a semantically well-founded
formalization is required. Low-level percepts, which are represented symbolically, define the observa-
tions of an agent w.r.t. some content, and interpretations of the content are defined as explanations
for the observations.

We propose an abduction-based formalism that uses description logics for the ontology and Horn
rules for defining the space of hypotheses for explanations (i.e., the space of possible interpretations
of media content). Additionally, we propose the use of Markov logic to define the motivation for the
agent to generate explanations on the one hand, and for ranking different explanations on the other.

Based on a presentation of the most important preliminaries in Section 2, the abduction and inter-
pretation procedures are discussed in detail in Section 3. Optimization techniques for the probabilistic
abduction engine are pointed out. In Section 4, a complete example is given, showing the main approach
using intermediate steps. Section 7 summarizes this paper.

2 Preliminaries

In this chapter, the most important preliminaries are specified in order to make this document self-
contained.

2.1 Preliminaries on Description Logics

For specifying the ontology used to describe low-level analysis results as well as high-level interpretation
results, a less expressive description logic is applied to facilitate fast computations. We decided to
represent the domain knowledge with the DL ALHf −(D) (restricted attributive concept language
with role hierarchies, functional roles and concrete domains). We shortly describe our nomenclature in
order to make this paper self-contained. For details see [Baader et al., 2003].

In logic-based approaches, atomic representation units have to be specified. The atomic represen-
tation units are fixed using a so-called signature. A DL signature is a tuple S = (CN,RN, IN),
where CN = {A1, ..., An} is the set of concept names (denoting sets of domain objects) and RN =
{R1, ..., Rm} is the set of role names (denoting relations between domain objects). The signature also
contains a component IN indicating a set of individuals (names for domain objects).

In order to relate concept names and role names to each other (terminological knowledge) and
to talk about specific individuals (assertional knowledge), a knowledge base has to be specified. An
ALHf − knowledge base ΣS = (T ,A), defined with respect to a signature S, is comprised of a termi-
nological component T (called Tbox) and an assertional component A (called Abox). In the following
we just write Σ if the signature is clear from context. A Tbox is a set of so-called axioms, which are
restricted to the following form in ALHf −:

(I) Subsumption A1 v A2, R1 v R2

(II) Disjointness A1 v ¬A2

(III)Domain and range restrictions for roles ∃R.> v A, > v ∀R.A
(IV)Functional restriction on roles > v (≤ 1R)
(V) Local range restrictions for roles A1 v ∀R.A2

(VI)Definitions with value restrictions A ≡ A0 u ∀R1.A1 u ... u ∀Rn.An
With axioms of form (I), concept (role) names can be declared to be subconcepts (subroles) of each
other. Axioms of form (II) denote disjointness between concepts. Axioms of type (III) introduce domain
and range restrictions for roles. Axioms of the form (IV) introduce so-called functional restrictions on
roles, and axioms of type (V) specify local range restrictions (using value restrictions, see below). With
axioms of kind (VI) so-called definitions (with necessary and sufficient conditions) can be specified
for concept names found on the left-hand side of the ≡ sign. In the axioms, so-called concepts are
used. Concepts are concept names or expressions of the form > (anything), ⊥ (nothing), ¬A (atomic
negation), (≤ 1R) (role functionality), ∃R.> (limited existential restriction), ∀R.A (value restriction)
and (C1 u ... u Cn) (concept conjunction).

Knowledge about individuals is represented in the Abox part of Σ. An Abox A is a set of expressions
of the form A(a) or R(a, b) (concept assertions and role assertions, respectively) where A stands for
a concept name, R stands for a role name, and a, b stand for individuals. Aboxes can also contain
equality (a = b) and inequality assertions (a 6= b). We say that the unique name assumption (UNA) is
applied, if a 6= b is added for all pairs of individuals a and b.

In order to understand the notion of logical entailment , we introduce the semantics of ALHf −. In
DLs such as ALHf −, the semantics is defined with interpretations I = (4I , ·I), where 4I is a non-
empty set of domain objects (called the domain of I) and ·I is an interpretation function which maps
individuals to objects of the domain (aI ∈ 4I), atomic concepts to subsets of the domain (AI ⊆ 4I)
and roles to subsets of the cartesian product of the domain (RI ⊆ 4I ×4I). The interpretation of
arbitrary ALHf − concepts is then defined by extending ·I to all ALHf − concept constructors as
follows:

>I = 4I
⊥I = ∅
(¬A)I = 4I \AI
(≤ 1R)I = {u ∈ 4I | (∀v1, v2) [((u, v1) ∈ RI ∧ (u, v2) ∈ RI)→ v1 = v2]
(∃R.>)I = {u ∈ 4I | (∃v) [(u, v) ∈ RI]}
(∀R.C)I = {u ∈ 4I | (∀v) [(u, v) ∈ RI → v ∈ CI]}
(C1 u ... u Cn)I = CI1 ∩ ... ∩ CIn

In the following, the satisfiability condition for axioms and assertions of an ALHf −-knowledge
base Σ in an interpretation I are defined. A concept inclusion C v D (concept definition C ≡ D)
is satisfied in I, if CI ⊆ DI (resp. CI = DI) and a role inclusion R v S (role definition R ≡ S), if
RI ⊆ SI (resp. RI = SI). Similarly, assertions C(a) and R(a, b) are satisfied in I, if aI ∈ CI resp.

(a, b)I ∈ RI . If an interpretation I satisfies all axioms of T resp. A it is called a model of T resp. A.
If it satisfies both T and A it is called a model of Σ. Finally, if there is a model of Σ (i.e., a model for
T and A), then Σ is called satisfiable.

We are now able to define the entailment relation |=. A DL knowledge base Σ logically entails an
assertion α (symbolically Σ |= α) if α is satisfied in all models of Σ. For an Abox A, we say Σ |= A if
Σ |= α for all α ∈ A.

2.2 Substitutions, Queries, and Rules

Sequences, Variable Substitutions and Transformations A variable is a name of the form
String where String is a string of characters from {A. . .Z}. In the following definitions, we denote
places where variables can appear with uppercase letters.

Let V be a set of variables, and let X,Y1, . . . , Yn be sequences 〈. . .〉 of variables from V . z denotes
a sequence of individuals. We consider sequences of length 1 or 2 only, if not indicated otherwise, and
assume that (〈X〉) is to be read as (X) and (〈X,Y 〉) is to be read as (X,Y) etc. Furthermore, we
assume that sequences are automatically flattened. A function as set turns a sequence into a set in
the obvious way.

A variable substitution σ = [X ← i, Y ← j, . . .] is a mapping from variables to individuals. The
application of a variable substitution σ to a sequence of variables 〈X〉 or 〈X,Y 〉 is defined as 〈σ(X)〉
or 〈σ(X), σ(Y)〉, respectively, with σ(X) = i and σ(Y) = j. In this case, a sequence of individuals is
defined. If a substitution is applied to a variable X for which there exists no mapping X ← k in σ
then the result is undefined. A variable for which all required mappings are defined is called admissible
(w.r.t. the context).

Grounded Conjunctive Queries Let X,Y1, . . . , Yn be sequences of variables, and let Q1, . . . , Qn
denote concept or role names.

A query is defined by the following syntax.

{(X) | Q1(Y1), . . . , Qn(Yn)}

The sequence X may be of arbitrary length but all variables mentioned in X must also appear in at
least one of the Y1, · · · , Yn: as set(X) ⊆ as set(Y1) ∪ · · · ∪ as set(Yn).

Informally speaking, Q1(Y1), . . . , Qn(Yn) defines a conjunction of so-called query atoms Qi(Yi). The
list of variables to the left of the sign | is called the head and the atoms to the right of are called the
query body. The variables in the head are called distinguished variables. They define the query result.
The variables that appear only in the body are called non-distinguished variables and are existentially
quantified.

Answering a query with respect to a knowledge base Σ means finding admissible variable substi-
tutions σ such that Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))}. We say that a variable substitution σ = [X ←
i, Y ← j, . . .] introduces bindings i, j, . . . for variables X,Y, Given all possible variable substitutions
σ, the result of a query is defined as {(σ(X))}. Note that the variable substitution σ is applied before
checking whether Σ |= {Q1(σ(Y1)), . . . , Qn(σ(Yn))}, i.e., the query is grounded first.

For a query {(?y) | Person(?x), hasParticipant(?y, ?x)} and the Abox Γ1 = {HighJump(ind1),
Person(ind2), hasParticipant(ind1, ind2)}, the substitution [?x ← ind2, ?y ← ind1] allows for an-
swering the query, and defines bindings for ?y and ?x.

A boolean query is a query with X being of length zero. If for a boolean query there exists a variable
substitution σ such that Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))} holds, we say that the query is answered
with true, otherwise the answer is false.

Later on, we will have to convert query atoms into Abox assertions. This is done with the func-
tion transform. The function transform applied to a set of query atoms {γ1, . . . γn} is defined as
{transform(γ1, σ), . . . , transform(γn, σ)} where
transform(P (X), σ) := P (σ(X)).

Rules A rule r has the following form P (X) ← Q1(Y1), . . . , Qn(Yn) where P, Q1, . . . , Qn denote
concept or role names with the additional restriction (safety condition) that as set(X) ⊆ as set(Y1)∪
· · · ∪ as set(Yn).
Rules are used to derive new Abox assertions, and we say that a rule r is applied to an Abox A. The
function call apply(Σ,P (X)← Q1(Y1), . . . , Qn(Yn),A) returns a set of Abox assertions {σ(P (X))} if
there exists an admissible variable substitution σ such that the answer to the query

{() | Q1(σ(Y1)), . . . , Qn(σ(Yn))}
is true with respect to Σ ∪A.1 If no such σ can be found, the result of the call to apply(Σ, r,A) is the
empty set. The application of a set of rules R = {r1, . . . rn} to an Abox is defined as follows.

apply(Σ,R,A) =
⋃
r∈R

apply(Σ, r,A)

The result of forward chain(Σ,R,A) is defined to be ∅ if apply(Σ,R,A) ∪ A = A holds. Otherwise
the result of forward chain is determined by the recursive call
apply(Σ,R,A) ∪ forward chain(Σ,R,A ∪ apply(Σ,R,A)).

For some set of rules R we extend the entailment relation by specifying that (T ,A) |=R A0 iff
(T ,A ∪ forward chain((T , ∅),R,A)) |= A0.

2.3 Probabilistic Knowledge Representation

The basic notion of probabilistic knowledge representation formalisms is the so-called random experi-
ment. A random variable X is a function assigning a value to the result of a random experiment. The
random experiment itself is not represented, so random variables are functions without arguments,
which return different values at different points of time. Possible values of a random variable comprise
the so-called domain of the random variable. In the sequel, we will use boolean random variables, whose
values can be either 1 or 0 (true or false, respectively).

Let ~X = {X1, ..., Xn} be the ordered set of all random variables of a random experiment. An event
(denoted ~X = ~x) is an assignment X1 = x1, ..., Xn = xn to all random variables. In case n = 1 we call
the event simple, otherwise the event is called complex. A certain vector of values ~x is referred to as
a possible world. A possible world can be associated with a probability value or probability for short.
Hence, the notion of a possible world can be used as a synonym for an event, and depending on the
context we use the former or the latter name. In case of an event with a boolean random variable X,
we write x as an abbreviation for X = true and ¬x as an abbreviation for X = false.

Mappings of events to probabilities (or assignment of probabilities to events) are specified with
so-called probability assertions of the following syntax: P (~X = ~x) = p, where ~X is a vector of random
variables, and p is a real value between 0 and 1 (it is assumed that the reader is familiar with Kol-
mogorov’s axioms of probability). In the special case of a simple event (single random variable, n = 1)
we write P (X = x) = p. The probability value p of an event is denoted as P (~X = ~x) (or P (X = x)
in the simple case). In its raw form a set of probabilistic assertions is called a probabilistic knowledge
base (with signature ~X).

A mapping from the domain of a random variable X to probability values [0, 1] is called a dis-
tribution. For distributions we use the notation P(X). Distributions can be defined for (ordered)
sets of random variables as well. In this case we use P(X1, . . . , Xn) as a denotation for a map-
ping to the n-dimensional cross product of [0, 1]. For specifying a distribution, probability asser-
tions for all domain values must be specified, and the values p must sum up to 1. In case all ran-
dom variables of a random experiment are involved, we speak of a (full) joint probability distribu-
tion (JPD), otherwise the expression is said to denote a marginal distribution (projection of the n-
dimensional space of probability values to a lower-dimensional space with m dimensions). The expres-
sion P(X1, . . . , Xm, Xm+1 = xm+1, . . . , Xl = xl) denotes an m-dimensional distribution with known
1 We slightly misuse notation in assuming (T ,A) ∪ ∆ = (T ,A ∪ ∆). If Σ ∪ A is inconsistent the result is

well-defined but useless. It will not be used afterwards.

values xm+1, . . . , xl. In slight misuse of notation, we sometimes write ~e for these known values (e stands
for evidence). The fragment ~e need not necessarily be written at the end in the parameter list of P.

A conditional probability for a set of random variablesX1, ..., Xm is denoted with P (X1 = x1, ..., Xm =
xm | ~e) or, in distribution form, we write P(X1, ..., Xm | ~e) (conditional probability distribution). This
distribution can be also written as P(~X,~e)

P(~e) .
For a probabilistic knowledge base, formal inference problems are defined. We restrict our attention

to the two most convenient probabilistic inference problems: A conditional probability query is the
computation of the joint distribution of a set of m random variables conditioned on ~e and is denoted
with

PX(x1 ∧ ... ∧ xm | ~e) =?.

where vars(x1, . . . , xm) ∩ vars(~e) = ∅ and vars(x1, . . . , xm) ∪ vars(~e) ⊆ X with vars specified in the
obvious way. Note that xi indicates Xi = xi. In the following we have the distribution form of the
above query:

PX(X1, ..., Xm | ~e) =?.

If the set of random variables X is known from the context, the subscript X is often omitted.
The Maximum A Posteriori (MAP) inference returns the most-likely state of query atoms given the

evidence. Based on the MAP inference, the “most probable world” given the evidence is determined
as a set of events. The MAP inference problem given a distribution for a set of random variables X is
formalized as follows:

MAPX(~e) := ~e ∪ argmax~xP (~x|~e) (1)

where vars(~x) ∩ vars(~e) = ∅ and vars(~x) ∪ vars(~e) = X.
For both inference problems, conditional probability queries as well as the MAP problem, different

kinds of algorithms exist, which possibly exploit additional assertions (such as, e.g., conditional inde-
pendence assumptions in so-called Bayesian networks, or factored probability distribution specifications
as in so-called Markov networks). In the next subsection, we focus on the latter formalism.

2.4 Markov Logic

The formalism of Markov logic [Domingos and Richardson, 2007] provides a means to combine the
expressivity of first-order logic augmented with the formalism of Markov networks [Pearl, 1988]. The
Markov logic formalism uses first-order logic to define “templates” for constructing Markov networks.
The basic notion for this is a called a Markov logic network.

A Markov logic network MLN = (FMLN ,WMLN) consists of an ordered multiset of first-order
formulas FMLN = {F1, ..., Fm} and an ordered multiset of real number weights W = {w1, ..., wm}.
The association of a formula to its weight is by position in the ordered sets. For a formula F ∈ FMLN

with associated weight w we also write wF (weighted formula). Thus, a Markov logic network can
also be defined as a set of weighted formulas. Both views can be used interchangeably. As a notational
convenience, for ordered sets we nevertheless sometimes write ~X, ~Y instead of ~X ∪ ~Y .

In contrast to standard first-order logics such as predicate logic, relational structures not satisfying
a formula Fi are not ruled out as models. If a relational structure does not satisfy a formula associated
with a large weight it is just considered to be quite unlikely the ”right” one.

Let C = {c1, ..., cm} be the set of all constants mentioned in FMLN . A grounding of a formula
Fi ∈ FMLN is a substitution of all variables in the matrix of Fi with constants from C. From all
groundings, the (finite) set of grounded atomic formulas (also referred to as ground atoms) can be
obtained. Grounding corresponds to a domain closure assumption. The motivation is to get rid of the
quantifiers and reduce inference problems to the propositional case.

Since a ground atom can either be true or false in an interpretation (or world), it can be considered
as a boolean random variable X. Consequently, for each MLN with associated random variables ~X,
there is a set of possible worlds ~x. In this view, sets of ground atoms are sometimes used to denote

worlds. In this context, negated ground atoms correspond to false and non-negated ones to true. We
denote worlds using a sequence of (possibly negated) atoms.

When a world ~x violates a weighted formula (does not satisfy the formula) the idea is to ensure
that this world is less probable rather than impossible as in predicate logic. Note that weights do not
directly correspond to probabilities (see [Domingos and Richardson, 2007] for details).

For each possible world of a Markov logic network MLN = (FMLN ,WMLN) there is a proba-
bility for its occurrence. Probabilistic knowledge is required to obtain this value. As usual, proba-
bilistic knowledge is specified using a probability distribution. In the formalism of Markov networks
the full joint probability distribution of a Markov logic network MLN is specified in symbolic form
as PMLN (~X) = (P (~X = ~x1), . . . , P (~X = ~xn)), for every possible ~xi ∈ {true, false}n, n = | ~X|
and P (~X = ~x) := log linMLN (~x) (for a motivation of the log-linear form, see, e.g., [Domingos and
Richardson, 2007]), with log lin being defined as

log linMLN (~x) =
1
Z
exp (

|FMLN |∑
i=1

wini(~x))

According to this definition, the probability of a possible world ~x is determined by the exponential
of the sum of the number of true groundings (ni) formulas Fi ∈ FMLN in ~x, multiplied with their
corresponding weights wi ∈ WMLN , and finally normalized with

Z =
∑
~x∈ ~X

exp (
|FMLN |∑
i=1

wini(~x)), (2)

the sum of the probabilities of all possible worlds. Thus, rather than specifying the full joint distribution
directly in symbolic form as we have discussed before, in the Markov logic formalism, the probabilistic
knowledge is specified implicitly by the weights associated with formulas. Determining these formulas
and their weights in a practical context is all but obvious, such that machine learning techniques are
usually employed for knowledge acquisition.

A conditional probability query for a Markov logic network MLN is the computation of the joint
distribution of a set of m events involving random variables conditioned on ~e and is denoted with

PMLN (x1 ∧ . . . ∧ xm | ~e)

The semantics of this query is given as:

Prand vars(MLN)(x1 ∧ . . . ∧ xm | ~e) w.r.t. PMLN (rand vars(MLN))

where vars(x1, . . . , xm) ∩ vars(~e) = ∅ and vars(x1, . . . , xm) ⊆ rand vars(MLN). and the function
rand vars function is defined as follows: rand vars((F ,W)) := {P (C) | P (C) is mentioned in some
grounded formula F ∈ F}. Grounding is accomplished w.r.t. all constants that appear in F . An
algorithm for answering queries of the above form is investigated in [Gries and Möller, 2010].

In the case of Markov logic, the definition of the MAP problem given in (1) can be rewritten as
follows. The conditional probability term P (~x|~e) is replaced with with the Markovian formula:

MAPMLN (~e) := ~e ∪ argmax~x 1
Ze

exp

(∑
i

wini (~x,~e)

)
(3)

Thus, for describing the most-probable world, MAP returns a set of events, one for each random
variable used in the Markov network derived from MLN . In the above equation, ~x denotes the hidden
variables, and Ze denotes the normalization constant which indicates that the normalization process
is performed over possible worlds consistent with the evidence ~e. In the next equation, Ze is removed
since it is constant and it does not affect the argmax operation. Similarly, in order to optimize the

MAP computation the exp function is left out since it is a monotonic function and only its argument
has to be maximized:

MAPMLN (~e) := ~e ∪ argmax~x
∑
i

wini (~x,~e) (4)

The above equation shows that the MAP problem in Markov logic formalism is reduced to a new
problem which maximizes the sum of weights of satisfied clauses.

Since the MAP determination in Markov networks is an NP-hard problem [Domingos and Richard-
son, 2007], it is performed by exact and approximate solvers. The most commonly used approximate
solver is MaxWalkSAT algorithm, a weighted variant of the WalkSAT local-search satisfiability solver.
The MaxWalkSAT algorithm attempts to satisfy clauses with positive weights and keep clauses with
negative weights unsatisfied.

It has to be mentioned that there might be several worlds with the same maximal probability. But
at this step, only one of them is chosen non-deterministically.

2.5 Combining Markov Logic and Description Logics

Since ALHf − is a fragment of first-order logic, its extension to the Markovian style of formalisms is
specified in a similar way as for predicate logic in the section before. The formulas in Markov logic
correspond to Tbox axioms and Abox assertions. Weights in Markov description logics are associated
with axioms and assertions.

Groundings of Tbox axioms are defined analogously to the previous case.2 Abox assertions do not
contain variables and are already grounded. Note that since an ALHf − Abox represents a relational
structure of domain objects, it can be directly seen as a possible world itself if assertions not contained
in the Abox are assumed to be false.

For appropriately representing domain knowledge in CASAM, weights are possibly used only for
a subset of the axioms of the domain ontology. The remaining axioms can be assumed to be strict,
i.e., assumed to be true in any case. A consequence of specifying strict axioms is that lots of possible
worlds ~x can be ruled out (i.e., will have probability 0 by definition).

A Markov DL knowledge base ΣM is a tuple (T ,A), where T is comprised of a set Ts of strict
axioms and a set Tw of weighted axioms and A is comprised of a set As of strict assertions and a set
Aw of weighted assertions. Referring to axioms, a proposal for CASAM is to consider strictness for the
domain ontology patterns (I)–(IV):

(I) subsumption A1 v A2, R1 v R2

(II) disjointness A1 v ¬A2

(III) domain and range restrictions ∃R.> v A, > v ∀R.A
(IV) functional roles > v (≤ 1R)

The main justification treating axioms as strict is that the subsumption axioms, disjointness axioms,
domain and range restrictions as well as functional role axioms (in combination with UNA) are intended
to be true in any case such that there is no need to assign large weights to them.

In [Gries and Möller, 2010] we show that Gibbs sampling with deterministic dependencies spec-
ified in an appropriate fragment remains correct, i.e., probability estimates approximate the correct
probabilities. We have investigated a Gibbs sampling method incorporating deterministic dependencies
and conclude that this incorporation can speed up Gibbs sampling significantly. For details see [Gries
and Möller, 2010]. The advantage of this probabilistic approach is that initial ontology engineering
is done as usual with standard reasoning support and with the possibility to add weighted axioms
and weighted assertions on top of the strict fundament. Since lots of possible worlds do not have to
be considered because their probability is known to be 0, probabilistic reasoning will be significantly
faster.
2 For this purpose, the variable-free syntax of axioms can be first translated to predicate logic.

3 Probabilistic Interpretation Engine

In this chapter, the abduction procedure is defined by the abduction algorithm CAE. Additionally, a
media interpretation agent is described by defining a probabilistic interpretation algorithm Interpret .

3.1 Computing Explanations

In general, abduction is formalized as Σ ∪ ∆ |=R Γ where background knowledge (Σ), rules (R), and
observations (Γ) are given, and explanations (∆) are to be computed. In terms of DLs, ∆ and Γ are
Aboxes and Σ is a pair of Tbox and Abox.

Abox abduction is implemented as a non-standard retrieval inference service in DLs. In contrast
to standard retrieval inference services where answers are found by exploiting the ontology, Abox
abduction has the task of acquiring what should be added to the knowledge base in order to answer
a query. Therefore, the result of Abox abduction is a set of hypothesized Abox assertions. To achieve
this, the space of abducibles has to be previously defined and we do this in terms of rules.

We assume that a set of rules R as defined above (see Section 2.2) are specified, and define a
non-deterministic function compute explanation as follows.

– compute explanation(Σ,R,A, P (z)) = transform(Φ, σ) if there exists a rule

r = P (X)← Q1(Y1), . . . , Qn(Yn) ∈ R

that is applied to an Abox A such that a minimal set of query atoms Φ and an admissible variable
substitution σ with σ(X) = z can be found, and the query Q := {() | expand(P (z), r,R, σ) \Φ} is
answered with true.

– If no such rule r exists in R it holds that compute explanation(Σ,R,A, P (z)) = ∅.

The goal of the function compute explanation is to determine what must be added (Φ) such that
an entailment Σ ∪ A ∪ Φ |=R P (Z) holds. Hence, for compute explanation, abductive reasoning is
used. The set of query atoms Φ defines what must be hypothesized in order to answer the query
Q with true such that Φ ⊆ expand(P (X), r,R, σ) holds. The definition of compute explanation is
non-deterministic due to several possible choices for Φ.

The function application expand(P (Z), P (X) ← Q1(Y1), . . . , Qn(Yn),R) is also defined in a non-
deterministic way as

expand′(Q1(σ′(Y1)),R, σ) ∪ · · · ∪ expand′(Qn(σ′(Yn)),R, σ)

with expand′(P (Z),R, σ) being expand(P (σ′(z)), r,R, σ′) if there exist a rule r = P (X) ← . . . ∈ R
and 〈P (X)〉 otherwise. The variable substitution σ′ is an extension of σ such that:

σ′ = [X1 ← z1, X2 ← z2, . . .] (5)

The above equation shows the mapping of the free variables if it is not already defined. This means
the free variables in the body of each rule are mapped to individuals with unique IDs.

We say the set of rules is backward-chained, and since there might be multiple rules in R, backward-
chaining is non-deterministic as well. Thus, multiple explanations are generated.3

3 In the expansion process, variables have to be renamed. We neglect these issues here.

3.2 The Abduction Procedure

In the following, we devise an abstract computational engine for “explaining” Abox assertions in terms
of a given set of rules. Explanation of Abox assertions w.r.t. a set of rules is meant in the sense that
using the rules some high-level explanations are constructed such that the Abox assertions are entailed.
The explanation of an Abox is again an Abox. For instance, the output Abox represents results of the
content interpretation process. The presentation in slightly extended compared to the one in [Castano
et al., 2008]. Let the agenda A be a set of Aboxes Γ and let Γ be an Abox of observations whose
assertions are to be explained. The goal of the explanation process is to use a set of rules R to derive
“explanations” for elements in Γ . The explanation algorithm implemented in the CASAM abduction
engine works on a set of Aboxes I.
The complete explanation process is implemented by the CAE function:

Function CAE(Ω, Ξ, Σ, R, S, A):
Input: a strategy function Ω, a termination function Ξ, a background knowledge Σ, a set of
rules R, a scoring function S, and an agenda A
Output: a set of interpretation Aboxes I′

I′ := {assign level(l,A)};
repeat

I := I′;
(A, α) := Ω(I) // A ∈ I, α ∈ A s.th. requires fiat(αl) holds;

l = l + 1;
I′ := (A \ {A}) ∪ assign level(l, explanation step(Σ,R, S,A, α));

until Ξ(I) or no A and α can be selected such that I′ 6= I ;
return I′

where assign level(l,A) is defined by a lambda calculus term as follows:

assign level(l,A) = map(λ(A) • assign level(l,A),A) (6)

assign level(l,A) takes as input a superscript l and an agenda A.

In the following, assign level(l,A) is defined which superscripts each assertion α of the Abox A
with l if the assertion α does not already have a superscript:

assign level(l,A) =
{
αl | α ∈ A, α 6= βi, i ∈ N

}
(7)

Note that l is a global variable, its starting value is zero and it is incremented in the CAE function.
The map4 function is defined as follows:

map(f,X) =
⋃
x∈X
{f(x)} (8)

It takes as parameters a function f and a set X and returns a set consisting of the values of f applied
to every element x of X.
CAE function applies the strategy function Ω in order to decide which assertion to explain, uses a
termination function Ξ in order to check whether to terminate due to resource constraints and a
scoring function S to evaluate an explanation.

The function Ω for the explanation strategy and Ξ for the termination condition are used as an
oracle and must be defined in an application-specific way. In our multimedia interpretation scenario
we assume that the function requires fiat(αl) is defined as follows:

4 Please note that in this report, the expression map is used in two different contexts. The first one MAP
denotes the Maximum A Posteriori approach which is a sampling method whereas the second one map is a
function used in the assign level(l,A) function.

requires fiat(αl) =

{
true if l = 0
false if l 6= 0

The function explanation step is defined as follows.

explanation step(Σ,R, S,A, α):⋃
∆∈compute all explanations(Σ,R,S,A,α)

consistent completed explanations(Σ,R,A, ∆).

We need two additional auxiliary functions.

consistent completed explanations(Σ,R,A, ∆):

{∆′ | ∆′ = ∆ ∪ A ∪ forward chain(Σ,R, ∆ ∪ A), consistentΣ(∆′)}

compute all explanations(Σ,R, S,A, α):

maximize(Σ,R,A, {∆ | ∆ = compute explanation(Σ,R, α), consistentΣ∪A(∆)}, S).

The functionmaximize(Σ,R,A, ∆s, S) selects those explanations∆ ∈ ∆s for which the score S(Σ,R,A, ∆)
is maximal, i.e., there exists no other ∆′ ∈ ∆s such that S(Σ,R,A, ∆′) > S(Σ,R,A, ∆). The function
consistent(T ,A)(A′) determines if the Abox A∪A′ has a model which is also a model of the Tbox T .

Note the call to the nondeterministic function compute explanation. It may return different values,
all of which are collected.

In the next Section we explain how probabilistic knowledge is used to (i) formalize the effect of the
“explanation”, and (ii) formalize the scoring function S used in the CAE algorithm explained above.
In addition, it is shown how the termination condition (represented with the parameter Ξ in the above
procedure) can be defined based on the probabilistic conditions.

3.3 The Interpretation Procedure

The interpretation procedure is completely discussed in this section by explaining the interpretation
problem and presenting a solution to this problem. The solution is presented by a probabilistic in-
terpretation algorithm which calls the CAE function described in the previous section. In the given
algorithm, a termination function, and a scoring function are defined. The termination function de-
termines if the interpretation process can be stopped since at some point during the interpretation
process it makes no sense to continue the process. The reason for stopping the interpretation process
is that no significant changes can be seen in the results. The defined scoring function in this section
assigns scores to interpretation Aboxes.

Problem The objective of the interpretation component is the generation of interpretations for the
observations. An interpretation is an Abox which contains high level concept assertions. Since in the
artificial intelligence, the agents are used for solving the problems, in the following the same problem
is formalized in the perspective of an agent:
Consider an intelligent agent and some percepts in an environment where the percepts are the analysis
results of KDMA and HCI. The objective of this agent is finding explanations for the existence of
percepts. The question is how the interpretation Aboxes are determined and how long the interpretation
process must be performed by the agent. The functionality of this Media Interpretation Agent is
presented in the MI Agent algorithm in Section 3.4.

Solution In the following, an application for a probabilistic interpretation algorithm is presented which
gives a solution to the mentioned problem. This solution illustrates a new perspective to the interpre-
tation process and the reason why it is performed. Assume that the media interpretation component
receives a weighted Abox A from KDMA and HCI which contains observations. In the following, the
applied operation P (A,A′,R,WR, T) in the algorithm is explained:

The P (A,A′,R,WR, T) function determines the probability of the Abox A with respect to the Abox
A′, a set of rules R, a set of weighted rules WR, and the Tbox T where A ⊆ A′. Note that R is a
set of forward and backward chaining rules. The probability determination is performed based on the
Markov logic formalism as follows:

P (A,A′,R,WR, T) = PMLN(A,A′,R,WR,T)(~Q(A) | ~e(A′)) (9)

~Q(A) denotes an event composed of all assertions which appear in the Abox A. Assume that Abox A
contains n assertions α1, . . . , αn. Consequently, the event for the Abox A is defined as follows:

~Q(A) = 〈α1 = true ∧ . . . ∧ αn = true〉 (10)

where a1, . . . , an denote the random variables of the MLN. Assume that an Abox A contains m
assertions α1, . . . , αm. Then, the evidence vector ~e(A) defined as follows.

~e(A) = 〈a1 = true, . . . , am = true〉 (11)

In order to answer the query PMLN(A,A′,R,WR,T)(~Q(A) | ~e(A′)) the function MLN(A,A′,R,WR, T)
is called. This function builds the Markov logic network MLN based on the Aboxes A and A′, the
rules R, the weighted rules WR and the Tbox T which is a time consuming process. Note that in
theory the above function is called not only once but several times. In a practical system, this might
be handled more efficiently. This function returns a Markov logic network (FMLN ,WMLN), which we
define here as follows using a tuple notation:

MLN(A,A′,R,WR, T) =
⋃


{(α,w)} if 〈w,α〉 ∈ A
{(α,∞)} if α ∈ A
{(α,w)} if 〈w,α〉 ∈ A′
{(α,∞)} if α ∈ A′
{(α,∞)} if α ∈ R
{(α,w)} if 〈w,α〉 ∈ WR
{(α,∞)} if α ∈ T

In the following, the interpretation algorithm Interpret is presented:

Function Interpret(A, CurrentI, Γ , T , FR, BR, WR, ε)
Input: an agenda A, a current interpretation Abox CurrentI, an Abox of observations Γ , a
Tbox T , a set of forward chaining rules FR, a set of backward chaining rules BR, a set of
weighted rules WR, and the desired precision of the results ε
Output: an agenda A′, a new interpretation Abox NewI, and Abox differences for additions
∆1 and omissions ∆2

i := 0 ;
p0 := P (Γ, Γ,R,WR, T) ;
Ξ := λ(A) • {i := i+ 1; pi := maxA∈A P (Γ,A ∪A0,R,WR, T); return | pi − pi−1 |< ε

i

}
;

Σ := (T , ∅);
R := FR ∪ BR;
S := λ((T ,A0)),R,A, ∆) • P (Γ,A ∪A0 ∪∆,R,WR, T);
A′ := CAE(Ω,Ξ,Σ,R, S,A);
NewI = argmaxA∈A′(P (Γ,A,R,WR, T));
∆1 = AboxDiff (NewI,CurrentI); // additions
∆2 = AboxDiff (CurrentI,NewI); // omissions
return (A′, NewI,∆1, ∆2);

In the above algorithm, the termination function Ξ and the scoring function S are defined by lambda
calculus terms. The termination condition Ξ of the algorithm is that no significant changes can be
seen in the successive probabilities pi and pi−1 (scores) of the two successive generated interpretation
Aboxes in two successive levels i− 1 and i. In this case, the current interpretation Abox CurrentI is
preferred to the new interpretation Abox NewI. In the next step, the CAE function is called which
returns agenda A′. Afterwards, the interpretation Abox NewI with the maximum score among the
Aboxes A of A′ is selected. Additionally, the Abox differences ∆1 and ∆2 respectively for additions
and omissions among the interpretation Aboxes CurrentI and NewI are calculated. In the following,
the strategy condition Ω is defined which is one of the parameters of CAE function:

Function Ω(I)
Input: a set of interpretation Aboxes I
Output: an Abox A and a fiat assertion α

A :=
{
A ∈ I | ¬∃A′ ∈ I,A′ 6= A : ∃α′l′ ∈ A′ : ∀αl ∈ A : l′ < l

}
;

A := random select(A);
min αs =

{
αl ∈ A | ¬∃α′l′ ∈ A′, α′l′ 6= αl, l′ < l

}
;

return (A, random select({min αs}));

In the above strategy function Ω, the agenda A is a set of Aboxes A such that the assigned superscripts
to their assertions are minimum. In the next step, an Abox A from A is randomly selected. Afterwards,
the min αs set is determined which contains the assertions α from A whose superscripts are minimum.
These are the assertions which require explanations. The strategy function returns as output an Abox
A and an assertion α which requires explanation.

3.4 The Media Interpretation Agent

In the following, the MI Agent function is presented which calls the Interpret function:

Function MI Agent(Q, Partners, Die, (T ,A0),FR,BR,WR, ε)
Input: a queue of percept results Q, a set of partners Partners, a function Die for the
termination process, a background knowledge set (T ,A0), a set of forward chaining rules FR, a
set of backward chaining rules BR, a set of weighted rules WR, and the desired precision of the
results ε
Output: –
CurrentI = ∅;
A′′ = {∅};
repeat

Γ := extractObservations(Q);
W := MAP (Γ,WR, T) ;
Γ ′ := Select(W,Γ);
A′ := filter(λ(A)•consistentΣ(A),map(λ(A)•Γ ′∪A∪A0∪forward chain(Σ,FR, Γ ′∪A∪A0),

{select(MAP (Γ ′ ∪ A ∪A0,WR, T), Γ ′ ∪ A ∪A0) | A ∈ A′′}));
(A′′, NewI,∆1, ∆2) := Interpret(A′, CurrentI, Γ ′, T ,FR,BR,WR∪ Γ, ε);
CurrentI := NewI;
Communicate(∆1, ∆2, Partners);
A′′ := manage agenda(A′′);

until Die() ;

where the filter function is defined as follows:

filter(f,X) =
⋃
x∈X

{
{x} if f(x) = true

∅ else
(12)

The filter function takes as parameters a function f and a set X and returns a set consisting of the
values of f applied to every element x of X.

In the MI Agent function, the current interpretation CurrentI and the agenda A′′ are initialized
to empty set. Since the agent performance is an incremental process, it is defined by a repeat− until
loop. The percept results Γ are sent by KDMA and HCI to the queue Q. In order to take the obser-
vations Γ from the queue Q, the MI Agent calls the extractObservations function.
The MAP (Γ ∪ A,WR, T) function determines the most probable world of observations Γ with re-
spect to a set of weighted rules WR and the Tbox T . This function performs actually the mentioned
MAP process in Chapter 2. It returns a vector W which consists of a set of zeros and ones assigned
to the ground atoms of the considered world. The assertions with assigned zeros and ones are called
respectively, negative and positive assertions.
The Select(W,Γ) function selects the positive assertions from the bit vector W in the input Abox
Γ . The selected positive assertions which require explanations are also known as fiat assertions. This
operation returns as output an Abox Γ ′ which has the following characteristic: Γ ′ ⊆ Γ .
In the next step, a set of forward chaining rules FR is applied to all the Aboxes of A′′. The generated
assertions in this process are added to the to the Abox A. In the next step, only the consistent Aboxes
are selected and the other inconsistent Aboxes are not considered for the next steps.

In the next step, the Interpret function is called to determine the new agenda A′′, the new inter-
pretation NewI and the Abox differences ∆1 and ∆2 for additions and omissions among CurrentI
and NewI. Afterwards, the CurrentI is set to the NewI and the MI Agent function communicates
the Abox differences ∆1 and ∆2 to the partners. Additionally, the Tbox T , the set of forward chaining
rules FR, the set of backward chaining rules BR, and the set of weighted rulesWR can be learnt by the
Learn function. The termination condition of the MI Agent function is that the Die() function is true.

Note that the MI Agent waits at the function call extractObservations(Q) if Q = ∅.

After presenting the above algorithms, the mentioned unanswered questions can be discussed. A reason
for performing the interpretation process and explaining the fiat assertions is that the probability of
P (A,A′,R,WR, T) will increase through the interpretation process. In other words, by explaining
the observations the agent’s belief to the percepts will increase. This shows a new perspective for
performing the interpretation process.

The answer to the question whether there is any measure for stopping the interpretation process,
is indeed positive. This is expressed by | pi − pi−1 |< ε

i which is the termination condition Ξ of the
algorithm. The reason for selecting ε

i and not ε as the upper limit for the termination condition is to
terminate the oscillation behaviour of the results. In other words, the precision interval is tightened
step by step during the interpretation process. The function manage agenda is explained Section 6.
Before, we dicuss an example for interpreting a single video shot in Section 4, and a scene in Section 5.

4 Video Shot Interpretation

One of the main innovation introduced in the previous section, namely the introduction of a proba-
bilistic preference measure to control the space of possible interpretations, is exemplified here using
examples inspired by the environmental domain used in the project CASAM.

We have to mention that this example is not constructed to show the possible branchings through
the interpretation process. The purpose of this example is to show how the probabilities of the most
probable world of observations P (A0,A,R,WR, T) behave during the interpretation process.

At the beginning of this example, the signature of the knowledge base is presented. The set of all
concept names CN is divided into two disjoint sets Events and PhysicalThings such that

CN = Events ∪PhysicalThings where these two sets are defined as follows:
Events = {CarEntry,EnvConference, EnvProt,HealthProt}
PhysicalThings = {Car,DoorSlam,Building,Environment,Agency}

EnvConference, EnvProt and HealthProt denote respectively environmental conference, environmen-
tal protection and health protection.

The set of role names RN is defined as follows:

RN = {Causes,OccursAt,HasAgency,HasTopic,HasSubject,HasObject,HasEffect ,
HasSubEvent,HasLocation}

In the following, the set of individual names IN is given:
IN = {C1, DS1, ES1, Ind42, Ind43, Ind44, Ind45, Ind46, Ind47, Ind48}
Note that the notations in this example are based on Alchemy notations i.e. the instance-, concept-

and role names begin with capital letters. In the following, the set of forward chaining rules FR is
defined:
FR = {∀x CarEntry(x)→ ∃y Building(y), OccursAt(x, y),

∀x EnvConference(x)→ ∃y Environment(y), HasTopic(x, y),
∀x EnvProt(x)→ ∃y Agency(y), HasAgency(x, y)}

Similarly, the set of backward chaining rules BR is given as follows:
BR = {Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),

OccursAt(x, y)← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y),

HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y),EnvConference(x), Environment(y),

HasAgency(x, y)← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)}
In the following, a set of weighted rules WR is defined where all rules have the same high weight

equal to 5:
WR = {5 ∀x, y, z CarEntry(z)∧HasObject(z, x)∧HasEffect(z, y)→ Car(x)∧DoorSlam(y)∧Causes(x, y),

5 ∀x, y, z EnvConference(z)∧HasSubEvent(z, x)∧HasLocation(z, y)→ CarEntry(x)∧Building(y)∧OccursAt(x, y),

5 ∀x, y, z EnvProt(z) ∧ HasSubEvent(z, x) ∧ HasObject(z, y) → EnvConference(x) ∧ Environment(y) ∧
HasTopic(x, y),

5 ∀x, y, z HealthProt(z)∧HasObject(z, x)∧HasSubject(z, y)→ EnvProt(x)∧Agency(y)∧HasAgency(x, y)}
Note that the weighted rules WR and their weights can be learnt by the machine learning com-

ponent. The selected initial value for ε in this example is 0.05. In the following, ∆1 and ∆2 denote
respectively the set of assertions hypothesized by a forward chaining rule and the set of assertions
generated by a backward chaining rule at each interpretation level.

Let us assume that the media interpretation agent receives the following weighted Abox A:
A = {1.3 Car(C1), 1.2 DoorSlam(DS1),−0.3 EngineSound(ES1), Causes(C1, DS1)}

The first applied operation to A is the MAP function which returns the bit vector W = 〈1, 1, 0, 1〉.
This vector is composed of positive and negative events (bits). By applying the Select function to
W and the input Abox A, the assertions from the input Abox A are selected that correspond to the
positive events in W . Additionally, the assigned weights to the positive assertions are also taken from
the input Abox A. In the following, Abox A0 is depicted which contains the positive assertions:
A0 = {1.3 Car(C1), 1.2 DoorSlam(DS1), Causes(C1, DS1)}

At this step, p0 = P (A0,A0,R,WR, T) = 0.755. Since no appropriate forward chaining rule from FR
is applicable to Abox A0, ∆1 = ∅ and as a result A0 = A0 ∪ ∅. The next step is the performance of
backward chain function where the next backward chaining rule from BR can be applied to Abox A0:

Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y)
Consequently, by applying the above rule the next set of assertions is hypothesized:
∆2 = {CarEntry(Ind42), HasObject(Ind42, C1),HasEffect(Ind42, DS1)}
which are considered as strict assertions. Consequently, A1 is defined as follows: A1 = A0 ∪∆2.

In the above Abox, p1 = P (A0,A1,R,WR, T) = 0.993. As it can be seen, p1 > p0 i.e.
P (A0,Ai,R,WR, T) increases by adding the new hypothesized assertions. This shows that the new
assertions are considered as additional support. The termination condition of the algorithm is not

fulfilled therefore the algorithm continues processing. At this level, it is still not known whether Abox
A1 can be considered as the final interpretation Abox. Thus, this process is continued with another
level. Consider the next forward chaining rule:
∀x CarEntry(x)→ ∃y Building(y), OccursAt(x, y)
By applying the above rule, the next set of assertions is generated namely:
∆1 = {Building(Ind43), OccursAt(Ind42, Ind43)}
The new generated assertions are also considered as strict assertions. In the following, the expanded

Abox A1 is defined as follows: A1 = A1 ∪∆1.
Let us assume the next backward chaining rule from BR:
OccursAt(x, y)← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y)

Consequently, by applying the above abduction rule the next set of assertions is hypothesized:
∆2 = {EnvConference(Ind44), HasSubEvent(Ind44, Ind42), HasLocation(Ind44, Ind43)}
which are considered as strict assertions. Consequently, A2 = A1 ∪∆2.
In the above Abox, p2 = P (A0,A2,R,WR, T) = 0.988. As it can be seen, p2 < p1 i.e.

P (A0,Ai,R,WR, T) decreases slightly by adding the new hypothesized assertions. Since the termi-
nation condition of the algorithm is fulfilled, Abox A1 can be considered as the final interpretation
Abox. To realize how the further behaviour of the probabilities is, this process is continued. Consider
the next forward chaining rule from FR:
∀x EnvConference(x)→ ∃y Environment(y), HasTopic(x, y)
By applying the above rule, new assertions are generated.
∆1 = {Environment(Ind45), HasTopic(Ind44, Ind45)}
In the following, the expanded Abox A2 is defined: A2 = A2 ∪∆1.

Consider the next backward chaining rule from BR:
HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y),EnvConference(x), Environment(y)

By applying the above abduction rule, the following set of assertions is hypothesized:
∆2 = {EnvProt(Ind46), HasSubEvent(Ind46, Ind44), HasObject(Ind46, Ind45)}
which are considered as strict assertions. In the following, A3 is defined as follows A3 = A2 ∪∆2.

In the above Abox A3, p3 = P (A0,A3,R,WR, T) = 0.99. As it can be seen, p3 > p2, i.e.
P (A0,Ai,R,WR, T) increases slightly by adding the new hypothesized assertions.
Consider the next forward chaining rule:
∀x EnvProt(x)→ ∃y Agency(y), HasAgency(x, y)
By applying the above rule, the next assertions are generated:
∆1 = {Agency(Ind47), HasAgency(Ind46, Ind47)}
As a result, the expanded Abox A3 is presented as follows: A3 = A3 ∪∆1.
Let us consider the next backward chaining rule from BR:
HasAgency(x, y)← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)

Consequently, new assertions are hypothesized by applying the above abduction rule, namely:
∆2 = {HealthProt(Ind48), HasObject(Ind48, Ind46), HasSubject(Ind48, Ind47)}
which are considered as strict assertions. Consequently, A4 is defined as follows: A4 = A3 ∪∆2.
In the above Abox, p4 = P (A0,A4,R,WR, T) = 0.985. As it can be seen, p4 < p3, i.e.
P (A0,Ai,R,WR, T) decreases slightly by adding the new hypothesized assertions.

Evaluation of the Results:
The determined probability values P (A0,Ai,R,WR, T) of this example are summarized in the next

table which shows clearly the behaviour of the probabilities stepwise after performing the interpretation
process:

i Abox Ai pi = P (A0,Ai,R,WR, T)
0 A0 p0 = 0.755
1 A1 p1 = 0.993
2 A2 p2 = 0.988
3 A3 p3 = 0.99
4 A4 p4 = 0.985

Table 1. Summary of the probability values

In the above table, variable i denotes the successive levels of the interpretation process. In this
example, the interpretation process is consecutively performed four times. As it can be seen, through
the first interpretation level the probability p1 increases strongly in comparison to p0. By performing the
second, third and the forth interpretation levels, the probability values decrease slightly in comparison
to p1. This means no significant changes can be seen in the results. In other words, the determination
of A3 and A4 were not required at all. But the determination of A2 was required to realize the slight
difference |p2 − p1| < ε

2 . Consequently, Abox A1 is considered as the final interpretation Abox.

5 Preference-based Scene Interpretation

In this example, we discuss how the video shot interpretation process can be performed by consid-
ering the results of two consecutive video shots. For the interpretation of each video shot we require
information about the previous video shots otherwise the interpretation process does not work cor-
rectly. The question is which assertions have to be considered from the previous video shots. As it
was discussed in this paper we would like to consider the assertions from the previous video shots
which increase P (A0,Ai,R,WR, T). At the beginning of this example, the signature of the knowledge
base is presented. The set of the concept names CN is divided into two disjoint sets Events and
PhysicalThings which are described as follows:

Events = {CarEntry, CarExit, CarRide}
PhysicalThings = {Car,DoorSlam}
Additionally, the set of the role names RN and the set of the individual names IN are represented

as follows:
RN = {Causes,HasObject,HasEffect ,Before, HasStartEvent,HasEndEvent}
IN = {C1, C2, DS1, DS2, Ind41, Ind42, Ind44}
The Tbox T contains the axiom CarEntry v ¬CarExit. In the following, the set of forward

chaining rules FR is given:
FR = {
∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),

Depicts(x,w), Depicts(y, z), CarEntry(w), CarEntry(z)→ Before(z, w),
∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),

Depicts(x,w), Depicts(y, z), CarEntry(w), CarExit(z)→ Before(z, w),
∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),

Depicts(x,w), Depicts(y, z), CarExit(w), CarEntry(z)→ Before(z, w),

∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),

Depicts(x,w), Depicts(y, z), CarExit(w), CarExit(z)→ Before(z, w)}
whereAudioSeg,HasSegLoc and V ideoSeg denoteAudioSegment,HasSegmentLocator and V ideoSegment
respectively. Note that the concepts and roles in FR which are not given in CN and RN appear only
in the multimedia content ontology. The multimedia content ontology determines the structure of the
multimedia document. Additionally, it determines whether the concpts are originated from video, au-
dio or text. The above rules mean that the concept assertion CarEntry or CarExit from the first
shot appear chronologically before the concept assertion CarEntry or CarExit from the second video
shot. The set of backward chaining rules BR is presented as follows:

BR = {Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),

Causes(x, y)← CarExit(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),

Before(x, y)← CarRide(z), HasStartEvent(z, x), HasEndEvent(z, y), CarEntry(x), CarExit(y)}
Additionally, the set of weighted rules is defined as follows:
WR = {5 ∀x, y, z CarEntry(z)∧HasObject(z, x)∧HasEffect(z, y)⇒ Car(x)∧DoorSlam(y)∧Causes(x, y),

5 ∀x, y, z CarExit(z)∧HasObject(z, x)∧HasEffect(z, y)⇒ Car(x)∧DoorSlam(y)∧Causes(x, y),

5 ∀x, y, z, k,m CarRide(z) ∧ HasStartEvent(z, x) ∧ HasEndEvent(z, y) ∧ HasObject(x, k) ∧
HasObject(y,m)⇒ CarEntry(x) ∧ CarExit(y) ∧ Car(k) ∧ Car(m) ∧ k = m}

Consider the next figure as the first video shot of a video:
Let us assume that the analysis results of the first video shot represented in the Abox
A1 are sent to the queue Q:
A1 = {1.3 Car(C1), 1.2 DoorSlam(DS1), Causes(C1, DS1)}
For the interpretation of the first video shot, we will call the function

MI Agent(Q,Partners,Die, (T ,A0),FR,BR,WR, ε). At the beginning of this
function, there are initializations for some variables, namely CurrentI = ∅ and
A′′ = {∅}. Afterwards extracting observations from the queue Q is performed,
which leads to Γ = A1. Determination of the most probable world W = 〈1, 1, 1〉
is performed in the next step and selecting the positive assertions and their re-
lated weights determines Γ ′ = Γ . At this step, A = ∅ since A′′ = {∅}. Addi-
tionally, A0 = ∅. Consequently, MAP (Γ ′,WR, T) = W and Select(W,Γ ′) = Γ ′.

forward Chain(Σ,FR, Γ ′) = ∅ since there is no forward chaining rule applicable to Γ ′. A′ = Γ ′.
The Interpret(A′, CurrentI, Γ ′, T ,FR,BR,WR ∪ Γ, ε) is called in the next step which determines
p0 = P (Γ ′, Γ ′,R,WR, T) = 0.733. The Interpret function calls CAE function which returns
A′ = {Γ ′ ∪∆1, Γ

′ ∪∆2} where the two possible explanations ∆′ and ∆′′ are defined as follows:
∆1 = {CarEntry(Ind41), HasObject(Ind41, C1),HasEffect(Ind41, DS1)}
∆2 = {CarExit(Ind41), HasObject(Ind41, C1),HasEffect(Ind41, DS1)}
Each of the above interpretation Aboxes have scoring values:
p1 = P (Γ ′, Γ ′ ∪ ∆1,R,WR, T) = 0.941 and p1 = P (Γ ′, Γ ′ ∪ ∆2,R,WR, T) = 0.935. NewI =

Γ ′ ∪ ∆1 since this is the interpretation Abox with the maximum scoring value. The termination
condition is not fulfilled since p1 − p0 = 0.208 > 0.05. The Abox difference for additions is defined as
follows: ∆add = NewI − CurrentI = NewI − ∅ = NewI. Simiarly, ∆omi = ∅ is the Abox difference
for omissions. The CAE function returns NewI, A′ and the Abox differences ∆add and ∆omi to the
Interpret function. Consider the next figure depicts the second video shot:

Assume that the analysis results of the second video shot given in the next Abox
are sent to the queue Q:
A2 = {1.3 Car(C2), 1.2 DoorSlam(DS2), Causes(C2, DS2)}

Similarly, for the interpretation of the second video shot we will call the function
MI Agent(Q,Partners,Die, (T ,A0),FR,BR,WR, ε). The observation extracttion
process from Q leads to Γ = A2. Afterwards, the most probable world W = 〈1, 1, 1〉
is determined and applying Select function on W gives Γ ′ = A2.

Consider A ∈ A′′ where A′′ = {A1 ∪∆1,A1 ∪∆2}. Γ ′ ∪ A =
{A2 ∪ A1 ∪∆1,A2 ∪ A1 ∪∆2}. ApplyingMAP (Γ ′∪A,WR, T) givesW = 〈1, . . . , 1〉
and applying the Select(W,Γ ′ ∪ A) function gives {A2 ∪ A1 ∪∆1,A2 ∪ A1 ∪∆2}.

Since no forward chaining rule is applicable to the above set and this set contains
consistent Aboxes A′ = {A2 ∪ A1 ∪∆1,A2 ∪ A1 ∪∆2}. In the next step, the function
Interpret(A′, CurrentI, Γ ′, T ,FR,BR,WR∪Γ, ε) is called which determines P (Γ ′, Γ ′,R,WR, T) =
0.733. Afterwards, the CAE function is called which determines the next exaplanations:

∆3 = {CarEntry(Ind42), HasObject(Ind41, C2),HasEffect(Ind41, DS2)}
∆4 = {CarExit(Ind42), HasObject(Ind41, C2),HasEffect(Ind41, DS2)}
The CAE function generates the following agenda which contains all possible interpretation Aboxes:
{I1, I2, I3, I4}
where:

I1 = A2 ∪ A1 ∪∆1 ∪∆3 I2 = A2 ∪ A1 ∪∆1 ∪∆4

I3 = A2 ∪ A1 ∪∆2 ∪∆3 I4 = A2 ∪ A1 ∪∆2 ∪∆4

Afterwards applies the forward chaining rules on the above agenda. A new assertion Before(Ind41, Ind42)
is generated and added to the four interpretation Aboxes. In the following, the possible four interpre-
tation Aboxes are given:

I1 = A2 ∪ A1 ∪∆1 ∪∆3 ∪ {Before(Ind41, Ind42)}
I2 = A2 ∪ A1 ∪∆1 ∪∆4 ∪ {Before(Ind41, Ind42)}
I3 = A2 ∪ A1 ∪∆2 ∪∆3 ∪ {Before(Ind41, Ind42)}
I4 = A2 ∪ A1 ∪∆2 ∪∆4 ∪ {Before(Ind41, Ind42)}

Afterwards the backward chaining rule is applied which generates the following set only for the inter-
pretation Abox I2:

∆ = {CarRide(Ind44), HasStartEvent(Ind44, Ind41), HasEndEvent(Ind44, Ind42)}
Consequently I2 = I2 ∪∆. The interpretation Aboxes have the next scoring values:

P (A1 ∪ A2, I1,R,WR, T) = 0.964
P (A1 ∪ A2, I2,R,WR, T) = 0.978
P (A1 ∪ A2, I3,R,WR, T) = 0.952
P (A1 ∪ A2, I4,R,WR, T) = 0.959

The above values show that the interpretation Abox I2 has a higher scoring value than the other
interpretation Aboxes. Therefore the final interpretation Abox is NewI = I2. The Abox differences
for additions and omissions are defined as follows:

∆add = A2 ∪∆4 ∪∆ ∪ {Before(Ind41, Ind42)} ∆omi = ∅
For the next interpretation steps the agenda can continue with I2 and eliminate the other inter-

pretation Aboxes since this Abox has a higher scoring value.

6 Manage Agenda

In this section, we introduce some techniques which improves the performance of the agenda.

– Elimination of the interpretation Aboxes: This technique is applied if there are multiple interpre-
tation Aboxes with different scoring values where one of the Aboxes has a higher scoring value.
At this step, we can select this Abox, eliminate the remaining interpretation Aboxes and continue
the interpretation process with the selected Abox.

– Combining the interpretation Aboxes: Consider the interpretation Aboxes I1, . . . , In. In order to
determine the final interpretation Abox, the MAP process can be applied to the union of all
interpretation Aboxes I1 ∪ . . . ∪ In.

– Shrinking the interpretation Aboxes: By applying this technique, we can decide which assertions
from the previous video shots have to be considered for the interpretation process of the following
video shots since considering all assertions of the previous video shots will slow down the inter-
pretation process. We believe that only the high level concept assertions from the previous video
shots play an important role and not the low level concept assertions.

7 Summary

For multimedia interpretation, a semantically well-founded formalization is required. In accordance
with previous work, in CASAM a well-founded abduction-based approach is pursued. Extending pre-
vious work, abduction is controlled by probabilistic knowledge, and it is done in terms of first-order
logic. Rather than merely using abduction for computing explanation with which observations are
entailed, the approach presented in this paper, uses a probabilistic logic to motivate the explanation
endeavor by increasing the belief in the observations. Hence, there exists a certain utility for an agent
for the computational resources it spends for generating explanations. Thus, we have presented a first
attempt to more appropriately model a media interpretation agent.

References

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. F., editors
(2003). The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press.

[Castano et al., 2008] Castano, S., Espinosa, S., Ferrara, A., Karkaletsis, V., Kaya, A., Möller, R., Montanelli,
S., Petasis, G., and Wessel, M. (2008). Multimedia interpretation for dynamic ontology evolution. In Journal
of Logic and Computation. Oxford University Press.

[Domingos and Richardson, 2007] Domingos, P. and Richardson, M. (2007). Markov logic: A unifying frame-
work for statistical relational learning. In Getoor, L. and Taskar, B., editors, Introduction to Statistical
Relational Learning, pages 339–371. Cambridge, MA: MIT Press.

[Gries and Möller, 2010] Gries, O. and Möller, R. (2010). Gibbs sampling in probabilistic description logics
with deterministic dependencies. In Proc. of the First International Workshop on Uncertainty in Description
Logics, Edinburgh.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA.

Relationships between Probabilistic Description and
First-Order Logics

Pavel Klinov and Bijan Parsia

School of Computer Science
University of Manchester, United Kingdom
{pklinov|bparsia}@cs.man.ac.uk

Abstract This paper analyzes the probabilistic description logic P-SHIQ as a
fragment of first-order probabilistic logic (FOPL). P-SHIQ was suggested as
a language that is capable of representing and reasoning about different kinds
of uncertainty in ontologies, namely generic probabilistic relationships between
concepts and probabilistic facts about individuals. However, some semantic prop-
erties of P-SHIQ have been unclear which raised concerns regarding whether it
could be used for representing probabilistic ontologies. In this paper we provide
an insight into its semantics by translating P-SHIQ into FOPL with a specific
semantics based on possible worlds. From that reduction, we show that some
of the restrictions of P-SHIQ are fundamental and sketch alternative semantic
foundations for a probabilistic description logic.

1 Introduction and Motivation

One common complaint about description logic (DL) based ontology languages, such as
the Web Ontology Language (OWL), is they fail to support non-classical uncertainty, in
particular, probability. One answer to this complaint is the P-SH family of logics which
allow for the incorporation of probabilistic formulae as anextension of the familiar and
widely usedSH DLs [1] [2]. Unlike Bayesian extensions to DLs and OWL, the P-SH
family consists of proper extensions to the syntax and semantics of the underlying logic
and inference services. These logics are also decidable, generally of the same worst case
complexity as the base logic, and can be implemented on top ofexisting DL reasoners.

However, there are several issues with the P-SH family both from an expressivity
and from a theoretical point of view. First, it has not been fully clear how it actually
combines statistical and subjective probabilities. Second, probabilistic ABoxes have a
number of strong restrictions (including no support of roles assertions between proba-
bilistic individuals and only one probabilistic individual per ABox).

Often, insight into a DL (and associated extensions and reasoning techniques) has
followed by considering its standard first-order translation, that is, in considering it as
a fragment of first order-logics. In this paper, we attempt toapply this methodology to
the P-SH family by considering them as fragments of a first-order logic extended with
various forms of probability (FOPL). We show that we can understand P-SH logics as
fragments of FOPL and explain its limitations on the basis ofthe known properties of
FOPL with semantics based on possible worlds. Finally, we sketch another fragment of
FOPL which has different semantics and allows lifting of theP-SH restrictions.

2

2 Preliminaries

P-SHIQ We consider a particular representative of the P-SH family, named P-
SHIQ, whose syntactic constructs include those ofSHIQ together withconditional
constraints. Constraints are expressions of the form(D|C)[l, u] whereD,C areSHIQ
concept expressions (calledconclusionandevidencerespectively) and[l, u] ⊆ [0, 1].

A probabilistic TBox (PTBox) is a 2-tuplePT = (O,P) whereO is a classical
DL ontology andP is a finite set of conditional constraints. Informally, a PTBox axiom
(D|C)[l, u] means that “if a randomly chosen individual belongs toC, its probability
of belonging toD is in [l, u]”. A probabilistic ABox (PABox) is a finite set of condi-
tional constraints pertaining to a single probabilistic individualo. Set of all probabilistic
individuals is denoted asIP . A probabilistic ontologyPO = (O,P, (Po)o∈IP

) is a
combination of one PTBox and a set of PABoxes, one for each probabilistic individual.

The semantics of P-SHIQ is standardly explained in terms of the notion of apos-
sible worldwhich is defined with respect to a set of basic conceptsΦ [2]. A possible
world I is a set of DL concepts fromΦ such that{a : C|C ∈ I} ∪ {a : ¬C|C /∈ I}
is satisfiable for a fresh individuala (in other words, possible worlds correspond tore-
alizableconcept types). The set of all possible worlds with respect to Φ is denoted as
IΦ. A world I satisfies a conceptC denoted asI |= C if C ∈ I. Satisfiability of basic
concepts is inductively extended to concept expressions asusual.

A world I is said to be amodelof a DL axiomη denoted asI |= η if η∪{a : C|C ∈
I} ∪ {a : ¬C|C /∈ I} is satisfiable for a fresh individuala. A world I is a model of a
classical DL knowledge baseO denoted asI |= O if it is a model of all axioms ofO.
Existence of such world is equivalent to the standard satisfiability in DL [2].

A probabilistic interpretationPr is a discrete probability distribution overIΦ. Pr
is said tosatisfya DL knowledge baseO denoted asPr |= KB iff ∀I ∈ IΦ, P r(I) >
0 ⇒ I |= KB. The probability of a conceptC, denoted asPr(C), is defined as∑
I|=C Pr(I). Pr(D|C) is used as an abbreviation forPr(C ⊓ D)/Pr(C) given

Pr(C) > 0. A probabilistic interpretationPr satisfies a conditional constraint
(D|C)[l, u], denoted asPr |= (D|C)[l, u], iff Pr(C) = 0 or Pr(D|C) ∈ [l, u]. Pr
satisfies a set of conditional constraintsF iff it satisfies each of the constraints. A PT-
Box PT = (O,P) is calledsatisfiableiff there exists an interpretation that satisfies
O ∪ P. Logical entailment is defined in a standard way [2]1.

First-Order Probabilistic Logic FOPL2 is a probabilistic generalization of first-order
logic aimed at capturing belief statements (the subscript 2stands for the Type 2 se-
mantics [3]), like “the probability that Tweety (a particular bird) flies is over 90%”. It
is very expressive allowing to attach probabilities to arbitrary first-order formulas. Its
representational and computational properties have been thoroughly investigated, and
the results of these investigations are applicable to its fragments.

The syntaxof FOPL2 is defined as follows [3]: assume a first-order alphabetΦ
of function and predicate names, and a countable set of object variablesXo. Object

1 P-SHIQ, as it is presented in [2], is a non-monotonic formalism. However, we consider only
its monotonic basis in this paper. Our position is that it must be clarified first, before proceeding
to non-monotonic machinery, such as lexicographic entailment, built on its top.

3

termsare formed by closingXo off under function application as usual. In addition, the
language containsfield terms, which range over reals (with0 and1 being distinguished
constants) and probability terms of the formw(φ), whereφ is a first-order formula.
Field terms are closed off under applications of functions×,+ on reals (the denotation
w(φ|ψ) ≤ t is the abbreviation ofw(φ ∧ ψ) ≤ t × w(ψ)). Then FOPL2 formulas are
defined as follows:

– If P is an n-ary predicate name inΦ and t1, . . . , tn are object terms, then
P (t1, . . . , tn) is an atomic formula.

– If t1, t2 are field terms, thent1 ≤ t2, t1 ≥ t2, t1 < t2, t1 > t2, t1 = t2 are atomic
formulas. Standard relationships between (in)equality relations are assumed.

– If φ, ψ are formulas andx ∈ Xo, thenφ∧ψ, φ∨ψ, ∀(x)φ, ∃(x)φ,¬φ are formulas.
Standard relationships between logical connectives and quantifiers are assumed.

A probabilistic interpretation(Type 2 probability structure in [3])M is a tuple
(D,S, π, µ), whereD is a domain,S is a set of states,π is a functionS × Φ → ΦD
(whereΦD is a set of predicates and functions overD) which preserves arity, andµ is
a probability distribution overS.M together with a states and a valuationv associates
each object termo with an element ofD ([o](M,s,v) ∈ D) and each field termf with a
real number.(M, s, v) associates formulas with truth values (we write(M, s, v) |= φ if
φ is true in(M, s, v)) as follows:

– (M, s, v) |= P (x) if v(x) ∈ π(s, P).
– (M, s, v) |= t1 < t2 if [t1]M,s,v < [t2](M,s,v).
– (M, s, v) |= ∀(x)φ if (M, s, v[x/d]) |= φ for all d ∈ D.

Other formulas, e.g.φ ∧ ψ, ¬ψ, t1 = t2, etc. are defined as usual. It remains to
define the mapping for the probability terms of the formw(φ): [w(φ)](M,s,v) = µ{s′ ∈
S|(M, s′, v) |= φ}. As usual, a FOPL2 formula is calledsatisfiableif there exists a
tuple(M, s, v) in which the formula is true.

Note that, although FOPL2 does not impose any restrictions on the setS (i.e. it can
be any set over which a probability distribution can be defined). However, it is natural to
associate states with possible interpretations of symbolsin Φ overD (see [4]). Then the
model structure can be simplified to(D,S, µ) since the interpretations are implicitly
encoded in the states.

3 Mapping between P-SHIQ and FOPL2

This section presents a mapping between P-SHIQ and FOPL2. For brevity we will
limit our attention toALC concepts (calling the resulting logic P-ALC) as the trans-
lation can be easily extended to more expressive DLs. We willshow that it preserves
entailments so that P-SHIQ can be viewed as a fragment of FOPL2.

Basic Translation We define the injective functionκ to be the mapping of syntactic
constructs of P-ALC to FOPL22. It is a superset of the standard translation ofALC into

4

Table 1.Translation of P-ALC formulae into FOPL2

P-ALC FOPL2

κ(A, var) A(var)

κ(¬C, var) ¬(κ(C, var))

κ(R, var, var′) R(var, var′)
κ(C ⊓D, var) κ(C, var) ∧ κ(D, var)

κ(C ⊔D, var) κ(C, var) ∨ κ(D, var)

κ(∀R.C, var) ∀(var′)(R(var, var′) → κ(C, var′))
κ(∃R.C, var) ∃(var′)(R(var, var′) ∧ κ(C, var′))
κ(a : C) κ(C, x)[a/x]

κ((a, b) : R) R[a/x, b/y]

κ(C ⊑ D, x) ∀(x)(κ(C, x) → κ(D, x))

κ((B|A)[l, u], x) l ≤ w(B(r)|A(r)) ≤ u

FOL [5] (in the Table 3A,B stand for concept names,R for a role name,C,D for
concepts,r for a fresh constant,var ∈ {x, y}; var′ = x if var = y andy if var = x).

This function transforms a P-ALC PTBox into a FOPL2 theory. The most important
thing is that it translatesgenericPTBox constraints intogroundprobabilistic formulas
for a fresh constantr. The implications of this will be discussed in Section 4.

Faithfulness We next show that this translation is faithful by establishing correspon-
dence between models in P-ALC and FOPL2. Observe, that in contrast to [6], here we
consider the natural choice of states in Type 2 model structure in which they correspond
to first-order models of the knowledge base.

Theorem 1. LetPT = (O,P) be a PTBox in P-ALC andF = {κ(φ)|φ ∈ O ∪P} be
the corresponding FOPL2 theory. Then for every P-ALC modelPr of PT there exists
a corresponding Type 2 structureM = (D,S, µ) such that 1)M |= κ(φ) for all φ ∈ O
and 2)M |= l ≤ w(B(r)|A(r)) ≤ u for all conditional constraints(B|A)[l, u] in P,
and vice versa, whereκ is defined according to Table 1.

Proof. We prove only (⇒). Let Pr : IΦ → [0, 1] be a model ofPT . Pr satisfies
classical ontologyO so there exists a classical modelI = (∆I , ·I) of O. We first
extend∆I to ensure that all possible worlds are realizable over it (one possibility is
to take the disjoint union of all realizations)3. Then we construct a Type 2 structure
(D,S, µ) as follows: letD = ∆I andS be the set of all interpretations of predicate
names (translations of concept and roles names) andr over∆I that satisfy classical
formulas inF . S must be non-empty: letsI be such thatsI(P) = κ−1(P)I for all
predicate names andsI(r) is an arbitrary domain element. Sincer is a fresh constant
andκ encompasses a standard and faithful translation fromALC to FOL,sI is a model
of all classical formulas inF and therefore1) holds.

2 For a possible worldI = {Ci} we use the notationκ(I) to denote the set{κ(Ci)}
3 This is only possible if the DL does not allow for nominals.

5

The rest is to define a probability distributionµ that satisfies probabilistic formulas
in F . Recall thatPr is probability distribution over the set of (possible worlds). We
define a functionσ which maps each worldI = {Ci} to a set of statesσ(I) ⊆ S as
follows: σ(I) = {s|s |= κ(I)(r)} . Then letµ(σ(I)) = Pr(I) for all possible worlds.
It is not hard to see thatµ is a probability distribution as it mimics the probability distri-
butionPr. Finally, (D,S, µ) satisfies all formulas of the kindl ≤ w(B(r)|A(r)) ≤ u
in F becauseµ(B(r)∧A(r)) = Pr(B⊓A), µ(A(r)) = Pr(A)) (by construction, e.g.,
µ(A(r)) = µ({s|s |= A(r)}) =

∑
Cti|=A µ{σ(Cti)} =

∑
Cti|=A Pr(Cti) = Pr(A))

andPr |= (B|A)[l, u] and therefore2) holds. ⊓⊔
Theorem 1 implies that the translation preserves satisfiability and entailments.

Translation of PABoxes One particularly odd restriction of P-SHIQ is that PABoxes
cannot be combined into a single set of formulas. This is so because PABox constraints
are modeled as generic constraints and the information about the individual is present
only on a meta-level (as a label of the PABox). Therefore, to extend our translation
to PABoxes we either have to translate them into a corresponding disjoint set of la-
beled FOPL2 theories or make special arrangements to faithfully translate them into a
combined FOPL2 theory. We opt for the latter because it will let us get rid of any meta-
logical aspects and help analyze a P-SHIQ ontology as a standard FOPL2 theory.

Since PABoxes in P-SHIQ are isolated from each other, the translation should
preserve that isolation. The most obvious way to prevent anyinteraction between sets
of formulas in a single logical theory is to make their signatures disjoint. However,
the translation should not only respect disjointness of PABoxes but also preserve their
interaction with PTBox and the classical part of the ontology (see Example 1).

Example 1.Consider the following PTBox:P = {(FlyingObject|Bird)[0.9, 1],
(FlyingObject|¬Bird)[0, 0.5]} and two PABoxes:PTweety = {(Bird|⊤)[1, 1]},
PSam = {(¬Bird|⊤)[1, 1]}. Obviously, if these sets of axioms are translated and com-
bined into a single FOPL2 theory then it will contain a conflicting pair of formulas
{w(Bird(r)) ≥ 0.9, w(Bird(r)) ≤ 0.5} ⊆ F . This inconsistency can be avoided by
introducing fresh first-order predicates for every PABox:{w(BirdTweety(r)) ≥ 0.9,
w(BirdSam(r)) ≤ 0.5}. However, this would break any connection between PTBox
and PABox axioms, for example, prevent the following entailments:
{w(FlyingObjectTweety(r)) ≥ 0.9, w(FlyingObjectSam(r)) ≤ 0.5}.

One can faithfully extend the translation to PABoxes by introducing fresh concept
names torelativizeeach TBox and PTBox axiom for every probabilistic individual to
avoid inconsistencies. The transformation will consist ofthe following steps4:

– Firstly, we transform a P-ALC ontologyPO = (O,P, (Po)) into a set of PTBoxes
{(O,P ∪ Po)} ∪ {(O,P)}. Informally, we create a copy PTBox for every prob-
abilistic individual (PTo) and make them isolated from each other. Now, instead
of one PTBox and a set of PABoxes we have just a set of PTBoxes. This step
preserves probabilistic entailments in the following sense: PO |= (B|A)[l, u] iff
(O,P) |= (B|A)[l, u] andPO |= (B|A)[l, u] for o iff PTo |= (B|A)[l, u].

4 Full example is available at http://www.cs.man.ac.uk/˜klinovp/research/pshiq/example.pdf.

6

– Secondly, we transform every PTBoxPTo into PT ′
o by renaming every concept

nameC into Co in all TBox axioms and conditional constraints. It is easy to
see thatPTo |= C ⊑ D iff PT ′

o |= Co ⊑ Do andPTo |= (B|A)[l, u] iff
PT ′

o |= (Bo|Ao)[l, u]. Intuitively, we have created a fresh copy of each PTBox
to guard against possible conflicts between PABox constraints for different proba-
bilistic individuals. Signatures ofPT ′

o are pairwise disjoint and denoted asΣo.
– Next, we union allPT ′

o with disjoint signatures (including the originalPT =
(O,P)) into a single unified PTBoxPTU =

⋃
o∈Ip

PTo ∪ PT with signature
ΣU =

⋃
o∈Ip

Σo ∪Σ.
– Finally we can apply the previously presented faithful translation toPTU and ob-

tain a single FOPL2 theory which corresponds to the original P-ALC ontology.

A necessary condition for faithfulness of this transformation is that the original iso-
lation of PABoxes is preserved by creating fresh copies of PTBoxes. In particular, this
means that the unified PTBox cannot entail any subsumption relation between concept
expressionsCo1 andCo2 defined over disjoint signatures except of the case when one
of them is either⊤ or ⊥. If this is false, for example, ifPTU |= Co1 ⊑ Co2 then
the following PABox constraints represented as(Co1 |⊤)[1, 1] and (Co2 |⊤)[0, 0] will
be mutually inconsistent inPTU (but they were consistent in the original P-ALC be-
cause they belonged to different PABoxes isolated from eachother). This condition is
formalized in the following lemma (whose proof is omitted for brevity):

Lemma 1. Let O1 andO2 be copies of a satisfiableALC ontologyO with disjoint
signaturesΣ1 andΣ2, andOU be the union ofO1 andO2. Then for any concept
expressionsC1, C2 overΣ1 andΣ2 respectively such thatO1 2 C1 ⊑ ⊥ andO1 2
⊤ ⊑ C2,OU 2 C1 ⊑ C2.

Now we can obtain the main result:

Theorem 2. LetPO = (O,P, (Po)) be a P-ALC ontology andF be a FOPL2 theory
obtained by combining PABoxes and translating the resulting PTBox into FOPL. Then
for every P-ALC modelPro of PTo = (O,P ∪ Po) for every probabilistic individual
o there exists a corresponding Type 2 structureM = (D,S, µ) such that:

1. M |= κ(φ) for all φ ∈ O,
2. M |= l ≤ w(B(r)|A(r)) ≤ u for all conditional constraints(B|A)[l, u] in P,
3. M |= l ≤ w(Bo(r)|Ao(r)) ≤ u for all conditional constraints(B|A)[l, u] in Po,

and vice versa, whereκ is defined according to Table 1.

Proof. Due to Theorem 1 it suffices to show that the steps 1-3 of the transformation
preserve probabilistic models. This can be done by establishing a correspondence be-
tween possible worlds of eachPTo andPTU . Since there are no subsumptions between
concept expressions over signatures of different PTBoxes (see Lemma 1), each possi-
ble worldIo in PTo corresponds to a finite set of possible worlds ofPTU defined as:
σ(Io) = {IU |Cio ∈ IU iff Ci ∈ Io} (eachCio is a new concept name forCi intro-
duced on step 2). Then, a probability distribution over all possible worlds inPTU can
be defined asPrU (IU) = Pro(Io)/|σ(Io)|. It follows that for any conceptC overΣo,

7

Pro(C) is equal toPrU (Co) whereCo is the correspondingly renamed concept. There-
fore,PrU |= (Bo|Ao)[l, u] if Pro |= (B|A)[l, u]. The reverse direction can be proved
along the same lines (i.e.,Pro(Io) can be defined as

∑
IU∈σ(Io) PrU (IU)).

4 Discussion

The main conclusion following from the presented translation is that P-SHIQ all PT-
Box statements expressdegrees of belief(i.e. subjective probabilities) about a single,
yet unnamed, individual. This is not an easily expected outcome because the variable-
free syntax of P-SHIQ may give a misleading impression that PTBox constraints cor-
respond to universally quantified formulas of some sort. Thefact that probabilistic indi-
viduals are not translated to corresponding constants in FOPL2 (in contrast to classical
individuals) is also not a trivial outcome. Both these features of P-SHIQ have im-
portant implications, but before moving to them, let us consider another, perhaps more
naturally looking translation and explain why it is not faithful.

It may well appear that conditional constraints in P-SHIQ should be interpreted as
implicitly universally quantified formulas analogously toprobabilistic logic program-
ming. That way,(B|A)[l, u] corresponds to∀x(l ≤ w(B(x)|A(x)) ≤ u). However,
the standard behavior of the universal quantifier is incompatible with the P-SHIQ se-
mantics in which classical and probabilistic individuals are separated. For example, the
PTBox({a : ¬A}, {(A|⊤)[1, 1]}) is satisfiable although the corresponding FOPL the-
ory {¬A(a),∀x(w(A(x)) = 1)} is not.

There is a possibility to interpret conditional constraints in P-SHIQ as closed quan-
tified formulas, but this requires a non-standard quantifierwhich makes the variable act
as a random designator. This idea dates back to Cheeseman whooriginally proposed to
use formulas of the form∀x.pr[B(x)|A(x)][l, u] to capture statistical knowledge [7].
In fact, the fresh constantr used in our translation plays the role of such non-standard
quantifier. However, as pointed out by several authors (see especially [3] [8] [9]), such
formulascannotserve as representations of statistical assertions because their interpre-
tations are not based on proportions of domain elements5.

Unfortunately, using Type 2 semantics to interpret different kinds of probabili-
ties complicates not only the representation of statisticsbut also the combination of
statistical assertions with probabilistic statements about specific individuals (degrees
of belief). In particular, this requires modeling of PABox constraints in P-SHIQ as
generic PTBox statements with information about individuals presenting only on a
meta-level. This is the reason why PABox statements do not correspond to ground
probabilistic formulas in FOPL2. If they did, then there would be no connection be-
tween a “statistical” statement(FlyingObject|Bird)[0.9, 1] (represented in FOPL2 as
(0.9 ≤ flyingobject(r)|bird(r)) ≤ 1) and a belief statement(tweety : Bird)[1, 1]
(represented as1 ≤ w(bird(tweety) ≤ 1) since beliefs aboutr cannot affect beliefs
abouttweety. Therefore(tweety : Bird)[1, 1] is effectively modeled as(Bird|⊤)[1, 1]

5 We must mention that P-SHIQ could, in principle, be translated to FOPL with domain-based
semantics by employing a known translation between domain-based probability and possible-
world-based probability (see [10] for details). However, this will solve no issues with P-SHIQ
as it will still behave as FOPL2 with single probabilistic individual.

8

(or as1 ≤ w(bird(r)) ≤ 1 in FOPL2) with the individual nametweety lifted at the
meta-level to serve as a label for the corresponding PABox.

However, this introduces other problems which are responsible for the limitations
of P-SHIQ. Since PABox constraints expressing probabilistic knowledge about differ-
ent probabilistic individualsmustbe isolated from each other, there appears to be no
straightforward way of combining them. In particular, thisprohibits representation of
classical or probabilistic role assertions between different probabilistic individuals or,
in other words, the logic does not support probabilistic relational structures6. Thus, it
can be concluded that, in essence, P-SHIQ is closer to a propositional probabilistic
logic rather than to a full-fledged probabilistic first-order formalism.

The problems mentioned above cannot be solved simply by adopting an appropriate
semantics for representing statistics, such as Type 1 semantics in which probability dis-
tributions are defined over the interpretation domain. Suchan attempt has been made
by Giugno and Lukasiewicz in the early paper on P-SHOQ [1]. In that logic proba-
bilistic concept membership assertions were represented using nominals, for example,
(C|{a})[0.5, 1]. Unfortunately, as proved by Halpern, closed first-order formulas can
only have probability0 or 1 in any Type 1 probabilistic model (see Lemma 2.3 in [3]) so
the representation is unsatisfactory. It is not hard to see that the probability of(C|{a}),
equivalent toPr(C⊓{a})Pr({a}) , is 0 if aI /∈ CI or 1 if aI ∈ CI if Pr is defined over∆I .

All the features and limitations explained above are by no means unique to P-
SHIQ. They have been discovered and studied for first-order logics by a number of
authors who claimed that neither domain-based nor possibleworld-based semanticsby
itself is suitable for representation and reasoning about different kinds of probabilities.
However, their proper combination (called Type 3 semantics[3]) has the required po-
tential. The corresponding logic (FOPL3) is free of any limitations described above, is
completely axiomatizable for a range of interesting fragments (e.g., logics with bounded
model property such asALC), and can be used for defining probabilistic DLs.

5 Probabilistic Description Logic with Combined Semantics

In this section we briefly outline the syntax and semantics ofthe extended probabilistic
DL for representation and reasoning about different kinds of probabilities. The language
corresponds to the DL fragment of FOPL3 with the principle of direct inference [9]. We
loosely call it P-DL (whereDL stands for a subset ofSROIQ).

Syntax Analogously to P-SHIQ the syntax of P-DL is based on conditional con-
straints. However, we distinguish between statistical constraints and belief constraints
by providing different syntactic constructs for each.Statistical conditional constraints
are expressions of the form(D|C)stat[l, u] whereD,C are concept expressions.Belief
constraintsare expressions of the form(φ)belief [l, u] or (ψ|φ)belief [l, u] whereψ, φ are
ABox assertions. We define PTBox to be a set of statistical constraints, and PABox to

6 Allowing nominals in the classical part of the language lets us express probabilistic roles
R(a, b)[l, u] as(∃R.{b}|⊤)[l, u] for a [2]. However, this is still very restrictive because there
cannot be a PABox forb (in other words,b cannot be a probabilistic individual).

9

be a set of belief constraints. An ontology in P-DL is a triple(O,Pstat,Pbelief) where
O is aDL ontology,Pstat is a PTBox andPbelief is a PABox.

SemanticsBoth types of conditional constraints are interpreted using the Type 3 struc-
tureM = (∆,S, Prstat, P rbelief) [3]. Here∆ is a non-empty domain,S is a set of
states that correspond to interpretations of concept, roleand individual names over∆,
Prstat is a probability distribution over∆, andPrbelief is a probability distribution
overS. For a states ∈ S we uses(C) (resp.s(R), s(a)) to express the interpretation
of a conceptC (resp. roleR and individuala) in s. For an axiomη we write s |= η
if η is satisfied by the corresponding interpretation. Such combined structure is used to
interpret both statistical and belief statements respectively in the following way:

– Statistical probability of a conceptC in M in a states (denoted asC(M,s)) is equal

to Prstat{d ∈ ∆|d ∈ s(C)}. (D|C)M,s is an abbreviation of(D⊓C)(M,s)

C(M,s) .
– Subjective probability of an ABox assertionφ (denoted asφM is equal to

Prbelief{s ∈ S|s |= φ}. (ψ|φ)M is an abbreviation of(ψ⊓φ)M

φM .

– M satisfies a statistical constraint(D|C)stat[l, u] if ∀s ∈ S, (D|C)(M,s) ∈ [l, u].
– M satisfies a belief constraint(ψ|φ)belief [l, u] if (ψ|φ)M ∈ [l, u].

Direct Inference FOPL3 provides means for representing and reasoning about differ-
ent kinds of probabilities but, as it stands, it does not support any relationship between
them. However, in most scenarios, e.g., in actuarial reasoning, it is desirable to infer
subjective beliefs from available classical and statistical knowledge. Such reasoning is
often calleddirect inferenceand it can be supported in FOPL3 and its fragments.

The main idea behind direct inference, that goes back to Reichenbach’s reference
class reasoning [11], is to consider every individual to be atypical representative of the
smallestclass of objects which it belongs to and for whichreliablestatistics is available.
For example, the probability that Tweety flies should be equal to the probability that a
randomly taken object, having the same set of properties as Tweety, flies. There are a
few proposed ways to implement this idea, one of which we sketch below.

One can capture the notion of typicality directly by equating the degree of belief
in a ground formula to theexpectationof the statistical probability of itsrandomized
version given the rest of classical and statistical formulas, as proposed in [9]. Ran-
domization is replacement of all constants in ground formulas by fresh variables. Ex-
pectation of a field termf is a rigid (i.e. not depending on a state) term defined as
E(f)M =

∑
s∈S Prbelief (s)× [f](M,s). The expectation operator and conditioning

on statistical formulae are only used on the semantic, not syntactic, level of P-DL.
Consider the example. Let{(Fly|Bird)[0.9, 1]} be PTBox andBird(tweety) be

an ABox axiom. Then the degree of belief inBird(tweety) is within the bounds of
E(bird(v)|0.9 ≤ w(fly(v)|bird(v)) ≥ 1), wherev is a fresh constant introduced
by randomization. The resulting interval is[0.9, 1], as expected. Note that P-DL will
probably require a non-monotonic mechanism similar to P-SHIQ to handle situations
when an explicitly specified subjective probability is different from the computed via
direct inference (e.g., when the individuals in question arenot typical).

10

Direct inference via randomization serves the same purposeas P-SHIQ’s way of
combining PTBox and PABox constraints (in that sense P-SHIQ can be thought of
as an implementable, non-monotonicapproximationof FOPL3). However, it is con-
siderably less restrictive because it does not require representing PABox statements as
universal PTBox constraints. Since all belief statements about particular individual are
ground formulas with proper constants (liketweety), they can be combined in a single
theory. Thus the representation supports arbitrary relational structures involving differ-
ent probabilistic individuals and does not force unnaturalseparation of PABoxes. It is
also possible to make the assumption that a pair of individuals are typical thus enabling
the inference of probabilistic role assertions. Finally, it supports smooth integration of
classical knowledge (i.e. ABox axioms) and beliefs about the same individual while
P-SHIQ requires separation between classical and probabilistic individuals.

6 Conclusion

In this paper we have presented a new look at the probabilistic DL P-SHIQ as a frag-
ment of probabilistic first-order logic. We gave a translation of P-SHIQ knowledge
bases into FOPL2 theories and proved its faithfulness. This brought an extrainsight
into P-SHIQ, most importantly, into its limitations. It appears that the major restric-
tion, namely the lack of support of relational structure forprobabilistic individuals, is
caused by attempt to use the possible world based semantics for different kinds of prob-
abilities. This makes the probabilistic component of P-SHIQ essentially propositional
(i.e. all probabilistic statements relate to a single constantr). We sketched how a more
direct fragment of FOPL, which we called P-DL, could overcome these limitations
while still retaining the ability to combine probabilitiesof different sorts. Future inves-
tigations include decidability, implementability, and modelling applicability of P-DL.

References

1. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A probabilistic extension of SHOQ(D) for prob-
abilistic ontologies in the semantic web. In: JELIA. (2002) 86–97

2. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6-7)(2008)
852–883

3. Halpern, J.Y.: An analysis of first-order logics of probability. Artif Intell.46 (1990) 311–350
4. Koller, D., Halpern, J.Y.: Irrelevance and conditioning in first-order probabilistic logic. In:

Advances in Artificial Intelligence Conference. (1996) 569–576
5. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., Patel-Schneider, P.F.: Description Logic

Handbook. Cambridge University Press (2003)
6. Klinov, P., Parsia, B., Sattler, U.: On correspondences between probabilistic first-order and

description logics. In: Description Logic Workshop. (2009)
7. Cheeseman, P.: An inquiry into computer understanding. Comp. Intell. 4 (1988) 58–66
8. Bacchus, F.: Lp, a logic for representing and reasoning with statistical knowledge. Comp.

Intell. 6 (1990) 209–231
9. Bacchus, F.: Representing and reasoning with probabilistic knowledge. MIT Press (1990)

10. Abadi, M., Halpern, J.Y.: Decidability and expressiveness for first-order logics of probability.
Inform. and Comp.112(1) (1994) 1–36

11. Reichenbach, H.: Theory of Probability. University of California Press, Berkeley (1949)

Probabilistic Logic Encoding of Spatial Domains

P. Santos1, B. Hummel2, V. Fenelon3,1, and F. G. Cozman3

1FEI, São Paulo, Brazil
2University Karlsruhe, Germany

3Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil

Abstract. This paper presents a formalisation of a spatial domain in terms of
a qualitative spatial reasoning formalism, encoded in a probabilistic description
logic. The QSR formalism chosen is a subset of a cardinal direction calculus and
the probabilistic description logic used has the relational structures of the well-
known ALC language, allied with the inference methods of Bayesian Networks.
We consider a scenario consisting of a road navigated by an experimental vehicle
equipped with three on-board sensors: a digital map, a GPS and a video camera.
This paper presents experiments where the proposed formalism is used to answer
queries about driving directions, lanes and vehicles.

1 Introduction
Much work in computer vision in the 70’s and 80’s had as a goal the development of
high-level vision, whereby the numerical (or quantitative) processing feeds a symbol-
ical (or qualitative) level of knowledge from where an agent is capable of interpreting
the world, and acting in accordance to this interpretation. These early attempts were
frustrated by the non-existence (at the time) of efficient algorithms for dealing with un-
certainty, of tractable knowledge representation formalisms and also by the rudimentary
stage of image-processing algorithms.

Since then, important advancements in Artificial Intelligence (AI) suggest that we
may be at the stage of bridging the gap between AI and Computer Vision. The present
paper is related to three of these advancements: Bayesian Networks [1], which are
graphical representations of domain variables that provide efficient probabilistic in-
ference methods; Description Logics (DLs) [15], a family of formalisms (sub-sets of
first-order logic) that have a positive trade-off between expressivity and complexity;
and qualitative spatial reasoning (QSR) [25], that are formalisms for representing and
reasoning about space.

The purpose of this paper is to investigate the use of a qualitative spatial reasoning
formalism, encoded on a probabilistic description logic, to answer queries about a traffic
scenario. The QSR formalism chosen is a sub-set of a cardinal direction calculus [8, 9]
and the probabilistic DL used is CRALC [23, 28], which has the relational structures of
the description logicALC [4], allied with the inference methods of Bayesian Networks.

2 Literature Overview
Qualitative spatial reasoning: The aim of QSR is the logical formalisation of knowl-
edge from elementary spatial entities, such as spatial regions, line segments, cardinal
directions, and so forth [13, 25]. These formalisms provide the basic machinery for a
system to represent and reason about spatial entities on a more abstract level than quan-
titative methods [25].

Relevant to the present work are the developments of spatial formalisms for com-
puter vision and robotics. The first proposal for a logic-based interpretation of images
is described in [2], where image interpretation is reduced to a constraint satisfaction
problem on a set of axioms; [3] proposes a system that generates descriptions of aerial
images, which more recently received a descriptive logic enhancement [24].

A spatial system based on spatio-temporal histories for scene interpretation was
investigated in [14], which was inspired on an earlier proposal for learning event mod-
els from visual information [10]. Recently, [16] proposes a system that uses multiple
spatio-temporal histories in order to evaluate an image sequence. A logic formalisation
of the viewpoint of a mobile agent was presented in [11], and was further explored in
the interpretation of scenes within a mobile robotics scenario in [21, 31]. In [29], func-
tional and geometric properties of roads and intersections could be inferred using an
expressive, deterministic, DL in combination with on-board vehicle sensors.
Probabilistic Description Logics: Description Logics (DLs) are fragments of first-
order logics originated in the 1970s as a means to provide a formal account of frames
and semantic networks. Description logics are based on concepts , which represent sets
of individuals (such as Plant or Animal); and roles, which denote binary relations be-
tween individuals, such as fatherOf or friendOf. Set intersection, union and complement
are usual operators found in DLs, as well as some forms of quantification. A key feature
of most description logics is that their inference is decidable [15].

In recent years there have been an increasing interest in the combination of prob-
abilistic reasoning and logics (and with description logics in particular) [22, 27, 20].
This combination is not only motivated by pure theoretical interest, but it is very rele-
vant from an application standpoint in order to equip a reasoning system with relational
inferences capable of making also probabilistic assessments.

In [5, 6] a number of distinct probabilistic logics were proposed where probabilities
were defined over subsets of domain elements. These logics have difficulty in handling
probabilistic assertions over individuals, as statistical information over the domain does
not imply information about individuals; this is known as the direct inference problem
[7]. The direct inference problem is solved in [18] by adopting probabilities only on
assertions. An alternative way around the direct inference problem is to assign proba-
bilities to subsets of interpretations, as assumed in [17, 26] and is also at the kernel of
the probabilistic DL we use here.

3 The credal ALC
The credal ALC (CRALC) [28] is a probabilistic extension of the ALC description
logic [4]. The basic vocabulary of ALC contains individuals, concepts (sets of individ-
uals) and roles (binary relations of individuals). Given two concepts C and D, they can
be combined to form new concepts from conjunction (C u D), disjunction (C t D),
negation (¬C), existential restriction (∃r.C) and value restriction (∀r.C). A concept
inclusion, C v D, indicates that the concept D contains the concept C and a defini-
tion, C ≡ D, indicates that the concepts C and D are identical. The set of inclusions
and definitions constitute a terminology. In general, a terminology is constrained to be
acyclic, i.e., no concept can refer to itself in inclusions or definitions.

The semantics of ALC is defined by a domain D and an interpretation function
I, which maps: each individual to a domain element; each concept to a sub-set of D;
and, each role to a binary relation D × D, such that the following holds: I(C uD) =
I(C)∩I(D); I(CtD) = I(C)∪I(D); I(¬C) = D\I(C); I(∃r.C) = {x ∈ D|∃y :
(x, y) ∈ I(r) ∧ y ∈ I(C)}; I(∀r.C) = {x ∈ D|∀y : (x, y) ∈ I(r) → y ∈ I(C)}.
An inclusion C v D holds if and only if I(C) ⊆ I(D), and a definition C ≡ D holds
if and only if I(D) = I(D) (e.g. C v (∃ hasSibling.Woman) u (∀buys.(Fish t Fruit))
indicates that C contains only individuals who have sisters and buy fruits or fishes).

In the probabilistic version of ALC (CRALC), on the left hand side of inclusions/
definitions only concepts may appear. Given a concept name C, a concept D and a role
name r, the following probabilistic assessments are possible:

P (C) ∈ [α, α], (1)
P (C|D) ∈ [α, α], (2)

P (r) ∈ [β, β]. (3)

We write P (C|D) = α when α = α, P (C|D) ≥ α when α < α = 1, and so on.
In order to guarantee acyclicity, no concept is allowed to use itself in deterministic (or
probabilistic) inclusions and definitions.

The semantics of CRALC is based on probabilities over interpretations so that the
direct inference problem can be avoided. In other words, probabilistic values are as-
signed to the set of all interpretations. The semantics of Formula (1) is, thus: for any
x ∈ D, the probability that x belongs to the interpretation of C is in [α, α] . That is,

∀x ∈ D : P
({
I : x ∈ I(C)

})
∈ [α, α].

Informally, the semantics can be represented as ∀x ∈ D : P (C(x)) ∈ [α, α]. The
semantics of Expressions (2) and (3) is then:

∀ x ∈ D : P (C(x)|D(x)) ∈ [α, α],
∀ (x, y) ∈ D ×D : P (r(x, y)) ∈ [β, β].

Given a finite domain, a set of sentences in CRALC specifies probabilities over all
instantiated concepts and roles. In general, a set of probabilities is specified by a set of
sentences; a few assumptions guarantee that a single probability distribution is speci-
fied by a set of sentences: unique-names, point-probabilities on assessments, rigidity of
names [28]. So, a finite domain and a set of sentences specify a unique Bayesian net-
work over the instantiated concepts and roles. To compute the probability of a particular
instantiated concept or role, one can generate this Bayesian network and then perform
probabilistic inference in the network. Because the domains we deal with in this pa-
per are small, we follow this propositionalisation strategy in our examples. For large
domains it may be impractical to explicitly generate a Bayesian network. In this case,
approximate algorithms can be used and, in particular, algorithms based on variational
methods have been developed with success [28].

4 Cardinal Direction Calculus
The cardinal direction calculus (CDC) [8] is a formalism for reasoning about cardinal
directions between spatial objects. The major reasoning task that CDC is concerned

with is to infer the direction between two objects A and C, from the known directions
between A and (another object) B and between B and C. The basic part of the calculus
has nine relations: equal (eq), north (n), east (e), west (w), south (s), northwest (nw),
northeast (ne), southeast (se) and southwest (sw).

We define a CDC inspired on the formulation given in [9], where spatial objects are
points in a two-dimensional space and the cardinal directions between two objects A
and B are defined as the two projections of the straight line from A to B: one on the
axis South-North and the other on the axis West-East.

In order to make clear that we are not dealing with global cardinal directions (while
also taking inspiration of the dynamic nature of a traffic scenes), this paper we as-
sume that each road defines its local cardinal direction system, whereby the directions
“Down-Up” instead of “South-North” goes from the origin of the road towards its end,
following the road’s centre line. In other words, the “Down-Up” direction between two
objects A and B on the road are defined as the projection of the line from A to B on
the road’s centre line. The “East-West” direction, refer as right-left, is defined at every
point of the road as the continuous orthogonal line to the tangent of the centre line at
that point. Figure 1 shows an example of this local CDC.

Fig. 1. The local cardinal system for roads: A is south of B and west of C

5 The CRALC encoding of a traffic scenario
This section presents a formalisation in CRALC of a road traffic domain where incom-
plete sensor data and domain knowledge can be jointly exploited to solve functional
lane recognition tasks. Let ego-road and ego-lane denote, respectively, the road and the
particular lane on which a vehicle is driving. The scenario chosen is composed of a
road, where each of its lanes has either the direction going up or the direction going
down. Dividing every pair of adjacent lanes is either a dashed divider or a solid divider.
The scenario also contains an experimental vehicle equipped with three on-board sen-
sors: a digital map, a GPS and a video camera. The task of the formalism is to estimate
the following functional properties of the ego-road using on-board vehicle sensors:

– Which lane corresponds to the ego-lane? This task is derived from the fact that
current differential GPS receivers are able to reliably determine a vehicle’s ego-
road, but not its ego-lane (e.g. [19]).

– Which driving direction does each lane permit, “going up” or “’going down”?

Extending these tasks in order to allow queries about turning directions and multiple
traffic actors should be straightforward once the above issues are solved.

(a) (b)

Fig. 2. (a) original scene and (b) Example for sensor input from on-board camera, digital map,
and map-matched GPS from scene (a).

Sensor Input: The sensors input available to solve that task are:
– Video-based divider marking recognition: recognises lane divider markings on the

right of the vehicle and classifies them into either dashed or solid divider lines.
Hit and false alarm rate of the recognition task, and the confusion table of the
classification task, are given in Tables 1(a) and 1(b), respectively.

– Map-matched GPS position: retrieves the current road from a digital map and pro-
vides the vehicle’s driving direction on that road segment. The algorithm proposed
in [19] has been shown to be accurate under batch-processing.

– Digital navigation map: provides the classification of the road into either one-way
or two-way traffic. Table 1(c) is a confusion table for this classification task.

It is worth pointing out that tables 1(a) and 1(c) are based on comparing the algo-
rithm’s outcomes with ground truth [29], whereas the data in Table 1(b) was estimated.
A typical sensor input is sketched in Figure 2(b), that shows the information obtained
by the sensors on the situation in Figure 2(a).

Table 1. Sensor model. In the confusion tables (b) and (c), columns denote ground truth and rows
denote estimates.

(a)
Video: Divider

Recognition

Hit rate .51
FA rate .23

(b)
Video: Divider
Classification

So
lid

D
as

he
d

Solid .80 .067
Dashed .20 .933

(c)
Digital map:

Road Classification

O
ne

w
ay

Tw
ow

ay

Oneway .99 .01
Twoway .01 .99

Road Building Regulations: A taxonomy of concepts and roles relevant to the traffic
task is set up, in which the concept Lane is defined by the two primitives GoingUp
and GoingDown, the concept Divider is defined as the union of DashedDivider and

SolidDivider, and Vehicle is either on a one-way road (OnOneWayRoad) or on a two-
way road (OnTwoWayRoad):

Lane ≡ GoingUp t GoingDown

Divider ≡ DashedDivider t SolidDivider

Vehicle ≡ OnOneWayRoad t OnTwoWayRoad.

In Formulae (4)–(7) and (9) we use the abbreviation disjoint(t1, t2, . . . , tn) to repre-
sent the set of statements about pairwise disjoint terms, i.e., ti v ¬tj ∀i, j ∈ 1, ..., n, i 6= j.

disjoint(Vehicle, Divider, Lane) (4)
disjoint(GoingUp, GoingDown) (5)
disjoint(DashedDivider, SolidDivider) (6)
disjoint(OnOneWayRoad, OnTwoWayRoad). (7)

The taxonomy of roles consists of CDC relations only. Out of the nine cardinal
directions, only three are relevant to the task at hand right (ri), left (le), since the domain
does not have cross-roads, and equal (eq):

cdc ≡ ri t le t eq (8)
disjoint(ri, le, eq). (9)

Next, a set of hard constraints about road building regulations are formulated, mak-
ing use of the concepts and roles introduced before.The Formulae (10) and (11) for-
malise the semantics of right-handed traffic: to the right of a lane allowing for traffic
going up the road (with respect to the road’s egocentric coordinate system) there must
only be lanes allowing for “going up” traffic, and to the left of traffic going down the
road there must only be “going down” lanes.

GoingUp v ∀ri.(GoingUp t ¬Lane) (10)
GoingDown v ∀le.(GoingDown t ¬Lane). (11)

Formulae (12) and (13) refer to the dividers function, which may be distinct in dif-
ferent countries; these axioms holds for right-handed traffic. A dashed divider divides
two lanes, a solid divider either marks the road border or it separates roads with op-
posing driving directions. And, the axiom states that a two-way road has traffic in both
directions (Formula (14)).

DashedDivider v ∃ri.Lane u ∃le.Lane (12)
SolidDivider v¬∃ri.Lane t ¬∃le.Lane t (∃cdc.GoingUp u ∃cdc.GoingDown) (13)
OnTwoWayRoad v ∃cdc.GoingUp u ∃cdc.GoingDown. (14)

Sensor Model: Concepts are added to represent all probabilistic inputs from sensors:
SensedOnOneWayRoad, SensedOnTwoWayRoad and SensedDivider, that can be ei-
ther SensedDashedDivider or SensedSolidDivider. The confusion tables (Tables 1(a)–
1(c)) show joint probabilities of an event and its detection by a sensor, and those condi-
tional probabilities are formulated as a set of axioms:

P (DashedDivider|SensedDashedDivider) = 0.93
P (SolidDivider|SensedDashedDivider) = 0.07
P (DashedDivider|SensedSolidDivider) = 0.20
P (SolidDivider|SensedSolidDivider) = 0.80.

Fig. 3. Bayesian Network representing a traffic domain.

6 Coding and running the scenarioThe formalisation presented in the previous section is within the basic definitions of
CRALC. However, the original role hierarchies are not within the scope of ALC (and,
consequently, not within CRALC). Therefore, we could not represent directly Formulae
8 and 9. Instead, the spatial information about the domain was implicit in the definitions
of each of the lanes and their possible directions. This information was included by
grounding the descriptions ∃eq.Lane (“there is a vehicle in the lane”) to new concepts
Onl1, Onl2 and Onl3 (“the vehicle is on the lane li, for i ∈ 1, 2, 3”). An analogous idea
was used with respect to the lane directions, where Upli and Downli (for i ∈ 1, 2, 3)
where used to represent that the lane li is a going up (resp. down) lane. By merging the
roles taken on by the individuals l1, l2, and l3 into concepts Onli, Upli and Downli, it was
possible to represent the Bayesian network for only one individual, the vehicle, and not
for {l1, l2, l3 and ν}. Our solution for representing formulae such as disjoint(A,B,C) was
to include probabilistic statements, such as P (A|B) = 0 and P (C|A ∨B) = 0.

Given the formalisation presented in Section 5 (and the consideration above), the
system generated automatically the Bayesian network for only one individual repre-
sented in Figure 3, where the nodes in blue are observed variables, i.e. sensors’ states.
It is now possible to answer the queries specified in Section 5, which correspond to the
following:
1. argmaxliP ((v : Onli)), i.e. li is the lane with maximum probability of being the ve-

hicle’s (v) ego-lane .
2. ∀i : P (li : GoingUp), i.e. for each lane li, the probability of being a GoingUp lane.

Consulting the network in Figure 3 for all of the eight possible states of the three
sensors, we obtained the answers presented in Tables 2 and 3 for the queries 1 and 2 re-
spectively. In these tables we used the abbreviations STWR for SensedOnTwoWayRoad
and SDD for SensedDashedDivider. Table 2 shows probable lane on which the vehicle
v is driving (argmaxliP ((v,Onli))), given the evidences, represented on the first three
columns. The first line of the table, for instance, represents the state where the sensor
obtained GoingDown, vehicle on a one way road and a solid divider. Given these evi-
dences the node Onli with the highest probability was Onl3. This case is shown in Figure
4(c).

Table 2. Answer to query 1: the probability on the ego-lane given the evidence A (expressed on
the first three columns)

GPS map video argmaxliP ((v : Onli|A))

GoingUp STWR SDD
0 0 0 l3
0 0 1 l1 ∨ l2
0 1 0 l2
0 1 1 l3
1 0 0 l1
1 0 1 l2 ∨ l3
1 1 0 l1
1 1 1 l2

(a) (b) (c)
Fig. 4. Examples of three traffic situations, where the vehicle is an one way road and going down.

Table 3 represents the probabilities of each of the li lanes be a GoingDown lane, given
the evidences on the first three columns (the probability of GoingUp is the complement
of the values stated in the table). Take for instance the first line, the highest probabil-
ity for l1, l2 and l3 is GoingDown, which is consistent with the evidences GoingDown
for the vehicle, and SensedOnOneWayRoad. Similarly for the remainder sensor states
represented in the table.

Table 3. Answer to query 2: the probability for the lane’s driving direction given the evidence A
(expressed on the first three columns)

GPS map video l1 l2 l3
GoingUp STWR SDD P (l1:GoingDown|A) P (l2:GoingDown|A) P (l3:GoingDown|A)

0 0 0 0.99 0.99 1.00
0 0 1 0.99 0.99 1.00
0 1 0 0.01 0.76 1.00
0 1 1 0.01 0.95 1.00
1 0 0 0.00 0.01 0.01
1 0 1 0.00 0.00 0.01
1 1 0 0.00 0.61 0.99
1 1 1 0.00 0.09 0.99

7 Conclusion
The representation of QSR systems into description logics is a recent endeavour [12,
30]. The major difficulty of this task is the representation of transitive relations, which
are fundamental pieces of spatial knowledge. In particular, [12] presents undecidability
results of various ALC extensions that allow composition-based role inclusion axioms,
such as A v B u R1 ∪ . . . ∪ Rn [30]. Decidability of description logic representations
of spatial formalisms were proved in [30] for a combination of ALC with a decidable
constraint system (calledALC(C), whereC is the constraint system). The investigation
of probabilistic extensions of ALC(C), and whether decidability is maintained, is an
interesting issue for future research.

In this paper we investigated the formalisation of a spatial domain into a proba-
bilistic extension of a basic description logic, CRALC. In this formalisation we were
capable of using the expressivity of a relational formalism (the description logicALC),
with the treatment of uncertainty provided by Bayesian networks, with which sensor
model was encoded. To the best of our knowledge, this paper presented the first princi-
pled approach on sensor modelling in a logic language.

This work was successful in showing that the expected queries were consequences
of the formalisation of the assumed domain. Given this initial success we conjecture that
there is a suitable extension of CRALC capable of representing (and reasoning about)
spatial domains from any qualitative spatial reasoning system. The development of this
formalism is a task of future research

Acknowledgements
This work has been partially supported by Fapesp Project 2008/03995-5 (LogProb).
Paulo Santos acknowledges travel support from CAPES and CNPq, Brazil. Valquiria
Fenelon is a graduate student sponsored by CAPES, Brazil. Fabio Cozman acknowl-
edges support from CNPq, Brazil.

References

1. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

2. R. Reiter e A. Mackworth. A logical framework for depiction and image interpretation.
Artificial Intelligence, 41(2):125–155, 1989.

3. T. Matsuyama e V. S. Hwang. SIGMA: A Knowledge-Based Image Understanding System.
Plenum Press, New York, U.S., 1990.

4. M. Schmidt-Schauss e G. Smolka. Attributive concept descriptions with complements. Ar-
tificial Intelligence, 48:1–26, 1991.

5. M. Jaeger. Probabilistic reasoning in terminological logics. In Principles of Knowledge
Representation (KR), p. 461–472, 1994.

6. F. Sebastiani. A probabilistic terminological logic for modelling information retrieval. In
International ACM Conference on Research and Development in Information Retrieval, p.
122–130, Dublin, Ireland, 1994. Springer-Verlag.

7. F. Bacchus, A. Grove, J. Y. Halpern, e D. Koller. From statistical knowledge bases to degrees
of belief. Artificial Intelligence, 87:75–143, 1996.

8. A. U. Frank. Qualitative spatial reasoning: Cardinal directions as an example. International
Journal of Geographical Information Science, 10(3):269–290, 1996.

9. G. Ligozat. Reasoning about cardinal directions. J. Vis. Lang. Comput., 9(1):23–44, 1998.

10. J. Fernyhough, A. G. Cohn, e D. C. Hogg. Constructing qualitative event models automati-
cally from video input. Image and Vision Computing, 18:81–103, 2000.

11. D. Randell, M. Witkowski, e M. Shanahan. From images to bodies: Modeling and exploiting
spatial occlusion and motion parallax. In Proc. of IJCAI, p. 57–63, Seattle, U.S., 2001.

12. M. Wessel. Obstacles on the way to qualitative spatial reasoning with description logics:
Some undecidability results. In Description Logics, volume 49 of CEUR Workshop Pro-
ceedings, 2001.

13. A. G. Cohn e S. M. Hazarika. Qualitative spatial representation and reasoning: An overview.
Fundamenta Informaticae, 46(1-2):1–29, 2001.

14. S. M. Hazarika e A. G. Cohn. Abducing qualitative spatio-temporal histories from partial
observations. In Proc. of KR, p. 14–25, Toulouse, France, 2002.

15. F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, e P.F. Patel-Schneider. Description
Logic Handbook. Cambridge University Press, 2002.

16. B. Bennett, A. Cohn, e D. Magee. Enforcing global spatio-temporal consistency to en-
hance reliability of moving object tracking and classification. Künstliche Intelligenz, 2:32–
35, 2005.

17. P. C. G. da Costa e K. B. Laskey. Of Klingons and starships: Bayesian logic for the 23rd
century. In Conference on Uncertainty in Artificial Intelligence, 2005.

18. M. Dürig e T. Studer. Probabilistic ABox reasoning: preliminary results. In Description
Logics, p. 104–111, 2005.

19. B. Hummel. Dynamic and Mobile GIS: Investigating Changes in Space and Time, chapter
Map Matching for Vehicle Guidance. CRC Press, 2006.

20. B. Milch e S. Russell. First-order probabilistic languages: into the unknown. In International
Conference on Inductive Logic Programming, 2007.

21. P. Santos. Reasoning about depth and motion from an observer’s viewpoint. Spatial Cogni-
tion and Computation, 7(2):133–178, 2007.

22. A. Nikolov, V. Uren, E. Motta, e A. de Roeck. Using the Dempster-Shafer theory of evidence
to resolve ABox inconsistencies. In Workshop on Uncertainty Reasoning for the Semantic
Web, 2007.

23. F. G. Cozman e R. B. Polastro. Loopy propagation in a probabilistic description logic. In
SUM, p. 120–133, 2008.

24. B. Neumann e R. Möller. On scene interpretation with description logics. Image Vision
Comput., 26(1):82–101, 2008.

25. A. G. Cohn e J. Renz. Qualitative spatial representation and reasoning. In Handbook of
Knowledge Representation, p. 551–596. Elsevier, 2008.

26. C. D’Amato, N. Fanizzi, e T. Lukasiewicz. Tractable reasoning with Bayesian description
logics. In SUM, p. 146–159, Berlin, Heidelberg, 2008. Springer-Verlag.

27. C. P. de Campos, F. G. Cozman, e J. E. O. Luna. Assembling a consistent set of sentences in
relational probabilistic logic with stochastic indepence. Journal of Applied Logic: Combining
Probability and Logic, 7:137–154, 2009.

28. F. G. Cozman e R. Polastro. Complexity analysis and variational inference for interpretation-
based probabilistic description logics. In Proc. of the Conference on Uncertainty in Artificial
Intelligence, 2009.

29. B. Hummel. Description Logic for Intersection Understanding at the Example of Urban
Road Intersections. Phd Thesis, April 2009.

30. M. Cristani e N. Gabrielli. Practical issues of description logics for spatial reasoning. In
Proc. of the AAAI Spring Symposium Benchmarking of Qualitative Spatial and Temporal
Reasoning Systems, p. 5–10, 2009.

31. P. Santos, H. Dee, e V. Fenelon. Qualitative robot localisation using information from cast
shadows. In Proc. of IEEE International Conference on Robotics and Automation, Kobe,
Japan, 2009.

Gibbs Sampling in Probabilistic
Description Logics with Deterministic

Dependencies

Oliver Gries and Ralf Möller

Hamburg University of Technology?

21073 Hamburg, Germany

Abstract. In many applications there is interest in representing both
probabilistic and deterministic dependencies. This is especially the case
in applications using Description Logics (DLs), where ontology engineer-
ing usually is based on strict knowledge, while there is also the need
to represent uncertainty. We introduce a Markovian style of probabilis-
tic reasoning in first-order logic known as Markov logic and investigate
the opportunities for restricting this formalism to DLs. In particular, we
show that Gibbs sampling with deterministic dependencies specified in an
appropriate fragment remains correct, i.e., probability estimates approx-
imate the correct probabilities. We propose a Gibbs sampling method
incorporating deterministic dependencies and conclude that this incor-
poration can speed up Gibbs sampling significantly.

1 Introduction

While probabilistic languages often represent uncertain evidence and exceptions,
there is also the need to further represent deterministic knowledge. As a trade-
off, there are probabilistic formalisms that allow for the representation of near-
deterministic knowledge, i.e., knowledge represented with probabilities approxi-
mating 0 or 1. However, since knowledge representation with logic in its origin is
based on strict formulas, we believe it is important to consider the perspective
in which uncertainty is an additional feature to deterministic knowledge. This
perspective is especially suited for Description Logics (DLs) [3], where ontology
engineering usually is based on specifying strict taxonomies with strict disjoint-
ness and strict domain and range restrictions on roles, and where the tradeoff
between complexity and expressivity is well-studied.

Gibbs sampling [2, 4, 5] is a Markov chain Monte Carlo (MCMC) method
to estimate a conditional probability distribution by generating samples from a
simpler distribution. Since Markov chains constructed with Gibbs sampling are
known to be regular, estimates of probabilities are known to be correct in the long
run. Though this method is often used in practice, it is insufficient for logic in the
presence of deterministic dependencies, since in this case the correct flow of the

? This work is supported by the European Union project CASAM (FP7-217061).

chain usually is broken down. Similarly, Gibbs sampling with near-determinism
involves transitions with probabilities approximating 0, leading to unacceptably
long convergence times (cf. [7]). In order to solve this problem, in [7] the MC-
SAT algorithm is proposed. MC-SAT samples new states with respect to a set of
auxiliary variables. However, while MC-SAT is a powerful method to compute
conditional probabilities, it is restricted to near-determinism.

In this paper, we propose a formalism based on Markov logic [6] and show
that by restricting the deterministic part of the knowledge to a fragment of
ALH, Markov chains constructed with Gibbs sampling remain regular. To the
best of our knowledge, until now there has not been a language discovered al-
lowing for global deterministic dependencies in Gibbs sampling. We present a
Gibbs sampling method incorporating these dependencies and conclude that this
incorporation can speed up Gibbs sampling significantly.

In Sect. 2, we introduce probabilistic knowledge representation and Markov
networks. In Sect. 3, the formalism of Markov logic [6] is presented and ex-
tended to incorporate deterministic dependencies. Further, we define the lan-
guage ALH− for the representation of determinism. Then, in Sect. 4, we intro-
duce to problems with Gibbs sampling in knowledge representation. In Sect. 5,
we propose a Gibbs sampling algorithm incorporating deterministic dependen-
cies in ALH−. Finally, in Sect. 6 we summarize the results.

2 Preliminaries

For the representation of probabilistic and deterministic knowledge, we will focus
on Description Logics (DLs). We assume the reader to be familiar with the syntax
and semantics of DLs [3] and first-order logic [4].

2.1 Probabilistic Knowledge Representation

The basic notion of probabilistic knowledge representation formalisms is the so-
called random experiment. A random variable X is a function assigning a value
to the result of a random experiment. In the sequel, we will use only Boolean
random variables with values 1 or 0 (true or false, respectively).

Let X = {X1, ..., Xn} be the ordered set of all random variables of a random
experiment. An event X = x is an assignment X1 = x1, ..., Xn = xn to all
random variables, and a certain vector of values x is referred to as a possible
world. If it is clear from the context, we write x as an abbreviation for X = true
and ¬x as an abbreviation for X = false. A possible world can be associated
with a probability P (X = x) = p, where p is a real value in [0, 1].1

A distribution P(X) of a random variable X is a mapping from the domain
of X to probability values in [0, 1] such that the values of X sum up to 1.
Distributions can be defined for (ordered) sets of random variables as well. A
mapping P(X1, . . . , Xk) from the domain of a set of random variables to the

1 We assume the reader to be familiar with Kolmogorov’s axioms of probability.

k-dimensional cross product of [0, 1] such that all combinations of values sum up
to 1 is called joint distribution. A full joint distribution P(X1, . . . , Xn) is a joint
distribution where all random variables of a random experiment are involved. Let
Ω = {x1, ...,xr} be the set of all possible worlds. In order to specify a full joint
distribution P(X1, . . . , Xn), probabilities P (X = xi) for all xi must be given
such that

∑r
i=1 P (X = xi) = 1. The expression P(X1, . . . , Xm, xm+1, . . . , xl)

denotes an m-dimensional distribution where the values of Xm+1, ..., Xl have
been fixed. In slight misuse of notation, we sometimes write e for these fixed
values.

The conditional probability distribution of X given evidence e is defined by
P(X | e) = P(X,e)

P (e) = αP(X, e) = α<P (x, e), P (¬x, e)>, where α is a normali-
zing constant. Note that P(X | e) is only defined, if P (e) > 0.

The most common query types in probabilistic knowledge representation are
the conditional probability query, i.e., the computation of P(X | e) and the max-
imum a posteriori (MAP) query, where the objective is to find the most likely
assignment of values to random variables X1, ..., Xm given evidence e, i.e., the
computation of argmaxX1,...,Xm

P(X1, ..., Xm | e). In this paper, we will focus
on the former query type.

2.2 Markov Networks

Since the representation of P(X1, . . . , Xn) in principle requires the specification
of 2n probability values, there is interest in formalisms with a less complex rep-
resentation. The main idea to achieve a more compact representation is that one
can exploit independence assumptions. Usually, this is the case in graph-based
formalisms, where the representation of the full joint probability distribution
can be decomposed into different factors. Besides Bayesian networks, the most
important graph-based formalism is the formalism of Markov networks [1, 2].

A Markov network graph is a tuple G = (X,E), where X = {X1, ..., Xn}
is a set of nodes corresponding to the random variables of the domain and E is
a set of undirected edges (Xi, Xj), i 6= j, between these nodes. A clique C is a
subgraph of G, whose nodes are all adjacent to each other. Let XC be the set of
nodes contained in C. A clique C is called maximal, if there is no other clique Ci
with XC ⊂ XCi . Further, C = {C1, ..., Cm} is a set of cliques of G consisting
of all nodes of X, i.e., XC1 ∪ ... ∪XCm

= X.
A Markov network M = (G,F) consists of a Markov network graph G and a

set F which is comprised of non-negative real-valued functions fi for each clique
Ci, i = 1, ...,m in G. A full joint probability distribution to be expressed can be
decomposed into factors fi (cf. [1, 2]) such that

P (X = x) =
1
Z

m∏
i

fi(xCi
) (1)

where Z is a normalizing constant summing over the products in (1) for all
possible worlds x ensuring that

∑r
k=1 P (X = xk) = 1. Note that each fi does

only depend on the values of random variables corresponding to its clique Ci.

3 Markov Description Logics

3.1 Markov Logic

The formalism of Markov logic [6] provides a means to combine the formalism
of Markov networks with the expressivity of first-order logic. A knowledge base
in Markov logic is called a Markov logic network MLN = (F ,W). It consists of
a multiset of first-order formulas F = {F1, ..., Fp} and a multiset of real number
weights W = {w1, ..., wp} such that each wi is associated to Fi. For simplicity,
we use the notation of a set of weighted formulas wi Fi. An example Markov
logic network is MLN 1 = {4 ∀xP (x)→ Q(x), 1.1 P (i)}, where i is a constant.

Let Γ = {c1, ..., cs} be the set of all constants mentioned in F . A ground-
ing of a formula Fi is a substitution of all variables in the matrix of Fi with
constants from Γ (this corresponds to a domain closure).2 A Markov logic
network MLN can be converted to a (finite) set of weighted ground clauses
Cl = {cl1, ..., clm}. Each atom appearing in Cl is referred to as a ground atom.
The set of all these ground atoms corresponds to a set of Boolean random vari-
ables X = {X1, ..., Xn}. Consequently, for each MLN with a fixed set of con-
stants Γ , there is a set of possible worlds x. When a world x does not satisfy
a formula, the idea is to ensure that this world is less probable rather than
impossible as in first-order logic.

For each MLN there is a corresponding Markov network M = (G,F), with
G = (X,E

MLN
), where E

MLN
is the set of pairs of ground atoms (Xi, Xj) ap-

pearing together in at least one cl i and a function fi ∈ F for each cli ∈ Cl . Note
that each weighted ground clause cli corresponds to a (not necessarily maxi-
mal) clique Ci. In notation slightly differently from [6], we specify the full joint
distribution of a MLN with (1), where

fi(xCi
) =

{
exp(wi), if x

Ci
satisfies cli

1, otherwise
(2)

Note that
∏m
i=1 exp(wi) =

∏m
i=1 exp(ln fi(xCi

)) = exp(−∑m
i=1−ln fi(xCi

)),
where the last term often is used in the context of statistical physics with
−ln fi(xCi

) called an energy function [2, 5]. The advantage of using exp in
Markov logic is that P (X = x) > 0 and that it is possible to specify w ∈ R.

3.2 Exploiting DLs: Incorporating Deterministic Constraints

There is often interest to represent a domain with both deterministic and proba-
bilistic dependencies. While in [6] deterministic dependencies are approximated
by assigning large weights to formulas, we propose to incorporate deterministic
constraints to Markov logic in the context of DLs.

Definition 1. A Markov DL knowledge base KB
M

is a tuple (T ,A), where T
is comprised of sets T

det
and T

w
of deterministic resp. weighted axioms and A is

comprised of sets A
det

and A
w

of deterministic resp. weighted assertions.
2 An existentially quantified formula is replaced by a disjunction of its groundings.

Under consideration of a domain closure, corresponding Markov networks are
similar to the ones introduced in Sect. 3.1. However, in Markov DL knowledge
bases Cl = {cl1, ..., clm} is the set of weighted and deterministic ground clauses.
We specify the full joint probability distribution of KB

M
with (1), where

fi(xCi
) =

{ exp(wi), if cli is weighted and x
Ci

satisfies cli
0, if cli is deterministic and x

Ci
does not satisfy cli

1, otherwise.
(3)

An advantage of having both deterministic and probabilistic dependencies is that
initial ontology engineering is done as usual with standard reasoning support
and with the possibility to add weighted axioms and weighted assertions on
top of the strict fundament. Since lots of possible worlds do not have to be
considered because their probability is known to be 0, probabilistic reasoning
can be significantly faster.

The language for representing T
w

and A
w

can be any DL in which it is
reasonable to assume a fixed set of constants Γ = {c1, ..., cs} such that it is
possible to compute a finite set of weighted ground clauses. For the represen-
tation of deterministic knowledge, in this paper we use the language ALH−, a
rather simple DL without an assertional component (i.e., we are not allowing for
deterministic assertions). An ALH− knowledge base KB consists of a set T of
terminological axioms as depicted in Table 1, where A,B are atomic concepts
and R,S are atomic roles with the additional restriction that equivalences as
well as terminological cycles are not allowed. The semantics is defined as usual.

Table 1. Terminological axioms in ALH−

A v B concept inclusion
A v ¬B concept disjointness
R v S role inclusion

∃R.> v A domain restriction on roles
> v ∀R.A range restriction on roles

Example 1. Let KBM = ({Lynx v Animal ,Animal v ¬Plant}, {1 .1 Lynx (i),
0 .6 Plant(i)}), where Tw = A

det
= {}. Under domain closure there are 23 pos-

sible worlds xk (where e.g. Lynx is abbreviated with L):

x1 =<L(i),A(i),P(i)>
x2 =<L(i),A(i),¬P(i)>
x3 =<L(i),¬A(i),P(i)>
x4 =<L(i),¬A(i),¬P(i)>

x5 =<¬L(i),A(i),P(i)>
x6 =<¬L(i),A(i),¬P(i)>
x7 =<¬L(i),¬A(i),P(i)>
x8 =<¬L(i),¬A(i),¬P(i)>

The full joint probability distribution is specified with respect to the set Cl =
{¬Lynx (i) ∨Animal(i), ¬Animal(i) ∨ ¬Plant(i), 1 .1 Lynx (i), 0 .6 Plant(i)}.
The normalizing constant Z = 0 + exp(1.1) + 0 + 0 + 0 + 1 + exp(0.6) + 1 ≈ 6.83
such that e.g. P (X = x7) ≈ exp(0.6)

6.83 ≈ 0.267. In order to keep the example
simple, we do not consider roles (but the general structure would be the same).

4 Gibbs Sampling for Reasoning about Knowledge

Answering conditional probability queries P(X | e) by simply applying the full
joint probability distribution is intractable [4]. Sampling or Monte Carlo-
algorithms avoid this problem by generating samples from a probability distribu-
tion which is much easier to compute. The objective is to approximate P(X | e).
Sampling is like “coin flipping”: Random numbers in [0, 1] are generated and
a variable Xi is assigned true resp. false, if the corresponding number is lower
resp. greater than the respective probability in the distribution of Xi.

A Markov chain (of length k) is a sequence of states x1, ...,xk (a state corre-
sponds to a possible world) where each successing state only depends on the cur-
rent state. Markov chain Monte Carlo (MCMC) algorithms [2,4] are a powerful
class of sampling algorithms walking through the state space Ω = {x1, ...,xr}.
With respect to an arbitrary order, each non-evidence variable Xi, i = 1, ...,m
is sampled. This process is repeated N -times such that k = m ·N . After k − 1
steps, the fractions of the number of states visited with X = x resp. X = ¬x are
taken as the estimated probabilities of P(X | e).

Let xi be an assignment to X1, ..., Xi−1, Xi+1, ..., Xn. Gibbs sampling [2,4,5]
is a special case of MCMC, where the probability of a transition T (xt → xt+1) is
T ((xi,xi) → (x′i,xi)) = P (x′i | xi). In graph-based formalisms such as Markov
networks, Gibbs sampling can be optimized by exploiting the graph structure:
Let C1, ..., Cs be all cliques containing the node Xi. The Markov boundary of
Xi is the set of its neighbours MB(Xi) = XC1 ∪ . . . ∪XCs

\ {Xi}. If the values
of MB(Xi) are known, denoted mb(Xi), it shields Xi from influences of all
other nodes in G, i.e., P(Xi | x1, ..., xi−1, xi+1, ..., xn) = P(Xi | mb(Xi)) =
α <P (xi,mb(Xi)), P (¬xi,mb(Xi))>.

A Markov chain is regular if there is a number v such that for all pairs of
states xi,xj the probability of getting from xi to xj in v steps is greater than 0
[2]. If a Markov chain is regular (in Markov networks if fi > 0 for all fi ∈ F) the
probability distribution of the states converges to a unique stationary distribution
π. Finally, in the case of Gibbs Sampling, π(xi) is known to be equal to P(xi | e).
Markov chains through Gibbs Sampling and deterministic dependencies usually
are not regular and can break down the state graph into disconnected regions:

Example 2. Consider two ground atoms X1, X2 with the deterministic constraint
X1 ≡ X2. The state graph for applying Gibbs sampling is depicted in Fig. 1. If
the chain starts with (0, 0), it will never reach (1, 1). Consequently, π(0, 0) = 1
and π(1, 1) = 0, though there is no information of any preference.

Similarly, Gibbs sampling with near-determinism involves transitions with
probabilities approximating 0, leading to unacceptably long convergence times
(cf. [7]). Thus, since (near-)determinism is required in many applications, Gibbs
sampling in general is not sufficient for reasoning about knowledge.

Fig. 1. Gibbs sampling state graph of two Boolean random variables

5 Gibbs Sampling with Deterministic Dependencies

Definition 2. Let D be a set of deterministic dependencies. A Markov chain is
regular with respect to D if there is a number v such that for all pairs of states
xi,xj both satisfying D, the probability of getting from xi to xj in v steps is
greater than 0.

A Markov chain being regular with respect to D has a unique stationary distri-
bution π, if the initial state x1 satisfies D, i.e., P (X = x1) > 0. The difference
to regular Markov chains defined in the previous section is that there are states
xi with P (X = xi) = 0 that are simply not stepped into.

As can be seen from Example 2, the regularity of the Markov chain is bro-
ken, if X1 and X2 are constrained to be equal. This is also the case if they
are constrained to be different. We will now show that it is possible to run a
Markov chain constructed with Gibbs sampling that is regular with respect to
deterministic constraints in ALH−.

Theorem 1. Let KB
M

be a Markov DL knowledge base where T
det

is represented
with ALH− and A

det
is empty. Then, a Markov chain constructed with Gibbs

sampling is regular with respect to T
det

.

Proof. In order to prove the regularity, it is important to figure out states sat-
isfying or falsifying T

det
. Ground clauses derived from disjointness axioms are

of the form ¬At1 ∨ ¬At2, and ground clauses derived from all other axioms in
ALH− are of the form ¬At1∨At2, where At1 and At2 are ground atoms. There-
fore, clauses derived from T

det
are falsified only if At1 is assigned 1 (true) and

At2 assigned 0 (false) or if both At1 and At2 are assigned 1. Since in ALH−
there are no cycles, an order X1 < ... < Xn can be defined for all ground atoms
such that for all ground clauses ¬At1 ∨At2 no ground atom At2 is lower in the
order than At1. Atoms only mentioned in clauses ¬At1 ∨ ¬At2 can be added
arbitrarily. Then, it is possible to construct a tree, where each node respects the
defined order and corresponds to a state (x1, ..., xn), and where the root node is
a state where all atoms are assigned with 0, i.e., (0, ..., 0). For every 0 in (0, ..., 0),
there is exactly one child node where the corresponding 0 is changed to 1. Then,
for every 0 preceding the leftmost 1 in a node, there is also exactly one child
node where the corresponding 0 is changed to 1. After constructing all children

nodes, the tree contains exactly 2n nodes (i.e., one node for each state). This
tree has the following property: If a node represents a state satisfying T

det
, then

its parent node also represents a state satisfying T
det

. Since in ALH− the state
(0, ..., 0) satisfies T

det
, for each node it holds that if it satisfies T

det
then there is

a path from this node to (0, ..., 0) satisfying T
det

. ut
We will now specify a Gibbs sampling algorithm with deterministic dependencies
in ALH−. Instead of answering conditional probability queries P(X | e), with
this algorithm it is possible to answer probability queries P(X) conditioned on
the ground clauses obtained from T

det
.

Our objective is to exploit the fact that – due to restrictions in T
det

– there are
a lot of state transition possibilities where the bit-flip probability (the probability
that a random variable will change its value) is 0, i.e., a lot of cases in which
one does not need to sample at all. We propose to assign an integer γi to each
random variable Xi. γi is initially 0 and is increased whenever a bit-flip occurs for
a variable Xj , i 6= j that restricts the bit-flip probability of Xi to be 0 (“set”),
and γi is decreased whenever this specific restriction does not hold any more
(“release”). As long as γi > 0, Xi is not sampled and we say that Xi is “blocked”.
Settings (+1) and releases (−1) are depicted in Table 2 for groundings of all
ALH−-axioms with individuals i, j. Consider e.g. the first row in the second
column of Table 2: If the ground atom A(i) is 0 in xt and is 1 in xt+1 then
B(i) is known to be 1 (otherwise xt+1 would violate this constraint) and γB(i)

Table 2. Setting and releasing blockings due to ALH−-axioms

A v B

A v ¬B

R v S

∃R.> v A

> v ∀R.A

A(i)t → A(i)t+1 γB(i)

0 1 +1
1 0 −1

A(i)t → A(i)t+1 γB(i)

0 1 +1
1 0 −1

R(i, j)t→R(i, j)t+1 γS(i,j)

0 1 +1
1 0 −1

R(i, j)t→R(i, j)t+1 γA(i)

0 1 +1
1 0 −1

R(i, j)t→R(i, j)t+1 γA(j)

0 1 +1
1 0 −1

B(i)t → B(i)t+1 γA(i)

0 1 −1
1 0 +1

B(i)t → B(i)t+1 γA(i)

0 1 +1
1 0 −1

S(i, j)t→S(i, j)t+1 γR(i,j)

0 1 −1
1 0 +1

A(i)t → A(i)t+1 γR(i,j∗)
0 1 −1
1 0 +1

A(j)t → A(j)t+1 γR(i∗,j)
0 1 −1
1 0 +1

is increased, i.e., B(i) is blocked by A(i). Individuals with ∗ indicate that every
individual of the closed domain has to be considered separately.

The Markov chain has to start with a state x1 satisfying T
det

. Such a state
can be found with MaxWalkSat [9], a local search algorithm for the weighted sat-
isfiability problem. All deterministic clauses are assigned with a weight greater
than the sum l of all weights of clauses obtained from Tw ∪ Aw . Then, a state
violating clauses of total weight l or less satisfies T

det
(cf. [9]). The state (0, ...0)

is known to satisfy T
det

such that the chain could also start from this node, but
MaxWalkSat will find a node that will be (near to) the mode of the distribution
such that the chain will approximate faster. Since all transitions to states not
satisfying T

det
have probability 0, the whole chain does only involve states sat-

isfying T
det

. In other words, it is guaranteed that P (mb(Xi)) > 0 such that the
transition distribution P(Xi | mb(Xi)) is defined. Given KB

M
, this distribution

is computed with (1) where functions fi are defined according to (3).
The Gibbs-ALH−-algorithm is depicted in Fig. 2. If the value of Xi is flipped,

the method setRelease is called with parameters Xi, the old and new value of
Xi, xi resp. x′i, and the set Cl i of deterministic ground clauses containing Xi.
This method sets and releases blockings as specified in Table 2. At the beginning
of the process, it has to be ensured that all initial blockings are set. This is done
by calling set , a function similar to setRelease, but only increasing γi. Then, the
settings and releases depicted in Table 2 ensure that for each Xi, γi > 0 if and
only if either P (xi | mb(Xi)) = 0 or P (¬xi | mb(Xi)) = 0. Finally, after n · N
samples, the Boolean vector N[X] of counts over X is normalized by α and the
result represents the estimated distribution of P(X). The method can further
be optimized by restricting X to a set of ground atoms assumed to be relevant
for the query answer.

Algorithm Gibbs-ALH−(KB
M
, X,N)

Output An estimate of P(X)
local variables:

N[X], a vector of counts over X
Cl , a set of all (weighted) ground clauses obtained from KB

M

X = {X1, ..., Xn}, the set of all random variables
γ = {γ1, ..., γn}, a set of integers initially assigned with 0
x = (x1, ..., xn), an initial state satisfying T

det

for i = 1 to n do if (γi = 0) set(Xi, ¬xi, xi, Cl i);
for j = 1 to N do

for i = 1 to n do
if (γi = 0)

sample the value x′i of Xi in x from P(Xi | mb(Xi));
if (xi 6= x′i) setRelease(Xi, xi, x′i, Cl i);

N[x]← N[x] + 1 where x is the value of X in x
return α <N[1],N[0]>

Fig. 2. The Gibbs-ALH− algorithm

6 Conclusion

We have shown that deterministic dependencies inALH− retain the regularity of
Markov chains constructed with Gibbs sampling. Further, we proposed a method
incorporating these dependencies. Since lots of redundant samples are not gen-
erated by this method, we conclude that significant efficiency is gained. This is
in contrast to previous results, where Gibbs sampling with (near-)determinism
is known to give poor results. While T

det
is specified with ALH−, the sets Tw

and A
w

of weighted axioms resp. weighted assertions can e.g. be specified in the
expressive DL SHQ. In [7] it is shown that Gibbs sampling slows down more
and more when clauses are assigned with weights beyond 4. Note that a world
not satisfying a ground clause with weight 4 is as probable as a world not satisi-
fying e3 ground clauses with weight 1. Thus, for ground clauses not intended
to represent deterministic knowledge, a weight around 4 usually will suit the
requirements of a knowledge engineer. However, often, in addition to axioms in
ALH−, there is also the need to represent deterministic assertions in A

det
as well

as deterministic functional- and transitive roles. Further research is required, in
order to also incorporate these dependencies. Another open task is the imple-
mentation of the proposed method in order to compare its runtime performance
with other approaches estimating probability distributions under consideration
of (near-)deterministic knowledge (such as MC-SAT [7] or SampleSearch [8]).

References

1. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA, 1988.

2. Koller, D., Levy, A., Pfeffer, A., Getoor, L., Taskar, B.: Graphical Models in a
Nutshell. In: Introduction to Statistical Relational Learning, pages 13–55, Cam-
bridge, MA: MIT Press, 2007.

3. Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, January 2003.

4. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (Second Edi-
tion) Prentice Hall, 2003.

5. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distribution and Bayesian
Restoration of Images. IEE Transactions on Pattern Analysis and Machine Intel-
ligence 6, pages 721–741, 1984.

6. Domingos, P., Richardson, M.: Markov Logic: A Unifying Framework for Statisti-
cal Relational Learning. In: Introduction to Statistical Relational Learning, pages
339–371, Cambridge, MA: MIT Press, 2007.

7. Poon, H., Domingos, P.: Sound and Efficient Inference with Probabilistic and
Deterministic Dependencies. In Proceedings of AAAI-06, Boston, Massachusetts,
July 2006.

8. Gogate, V., Dechter, R.: SampleSearch: Importance Sampling in presence of De-
terminism. ICS technical report (Submitted), July 2009.

9. Jiang, Y., Kautz, H., Selman, B.: Solving Problems with Hard and Soft Con-
straints using a Stochastic Algorithm for MAX-SAT. In First International Joint
Workshop on Artificial Intelligence and Operations Research, 1995.

Towards Approximative Most Specific Concepts by
Completion for EL with Subjective Probabilities

Rafael Peñaloza and Anni-Yasmin Turhan

TU Dresden, Germany, email:last name@tcs.inf.tu-dresden.de

1 Introduction

In Description Logics the inferencemost specific concept(msc) constructs a concept de-
scription that generalizes an individual into a concept description. For the Description
Logic EL the msc needs not exist [1], if computed with respect to general EL-TBoxes.
However, it is still possible to find a concept description that is the msc up to a fixed
role-depth. In this paper we present a practical approach for computing the role-depth
bounded msc, based on the polynomial-time completion algorithm for EL. We extend
this method to a simple probabilistic variant ofEL that can express subjective probabil-
ities and that was recently introduced in [6]. The probabilistic DL that we use, called
Prob-EL01

c , allows only a fairly limited use of uncertainty. More precisely, it is only pos-
sible to express that a conceptmayhold (P>0C), or that it holdsalmost surely(P=1C).
Despite its limited expressivity, this logic is interesting due to its nice algorithmic prop-
erties; as shown in [6], subsumption can be decided in polynomial time and instance
checking can be performed in polynomial time as well.

Many practical applications that need to represent probabilistic information, such as
medical applications or context-aware applications, needto characterize that observa-
tions only hold with certain probability. Furthermore, these applications face the prob-
lem that information from different sources does not coincide or that different diagnoses
yield differing results. These applications need to “integrate” differing observations for
the same state of affairs. A way to determine what the different information sources
agree upon is to represent this information as ABox individuals and to find a common
generalization of these individuals. A description of sucha generalization of a group
of ABox individuals can be obtained by applying the so-called bottom-up approachfor
constructing knowledge bases [4]. In this approach a set of individuals is generalized
into a single concept description by first generating the mscof each concept and then
apply the least common subsumer (lcs) to the set of obtained concept descriptions to
extract their commonalities.

The second step, i.e., a computation procedure for the approximative lcs has been
investigated forEL and Prob-EL01

c in [8]. In this paper we present a similar procedure
for the msc. We devise a practical algorithm for computing the msc up to a certain
role-depth forEL and Prob-EL01

c . The so-calledk-msc obtained by the algorithm is
still a generalization of the input, but not necessarily theleast one – in this sense it
is only an approximation of the msc. Moreover, our algorithms are based upon the
completion algorithms forEL and Prob-EL01

c and thus can be easily implemented on
top of reasoners of these DLs. Due to space limitations the proofs can be found in [7].

2 EL and Prob-EL
We introduce the DLEL and its probabilistic variant Prob-EL01

c . LetNI , NC andNR be
disjoint sets ofindividual-, concept-androle names, respectively.Prob-EL01

c -concept
descriptionsare built using the syntax rule

C ::= ⊤ | A | C ⊓D | ∃r.C | P>0C | P=1C,

whereA ∈ NC , andr ∈ NR. EL-concept descriptions are Prob-EL01
c -concept descrip-

tion that do not contain the constructorsP>0 or P=1.
A knowledge baseK = (T ,A) consists of a TBoxT and an ABoxA. An EL- (Prob-

EL01
c -)TBox is a finite set ofconcept inclusions(CIs) of the formC ⊑ D, whereC, D

areEL- (Prob-EL01
c -)concept descriptions. AnEL-ABox is a set of assertions of the

form C(a), r(a, b), whereC is anEL-concept description,r ∈ NR, anda, b ∈ NI . A
Prob-EL01

c -ABox is a set of assertions of the formC(a), r(a, b), P>0r(a, b), P=1r(a, b),
whereC is a Prob-EL01

c -concept description,r ∈ NR, anda, b ∈ NI .
The semantics ofEL is defined by means of interpretationsI = (∆I , ·I) consisting

of a non-emptydomain∆I and aninterpretation function·I that assigns binary rela-
tions on∆I to role names, subsets of∆I to concepts and elements of∆I to individual
names. For a more detailed description of this semantics, see [3].

An interpretationI satisfiesa concept inclusionC ⊑ D, denoted asI |= C ⊑ D if
CI ⊆ DI ; it satisfiesan assertionC(a) (r(a, b)), denoted asI |= C(a) (I |= r(a, b))
if aI ∈ CI ((aI , bI) ∈ rI). It is amodelof a knowledge baseK = (T ,A) if it satisfies
all CIs inT and all assertions inA.

The semantics of Prob-EL01
c generalizes the semantics ofEL. A probabilistic inter-

pretationis of the form
I = (∆I , W, (Iw)w∈W , µ),

where∆I is the (non-empty)domain, W is a set ofworlds, µ is a discrete probability
distribution onW , and for each worldw ∈ W , Iw is a classicalEL interpretation with
domain∆I , whereaIw = aIw′ for all a ∈ NI , w, w′ ∈ W . The probability that a given
element of the domaind ∈ ∆I belongs to the interpretation of a concept nameA is

pId (A) := µ({w ∈ W | d ∈ AIw}).

The functionsIw andpId are extended to complex concepts in the usual way for the
classicalEL constructors, where the extension to the new constructorsP∗ is defined as

(P>0C)Iw := {d ∈ ∆I | pId (C) > 0}, (P=1C)Iw := {d ∈ ∆I | pId (C) = 1}.

A probabilistic interpretationI satisfiesa concept inclusionC ⊑ D, denoted asI |=
C ⊑ D if for every w ∈ W it holds thatCIw ⊆ DIw . It is a modelof a TBoxT if
it satisfies all concept inclusions inT . Let C, D be two Prob-EL01

c concepts andT a
TBox. We say thatC is subsumedby D w.r.t. T (C ⊑T D) if for every modelI of
T it holds thatI |= C ⊑ D. The probabilistic interpretationI satisfiesthe assertion
P>0r(a, b) if µ({w ∈ W | Iw |= r(a, b)}) > 0, and analogously forP=1r(a, b). I
satisfiesthe ABoxA if there is aw ∈ W such thatIw |= A.

Finally, an individuala ∈ NI is an instanceof a concept descriptionC w.r.t. K
(K |= C(a)) if I |= C(a) for all modelsI of K. TheABox realization problemis to
compute for each individuala in A the set of named concepts fromK that havea as an
instance and that are least (w.r.t.⊑). In this paper we are interested in computing most
specific concepts.

Definition 1 (most specific concept).LetL be a DL,K = (T ,A) be aL-KB. Themost
specific concept(msc) of an individuala fromA is theL-concept descriptionC s. t.

1. K |= C(a), and
2. for eachL-concept descriptionD holds:K |= D(a) impliesC ⊑T D.

The msc depends on the DL in use. For the DLs with conjunction as concept constructor
the msc is, if it exists, unique up to equivalence. Thus it is justified to speak ofthemsc.

3 Completion-based Instance Checking Algorithms

Now we briefly sketch the completion algorithms for instancechecking inEL [2] and
Prob-EL01

c [6].

3.1 Completion Algorithms for EL
Assume we want to test for anEL-KB K = (T ,A) whetherK |= D(a) holds. The
completion algorithm first augments the knowledge base by introducing a concept name
for the complex concept descriptionD from the instance check, i.e., it setsK = (T ∪
{Aq ≡ D},A), whereAq is a new concept name not appearing inK. The instance
checking algorithm forEL works on normalized knowledge bases. The normalization
is done in two steps: first the ABox is transformed into a simple ABox. An ABox is a
simple ABox, if it only contains concept names in concept assertions. AnEL-ABox A
can be transformed into a simple ABox by first replacing each complex assertionC(A)
in A by A(a) with a fresh nameA and, second, introduceA ≡ C in the TBox.

After this step the TBox is normalized. For a concept description C let CN(C)
denote the set of all concept names andRN(C) denote the set of all role names that
appear inC. Thesignature of a concept descriptionC (denotedsig(C)) is CN(C) ∪
RN(C). Similarly, the set of concept (role) names that appear in a TBox are denoted
by CN(T) (RN(T)). Thesignature of a TBoxT (denotedsig(T)) is CN(T) ∪ RN(T).
The signature of an ABoxA (denotedsig(A)) is the set of concept (role / individual)
namesCN(A) (RN(A)/IN(A) resp.) that appear inA. The signature of a KBK = (T ,
A) (denotedsig(K)) is sig(T) ∪ sig(A).

Now, anEL-TBox T is in normal formif all concept axioms have one of the fol-
lowing forms, whereC1, C2 ∈ sig(T) andD ∈ sig(T) ∪ {⊥}:

C1 ⊑ D, C1 ⊓ C2 ⊑ D, C1 ⊑ ∃r.C2 or ∃r.C1 ⊑ D.

Any EL-TBox can be transformed into normal form by introducing newconcept names
and by applying the normalization rules displayed in Figure1 exhaustively. These rules
replace the GCI on the left-hand side of the rules with the setof GCIs on the right-hand

NF1 C ⊓ D̂ ⊑ E −→ { D̂ ⊑ A, C ⊓A ⊑ E }
NF2 ∃r.Ĉ ⊑ D −→ { Ĉ ⊑ A,∃r.A ⊑ D }
NF3 Ĉ ⊑ D̂ −→ { Ĉ ⊑ A,A ⊑ D̂ }
NF4 B ⊑ ∃r.Ĉ −→ { B ⊑ ∃r.A, A ⊑ Ĉ }
NF5 B ⊑ C ⊓D −→ { B ⊑ C, B ⊑ D }

whereĈ, D̂ 6∈ BCT andA is a new concept name.

Fig. 1.EL normalization rules (from [2])

side. Clearly, for a KBK = (T ,A) the signature ofA may be changed only during the
first of the two normalization steps and the signature ofT may be extended during both
of them. The normalization of the KB can be done in linear time.

The completion algorithm for instance checking is based on the one for classifying
EL-TBoxes introduced in [2]. The completion algorithm constructs a representation of
the minimal model ofK. Let K =(T , A) be a normalizedEL-KB, i.e., with a simple
ABox A and a TBoxT in normal form. The completion algorithm works on four kinds
of completion sets: S(a), S(a, r), S(C) andS(C, r) for eacha ∈ IN(A), C ∈ CN(K)
andr ∈ RN(K). The completion sets contain concept names fromCN(K). Intuitively,
the completion rules make implicit subsumption and instance relationships explicit in
the following sense:

– D ∈ S(C) implies thatC ⊑T D,
– D ∈ S(C, r) implies thatC ⊑T ∃r.D.
– D ∈ S(a) implies thata is an instance ofD w.r.t.K,
– D ∈ S(a, r) implies thata is an instance of∃r.D w.r.t.K.

SK denotes the set of all completion sets of a normalizedK. The completion sets are
initialized for eacha ∈ IN(A) and eachC ∈ CN(K) as follows:

– S(C) := {C,⊤} for eachC ∈ CN(K),
– S(C, r) := ∅ for eachr ∈ RN(K),
– S(a) := {C ∈ CN(A) | C(a) appears inA} ∪ {⊤}, and
– S(a, r) := {b ∈ IN(A) | r(a, b) appears inA} for eachr ∈ RN(K).

Then these sets are extended by applying the completion rules shown in Figure 2 until
no more rule applies. In these rulesX andY can refer to concept or individual names,
while C, C1, C2 andD are concept names andr is a role name. After the completion
has terminated, the following relations hold between an individuala, a roler and named
conceptsA andB:

– subsumption relation betweenA andB fromK holds iff B ∈ S(A)
– instance relation betweena andB fromK holds iff B ∈ S(a),

which has been shown in [2]. To decide the initial query:K |= D(a), one has to test
now, whetherAq appears inS(a). In fact, instance queries for all individuals and all
named concepts from the KB can be answered now; the completion algorithm does
not only perform one instance check, but complete ABox realization. The completion
algorithm runs in polynomial time in size of the knowledge base.

CR1 If C ∈ S(X), C ⊑ D ∈ T , andD 6∈ S(X)
thenS(X) := S(X) ∪ {D}

CR2 If C1, C2 ∈ S(X), C1 ⊓ C2 ⊑ D ∈ T , andD 6∈ S(X)
thenS(X) := S(X) ∪ {D}

CR3 If C ∈ S(X), C ⊑ ∃r.D ∈ T , andD 6∈ S(X, r)
thenS(X, r) := S(X, r) ∪ {D}

CR4 If Y ∈ S(X, r), C ∈ S(Y), ∃r.C ⊑ D ∈ T , and
D 6∈ S(X) thenS(X) := S(X) ∪ {D}

Fig. 2.EL completion rules

3.2 Completion Algorithms for Prob-EL
To describe the completion algorithm for Prob-EL, we need the notion of basic con-
cepts. The setBCT of Prob-EL01

c basic conceptsfor a KB K is the smallest set that
contains (1)⊤, (2) all concept names used inK, and (3) all concepts of the formP∗A,
whereA is a concept name inK. A Prob-EL01

c -TBox T is in normal form if all its
axioms are of one of the following forms

C ⊑ D, C1 ⊓ C2 ⊑ D, C ⊑ ∃r.A, ∃r.A ⊑ D,

whereC, C1, C2, D ∈ BCT andA is a concept name. The normalization rules in Fig-
ure 1 can also be used to transform a Prob-EL01

c -TBox into this extended notion of nor-
mal form. We further assume that for all assertionsC(a) in the ABoxA, C is a concept
name. We denote asPT

0 , PT
1 andRT

0 the set of all concepts of the formP>0A, P=1A,
andP>0r(a, b) respectively, occurring in a normalized knowledge baseK.

The completion algorithm for Prob-EL01
c follows the same idea as the algorithm

for EL, but uses several completion sets to deal with the information of what needs
to be satisfied in the different worlds of a model. We define theset of worldsV :=
{0, ε, 1} ∪ PT

0 ∪ RT
0 , where the probability distributionµ assigns a probability of0

to the world0, and the uniform probability1/(|V | − 1) to all other worlds. For each
individual namea, concept nameA, role namer and worldv, we store the completion
setsS0(A, v), Sε(A, v), S0(A, r, v), Sε(A, r, v), S(a, v), andS(a, r, v).

The algorithm initializes the sets as follows for everyA ∈ BCT , r ∈ RN(K), and
a ∈ IN(A):

– S0(A, 0) = {⊤, A} andS0(A, v) = {⊤} for all v ∈ V \ {0},
– Sε(A, ε) = {⊤, A} andSε(A, v) = {⊤} for all v ∈ V \ {ε},
– S(a, 0) = {⊤} ∪ {A | A(a) ∈ A}, S(a, v) = {⊤} for all v 6= 0,
– S0(A, r, v) = Sε(A, r, v) = ∅ for all v ∈ V , S(a, r, v) = ∅ for v 6= 0,
– S(a, r, 0) = {b ∈ IN(A) | r(a, b) ∈ A}.

These sets are then extended by exhaustively applying the rules shown in Figure 3,
whereX ranges overBCT ∪ IN(A), S∗(X, v) stands forS(X, v) if X is an individual
and forS0(X, v), Sε(X, v) if X ∈ BCT , andγ : V → {0, ε} is defined byγ(0) = 0,
andγ(v) = ε for all v ∈ V \ {0}.

PR1 If C′ ∈ S∗(X, v), C′ ⊑ D ∈ T , andD 6∈ S∗(X, v)
thenS∗(X, v) := S∗(X, v) ∪ {D}

PR2 If C1, C2 ∈ S∗(X, v), C1 ⊓ C2 ⊑ D ∈ T , andD 6∈ S∗(X, v)
thenS∗(X, v) := S∗(X, v) ∪ {D}

PR3 If C′ ∈ S∗(X, v), C′ ⊑ ∃r.D ∈ T , andD /∈ S∗(X, r, v)
thenS∗(X, r, v) := S∗(X, r, v) ∪ {D}

PR4 If D ∈ S∗(X, r, v), D′ ∈ Sγ(v)(D, γ(v)), ∃r.D′ ⊑ E ∈ T ,
andE /∈ S∗(X, v) thenS∗(X, v) := S∗(X, v) ∪ {E}

PR5 If P>0A ∈ S∗(X, v), andA /∈ S∗(X, P>0A)
thenS∗(X, P>0A) := S∗(X, P>0A) ∪ {A}

PR6 If P=1A ∈ S∗(X, v), v 6= 0, andA /∈ S∗(X, v)
thenS∗(X, v) := S∗(X, v) ∪ {A}

PR7 If A ∈ S∗(X, v), v 6= 0, P>0A ∈ PT
0 , andP>0A /∈ S∗(X, v′)

thenS∗(X, v′) := S∗(X, v′) ∪ {P>0A}
PR8 If A ∈ S∗(X, 1), P=1A ∈ PT

1 , andP=1A /∈ S∗(X, v)
thenS∗(X, v) := S∗(X, v) ∪ {P=1A}

PR9 If r(a, b) ∈ A, C ∈ S(b, 0),∃r.C ⊑ D ∈ T ,
andD 6∈ S(a, 0) thenS(a, 0) := S(a, 0) ∪ {D}

PR10 If P>0r(a, b) ∈ A, C ∈ S(b, P>0r(a, b)),∃r.C ⊑ D ∈ T ,
andD 6∈ S(a, P>0r(a, b))
thenS(a, P>0r(a, b)) := S(a,P>0r(a, b)) ∪ {D}

PR11 If P=1r(a, b) ∈ A, C ∈ S(b, v) with v 6= 0, ∃r.C ⊑ D ∈ T
andD 6∈ S(a, v) thenS(a, v) := S(a, v) ∪ {D}

Fig. 3.Prob-EL01
c completion rules

This algorithm terminates in polynomial time. After termination, the completion
sets store all the information necessary to decide subsumption of concept names, as
well as checking whether an individual is an instance of a given concept name [6]. For
the former decision, it holds that for every pairA, B of concept names:B ∈ S0(A, 0)
iff A ⊑K B. In the case of instance checking, we have thatK |= A(a) iff A ∈ S(a, 0).

4 Computing thek-MSC using Completion

The msc was first investigated forEL-concept descriptions and w.r.t. unfoldable TBoxes
and possibly cyclic ABoxes in [5]. It was shown that the msc does not need to exists for
cyclic ABoxes. Consider the ABoxA = {r(a, a), C(a)}. The msc ofa is then

C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ · · ·
and cannot be expressed by a finite concept description. For cyclic TBoxes it has been
shown in [1] that the msc does not need to exists even if the ABox is acyclic.

To avoid infinite nestings in presence of cyclic ABoxes it wasproposed in [5] to
limit the role-depth of the concept description to be computed. This limitation yields an
approximation of the msc, which is still a concept description with the input individual
as an instance, but it does not need to be the least one (w.r.t.⊑) with this property. We
follow this idea to compute approximative msc also in presence of general TBoxes.

Therole-depthof a concept descriptionC (denotedrd(C)) is the maximal number
of nested quantifiers ofC. Now we can define the msc with limited role-depth forEL.

Definition 2 (role-depth boundedEL-msc).LetK =(T ,A) be anEL-KB anda an in-
dividual inA andk ∈ IN. Then theEL-concept descriptionC is therole-depth bounded
EL-most specific conceptof a w.r.t.K and role-depthk (writtenk-mscK(a)) iff

1. rd(C) ≤ k,
2. K |= C(a), and
3. for all EL-concept descriptionsE with rd(E) ≤ k holds:K |= E(a) implies

C ⊑T E.

Please note that in case the exact msc has a role-depth less thank the role-depth bounded
msc is the exact msc.

4.1 Computing thek-msc in EL by completion

The computation of the msc relies on a characterization of the instance relation. While
in earlier works this was given by homomorphism [5] or simulations [1] between graph
representations of the knowledge base and the concept in question, we use the comple-
tion algorithm as such a characterization. Furthermore, weconstruct the msc by travers-
ing the completion sets to “collect” the msc. More precisely, the set of completion sets
encodes a graph structure, where the setsS(X) are the nodes and the setsS(X, r) en-
code the edges. Traversing this graph structure, one can construct anEL-concept. To
obtain a finite concept in the presence of cyclic ABoxes or TBoxes one has to limit the
role-depth of the concept to be obtained.

Definition 3 (traversal concept).LetK be anEL-KB,K′′ be its normalized form,SK
the completion set obtained fromK andk ∈ IN. Then thetraversal concept of a named
conceptA (denotedk-CSK(A)) with sig(A) ⊆ sig(K′′) is the concept obtained from
executing the procedure calltraversal-concept-c(A, SK, k) shown in Algorithm 1.

Thetraversal concept of an individuala (denotedk-CSK(a)) with a ⊆ sig(K) is the
concept description obtained from executing the procedurecall traversal-concept-i(a,
SK, k) shown in Algorithm 1.

The idea is that the traversal concept of an individual yields its msc. However, the
traversal concept contains names fromsig(K′′) \ sig(K), i.e., concept names that were
introduced during normalization – we call this kind of concept namesnormalization
namesin the following. The returned msc should be formulated w.r.t. the signature of
the original KB, thus the normalization names need to be removed or replaced.

Algorithm 1 Computation of a role-depth boundedEL-msc.

Procedurek-msc (a,K, k)
Input: a: individual fromK; K =(T ,A) anEL-KB; k ∈ IN
Output: role-depth boundedEL-msc ofa w.r.t.K andk.

1: (T ′,A′) := simplify-ABox(T ,A)
2: K′′ := (normalize(T ′),A′)
3: SK := apply-completion-rules(K)
4: return Remove-normalization-names (traversal-concept-i(a, SK, k))

Proceduretraversal-concept-i (a, S, k)
Input: a: individual name fromK; S: set of completion sets;k ∈ IN
Output: role-depth traversal concept (w.r.t.K) andk.

1: if k = 0 then return
d

A ∈ S(a) A

2: else return
d

A ∈ S(a) A ⊓d
r∈RN(K′′)

d
A ∈ CN(K′′)∩S(a,r)

∃r. traversal-concept-c (A,S, k − 1) ⊓d
r∈RN(K′′)

d
b ∈ IN(K′′)∩S(a,r)

∃r. traversal-concept-i (b, S, k − 1)

3: end if

Proceduretraversal-concept-c (A, S, k)
Input: A: concept name fromK′′; S: set of completion sets;k ∈ IN
Output: role-depth bounded traversal concept.

1: if k = 0 then return
d

B∈S(A) B

2: else return
d

B∈S(A)

B ⊓ d
r∈RN(K′′)

d
B∈S(A,r)

∃r.traversal-concept-c (B,S, k − 1)

3: end if

Lemma 1. LetK be anEL-KB,K′′ its normalized version,SK be the set of completion
sets obtained forK, k ∈ IN a natural number anda ∈ IN(K). Furthermore letC = k-
CSK(a) andĈ be obtained fromC by removing the normalization names. Then

K′′ |= C(a) iff K |= Ĉ(a).

This lemma guarantees that removing the normalization names from the traversal con-
cept preserves the instance relationships. Intuitively, this lemma holds since the con-
struction of the traversal concept conjoins exhaustively all named subsumers and all
subsuming existential restrictions to a normalization name up to the role-depth bound.
Thus removing the normalization name does not change the extension of the conjunc-
tion. The proof can be found in [7]. We are now ready to devise acomputation algorithm
for the role-depth bounded msc: procedurek-msc as displayed in Algorithm 1.

The procedurek-msc has an individuala from a knowledge baseK, the knowledge
baseK itself and numberk for the role depth-bound as parameter. It first performs the
two normalization steps onK, then applies the completion rules from Figure 2 to the
normalized KBK′′ and stores the set of completion sets inSK. Afterwards it computes
the traversal-concept ofa from SK w.r.t. role-depth boundk. In a post-processing step
it appliesRemove-normalization-names to the traversal concept.

Obviously, the concept description returned from the procedurek-msc has a role-
depth less or equal tok. Thus the first condition of Definition 2 is fulfilled. We prove
next that the concept description obtained fromk-msc fulfills the second condition from
Definition 2.

Lemma 2. Let K = (T ,A) be anEL-KB anda an individual inA and k ∈ IN. If
C = k-msc(a,K, k), thenK |= C(a).

The claim can be shown by induction onk. Each name inC is from a completion set of
(1) an individual or (2) a concept, which is connected via existential restrictions to an
individual. The full proof can be found in [7].

Lemma 3. Let K = (T ,A) be anEL-KB anda an individual inA and k ∈ IN. If
C = k-msc(a,K, k), then for allEL-concept descriptionsE with rd(E) ≤ k holds:
K |= E(a) impliesC ⊑T E.

Again, the full proof can be found in [7]. The two lemmas yieldthe correctness of the
overall procedure.

Theorem 1. LetK = (T ,A) be anEL-KB anda an individual inA andk ∈ IN.
Thenk-msc(a,K, k) ≡ k-mscK(a).

Thek-msc can grow exponential in the size of the knowledge base.

4.2 Most specific concept in Prob-EL01
c

In order to compute the msc, we simply accumulate all concepts to which the individual
a belongs, given the information in the completion sets. Thisprocess needs to be done
recursively in order to account for both, the successors ofa explicitly encoded in the
ABox, and the nesting of existential restrictions masked bynormalization names. In the
following we use the abbreviationS>0(a, r) :=

⋃
v∈V \{0} S(a, r, v). We then define

traversal-concept-i(a, S, k) asl
B∈S(a,0)

B ⊓
l

r∈RN(K′′)

` l
r(a,b)∈K′′

∃r.traversal-concept-i(b, S, k − 1) ⊓
l

B∈CN(K′′)∩S(a,r,0)

∃r.traversal-concept-c(B, S, k − 1) ⊓
l

B∈CN(K′′)∩S(a,r,1)

P=1(∃r.traversal-concept-c(B, S, k − 1)) ⊓
l

B∈CN(K′′)∩S>0(a,r)

P>0(∃r.traversal-concept-c(B, S, k − 1))
´
,

wheretraversal-concept-c(B, S, k + 1) isl
C∈S0(B,0)

B ⊓
l

r∈RN

` l
C∈S0(B,r,0)

∃r.traversal-concept-c(C, S, k) ⊓
l

C∈S0(B,r,1)

P=1(∃r.traversal-concept-c(C, S, k)) ⊓
l

C∈S>0
0 (B,r)

P>0(∃r.traversal-concept-c(C, S, k))
´

and traversal-concept-c(B, S, 0) =
d

C∈S0(B,0) B. Once the traversal concept has been
computed, it is possible to remove all normalization names preserving the instance re-
lation, which gives us the msc in the original signature ofK. The proof can be found
in [7].

Theorem 2. Let K a Prob-EL01
c -knowledge base,a ∈ IN(A), and k ∈ IN; then

Remove-normalization-names(traversal-concept-i(a, S, k)) ≡ k-mscK(a).

5 Conclusions

In this paper we have presented a practical method for computing the role-depth bounded
msc ofEL concepts w.r.t. a general TBox. Our approach is based on the completion sets
that are computed during realization of a KB. Thus, any of theavailable implementa-
tions of theEL completion algorithm can be easily extended to an implementation of
the (approximative) msc computation algorithm. We also showed that the same idea can
be adapted for the computation of the msc in the probabilistic DL Prob-EL01

c .
Together with the completion-based computation of role-depth limited (least) com-

mon subsumers given in [8] these results complete the bottom-up approach for general
EL- and Prob-EL01

c -KBs. This approach yields a practical method to compute common-
alities for differing observations regarding individuals. To the best of our knowledge this
has not been investigated for DLs that can express uncertainty.

References

1. F. Baader. Least common subsumers and most specific concepts in a description logic with
existential restrictions and terminological cycles. In G.Gottlob and T. Walsh, editors,Proc.
of IJCAI’03, pages 325–330. Morgan Kaufmann, 2003.

2. F. Baader, S. Brandt, and C. Lutz. Pushing theEL envelope. InProc. of IJCAI’05, Edinburgh,
UK, 2005. Morgan-Kaufmann Publishers.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F.Patel-Schneider, editors.The
Description Logic Handbook: Theory, Implementation, and Applications. CUP., 2003.

4. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumer in description log-
ics with existential restrictions. In T. Dean, editor,Proc. of IJCAI’99, pages 96–101, Stock-
holm, Sweden, 1999. Morgan Kaufmann.

5. R. Küsters and R. Molitor. Approximating most specific concepts in description logics with
existential restrictions.AI Communications, 15(1):47–59, 2002.

6. C. Lutz and L. Schröder. Probabilistic description logics for subjective probabilities. In F. Lin
and U. Sattler, editors,Proc. of KR’10, 2010.

7. R. Peñaloza and A.-Y. Turhan. Completion-based computation of most specific concepts with
limited role-depth forEL and prob-EL01. LTCS-Report LTCS-10-03, Chair f. Autom. Theory,
Inst. f. Theor. C. S. TU Dresden, Germany, 2010.

8. R. Peñaloza and A.-Y. Turhan. Role-depth bounded least common subsumers by completion
for EL- and Prob-EL-TBoxes. In V. Haarslev, D. Toman, and G. Weddell, editors,Proc. of
the 2010 Description Logic Workshop (DL’10), 2010.

Compatibility Formalization Between PR-OWL
and OWL

Rommel Novaes Carvalho, Kathryn Laskey, and Paulo Costa

Department of Systems Engineering & Operations Research
School of Information Technology and Engineering
George Mason University, Fairfax, VA 22030, USA

rommel.carvalho@gmail.com

{klaskey,pcosta}@gmu.edu

http://seor.gmu.edu

Abstract. As stated in [5], a major design goal for PR-OWL was to at-
tain compatibility with OWL. However, this goal has been only partially
achieved as yet, primarily due to several key issues not fully addressed in
the original work. This paper describes several important issues of com-
patibility between PR-OWL and OWL, and suggests approaches to deal
with them. To illustrate the issues and how they can be addressed, we
use procurement fraud as an example application domain [2]. First, we
describe the lack of mapping between PR-OWL random variables (RVs)
and the concepts defined in OWL, and then show how this mapping
can be done. Second, we describe PR-OWL’s lack of compatibility with
existing types already present in OWL, and then show how every type
defined in PR-OWL can be directly mapped to concepts already present
in OWL.

Key words: OWL, PR-OWL, MEBN, probabilistic ontology, semantic
web, compatibility

1 Introduction

The Semantic Web (SW) is predicated upon radical notions of information shar-
ing, which include [1]: (i) the Anyone can say Anything about Any topic (AAA)
requirement; (ii) the open world assumption, i.e. there may exist more infor-
mation of which we are not aware, and (iii) nonunique naming, meaning that
different people can assign different names to the same concept. The Semantic
Web (SW) differs from the document web in that it is intended to provide not
only information sharing, but also knowledge synergy. We call such an environ-
ment characterized a Radical Information Sharing (RIS) environment. While the
SW promises great power and flexibility, RIS environments present fundamental
challenges, and can lead to chaos, disagreement and conflict.

The challenge facing SW architects is therefore to avoid the natural chaos to
which RIS environments are prone, and move to a state characterized by infor-
mation sharing, cooperation and collaboration. According to [1], one solution to

2 Compatibility Formalization Between PR-OWL and OWL

this challenge lies in modeling. Modeling is the process of organizing information
for community use. Modeling supports information sharing in four ways: (1) It
provides a framework for human communication; (2) it provides a means for
explaining conclusions; (3) it provides a basis for formalization and automation
of reasoning; and (4) it provides a structure for managing varying viewpoints.

There is an immense variety of modeling approaches. Different approaches
and processes are supported by different modeling languages. One of special
interest to this research is the Web Ontology Language (OWL) [18, 9]. OWL
was developed with the aim of enabling achievement of the full SW potential.
According to [18] OWL is intended for use when the information contained
in documents needs to be processed by applications, as opposed to situations
in which the content need only be presented to humans. OWL can be used
to explicitly and formally represent the meaning of terms in vocabularies and
the relationships between those terms. This representation of terms and their
interrelationships is called an ontology.

One of the first definitions of ontology in the context of the Semantic Web
was given by Thomas Gruber [10].

An ontology is an explicit specification of a conceptualization. The
term is borrowed from philosophy, where an Ontology is a systematic ac-
count of Existence. For Artificial Intelligence (AI) systems, what “exists”
is that which can be represented. A conceptualization is an abstract, sim-
plified view of the world that we wish to represent for some purpose. Ev-
ery knowledge base, knowledge-based system, or knowledge-level agent
is committed to some conceptualization, explicitly or implicitly.

In the past few years, as the Semantic Web community has developed stan-
dards and more complex use cases, the need for principled approaches for rep-
resenting and reasoning under uncertainty has received increasing appreciation.
As a consequence, the World Wide Web Consortium (W3C) created the Un-
certainty Reasoning for the World Wide Web Incubator Group (URW3-XG) in
2007 to identify requirements for reasoning with and representing uncertain in-
formation in the World Wide Web. The work of the URW3-XG provided an
important beginning for characterizing the range of uncertainty that affects rea-
soning on the scale of the World Wide Web, and the issues to be considered in
designing a standard representation of that uncertainty. However, the work to
date likely falls short of what would be needed to charter an effort to develop
that representation. A candidate representation for uncertainty reasoning in the
semantic web is Probabilistic OWL (PR-OWL) [5], an OWL upper ontology for
representing probabilistic ontologies based on Multi-Entity Bayesian Networks
(MEBN) [15].

As stated in [5], a major design goal for PR-OWL was to attain compatibility
with OWL. However, this goal has been only partially achieved as yet, due to
several key issues not fully addressed in the original work. First, there is no
mapping in PR-OWL to properties of OWL. Second, although PR-OWL has
the concept of meta-entities, which allows the definition of complex types, it
lacks compatibility with existing types already present in OWL.

Compatibility Formalization Between PR-OWL and OWL 3

These problems have been noted in the literature [20]:

PR-OWL does not provide a proper integration of the formalism of
MEBN and the logical basis of OWL on the meta level. More specifically,
as the connection between a statement in PR-OWL and a statement in
OWL is not formalized, it is unclear how to perform the integration of
ontologies that contain statements of both formalisms.

This paper is structured as follows. Section 2 briefly describes PR-OWL and
its underlying logic, MEBN. Section 3 presents PR-OWL’s lack of mapping to
OWL and our suggested solution to the problem. Section 4 presents the lack
of compatibility between types in OWL and PR-OWL and describes how they
could be integrated. Finally, Section 5 presents the conclusion of the proposed
extension to PR-OWL language.

2 PR-OWL and MEBN Logic

Ontologies are becoming increasingly popular as a means to ensure formal se-
mantic support for knowledge sharing [3, 4, 7, 8, 13, 22]. Representing and reason-
ing with uncertainty is becoming recognized as an essential capability in many
domains. The näıve approach of simply annotating ontologies with numerical
probabilities is inadequate, because it cannot capture complex relational proba-
bilistic dependencies. More expressive representation formalisms are needed [16].

Fig. 1. PR-OWL main concepts.

Probabilistic Ontologies [5, 6] have been proposed as a more expressive for-
malism for representing knowledge in domains characterized by uncertainty. The
PR-OWL probabilistic ontology language [5, 6] has its logical basis in Multi-
Entity Bayesian Networks (MEBN), an extension of Bayesian networks (BNs)
to achieve first-order expressive power [14, 15]. MEBN represents knowledge as
a collection of MEBN Fragments (MFrags), which are organized into MEBN
Theories (MTheories). Figure 1 presents the main concepts needed to define an
MTheory in PR-OWL. In the diagram, the ellipses represent the general classes,
while the arcs represent the main relationships among the classes.

An MFrag contains random variables (RVs) and a fragment graph represent-
ing dependencies among these RVs. An MFrag is a template for a fragment of a

4 Compatibility Formalization Between PR-OWL and OWL

Bayesian network. It is instantiated by binding its arguments to domain entity
identifiers to create instances of its RVs. There are three kinds of RV: context,
resident and input. Context RVs represent conditions that must be satisfied for
the distributions represented in the MFrag to apply. Input nodes represent RVs
that may influence the distributions defined in the MFrag, but whose distribu-
tions are defined in other MFrags. Distributions for resident RV instances are
defined in the MFrag. Distributions for resident RVs are defined by specifying
local distributions conditioned on the values of the instances of their parents in
the fragment graph.

A set of MFrags represents a joint distribution over instances of its random
variables. MEBN provides a compact way to represent repeated structure in a
BN. An advantage of MEBN is that there is no fixed limit on the number of RV
instances, and the random variable instances can be dynamically instantiated as
needed.

An MTheory is a set of MFrags that satisfies conditions of consistency en-
suring the existence of a unique joint probability distribution over its random
variable instances.

To apply an MTheory to reason about particular scenarios, one needs to pro-
vide the system with specific information about the individual entity instances
involved in the scenario. Throughout the remainder of the paper, we use pro-
curement fraud as an example application domain [2]. On receipt of information
about a particular procurement scenario, Bayesian inference can be used both to
answer specific questions of interest (e.g., how likely is it that a particular pro-
curement is being directed to a specific enterprise?) and to refine the MTheory
(e.g., each new investigation provides additional statistical data about relevant
indicators for a given category of fraud). Bayesian inference is used to perform
both problem specific inference and learning in a sound, logically coherent man-
ner (for more details see [15, 17]).

3 Mapping PR-OWL Random Variables to OWL
Concepts

Suppose we have an OWL ontology for the public procurement domain. The on-
tology defines concepts such as procurement, winner of a procurement, members
of a committee responsible for a procurement, etc. Figure 2 shows a light-weight
ontology for this domain represented in Unified Modeling Language (UML) [21].

Now, imagine we want to define some uncertain relations about this domain,
e.g. it is common to identify a front for an enterprise by looking at his/her income
and the value of a procurement the enterprise he/she represents won, meaning,
if the enterprise won a procurement of millions of dollars, but the responsible
person for this enterprise makes less than 10 thousand dollars a year, it is likely
that this person is a front. Figure 3 shows this probabilistic relation defined
using PR-OWL in an open-source tool for probabilistic reasoning, UnBBayes.

As expected, we would need to ensure some conditions were met in order
to make assertions about this probabilistic relationship. One of these conditions

Compatibility Formalization Between PR-OWL and OWL 5

Fig. 2. A class diagram for the procurement domain.

is that the person we are trying to determine as a possible front has to be
responsible for the enterprise we are analyzing.

Fig. 3. Front of an Enterprise MFrag.

It is natural to think that the data we have about this domain would be
associated with the ontological markups defined in OWL. In other words, our
database would have instances of persons and enterprises, and these instances
would be linked to their semantic meaning defined in the OWL ontology.

Accessing this information should be trivial once the definitions in the on-
tology were made available and permission was granted to retrieve data from
the database. However, this can only be achieved by developing a link between
PR-OWL random variables (RVs) and the concepts defined in OWL. In its cur-
rent state, though, the relations defined in PR-OWL are not formally linked to
the relevant concepts in the OWL procurement ontology. That is, the relation

6 Compatibility Formalization Between PR-OWL and OWL

IsResponsibleFor should be linked to the OWL concepts representing persons
and enterprises.

From this simple example, it is clear that every probabilistic definition involv-
ing a concept must keep a reference to its semantic definition. In other words,
full compatibility with OWL requires modifications to PR-OWL that guarantee
the preservation of OWL’s semantics.

Fig. 4. Ternary relation mapping between OWL and PR-OWL.

Figure 4 shows a suggested approach to map concepts in OWL to random
variables in PR-OWL. In this case, the relation is represented by a class (see [11]
for details on how to define n−ary relations in OWL) named HasContract which
represents a 4-ary relation that relates a contract that has a public agency as
a contractor, has its origin in a procurement, and has an enterprise contracted.
This relation is mapped as a predicate because in this example it is possible to
have more than one contracted enterprise for the same contract.

The idea is to keep a reference to the main relation (OWL concept) when
creating its probabilistic definition (PR-OWL random variable). In this case,
the random variable HasContract is a function that defines the probabilistic
characteristics of the concept HasContract, in this case a class that has a role
of a relation as explained above. As it can be seen on Figure 4 the range of the
random variable is a boolean.

However, it is not enough to map a PR-OWL random variable to an OWL
concept whose probabilistic characteristics are being defined. It is also necessary
to map the arguments of the random variable to their respective classes or data
types in OWL. In this example we have that: the argument contract is mapped to
the class Contract, which is the range of the property hasContract ; the argument
contracted is mapped to the class Enterprise, which is the range of the property
hasContracted ; the argument origin is mapped to the class Procurement, which is
the range of the property hasOrigin; and the the argument contractor is mapped
to the class PublicAgency, which is the range of the property hasContractor.

Finally, in First Order Logic (FOL) the range of any n-ary predicate is a
boolean. However, due to the lack of n-ary relations in OWL, this predicate was
modeled in PR-OWL as a class. Therefore, it has no defined range. In fact, the
only possible value of a class is an instantiation. So there is one last mapping to
be done.

Compatibility Formalization Between PR-OWL and OWL 7

Fig. 5. Ternary relation instance mapping between OWL and PR-OWL.

We need to map the existence of an instance to a random variable with value
true. This is a one−to−one mapping. I.e., there is only one RV that describes
the uncertainty of an OWL instance and there is only one OWL instance that
describes the semantics of a RV. If there is no such instance, then the value of
the RV is either false (if we are assuming a closed world) or unknown (if we are
assuming an open world). The fact is that we need to have an extra parameter
in our RV to state to which instance of the class HasContract it is related to.

So, once the random variable is instantiated as a node in a Bayesian net-
work for a specific situation, it is necessary to maintain the mapping we had in
our PR-OWL random variable. Figure 5 shows a suggestion for how to perform
this mapping. In this example, as we have an OWL assertion that HasContract1
is a predicate that states that the Contract1 contract had origin in Procure-
ment1, has IRS as its contractor, and has contracted ITEnterprise, we have
the PR-OWL counterpart stating that the node HasContract ITEnterprise -
Procurement1 IRS Contract1 has the state True with probability 100%. The
actual mapping between the OWL instance and the node is kept because the
node is in fact an instance of the random variable defined in PR-OWL, which
in turn is an OWL class. As the PR-OWL random variable has the mapping, so
does its instance.

The mapping described in this section provides the basis for a formal defi-
nition of consistency between a PR-OWL probabilistic ontology and an OWL
ontology, in which rules in the OWL ontology correspond to probability one as-
sertions in the PR-OWL ontology. A formal notion of consistency can lead to
development of consistency checking algorithms.

4 Extending PR-OWL to Use OWL’s Types

One of the main concerns when developing OWL [12] was to keep the same se-
mantics of its predecessors, RDF and XML, which meant reusing all the concepts
already defined in those languages, including primitive types, such as string,
boolean, decimal, etc. On the other hand, PR-OWL does not make use of the
primitive types used in OWL. For instance, PR-OWL defines Boolean as an in-
dividual of the class MetaEntity, as shown in Figure 6, but does not keep any
relation to the boolean type used in OWL.

If we wanted to define a continuous random variable for the annual income
of a person in PR-OWL, we would need to define the real numbers, even though

8 Compatibility Formalization Between PR-OWL and OWL

Fig. 6. Boolean individual defined in PR-OWL.

they are already defined in OWL. Moreover, concepts that use this primitive
type in OWL would not be understood in PR-OWL, in other words, they lack
compatibility as far as primitive types are concerned.

Figure 7 shows the different types of entities defined in PR-OWL. A possible
approach to keep OWL’s semantics is to avoid defining new types of entities and
use what is already available in OWL. For instance, the class ObjectEntity can
be substituted by the OWL class Thing, after all, according to [5] ObjectEntity
aggregates the MEBN entities that are real world concepts of interest in a do-
main. They are akin to objects in Object-Oriented (OO) models and to frames
in frame-based knowledge systems. In other words, they are nothing more than
OWL classes.

Fig. 7. The different types of entities defined in PR-OWL.

According to [5] CategoricalRVState is used to represent a list of mutually
exclusive, collectively exhaustive states, which in turn are possible states of ran-
dom variables, represented by nodes in PR-OWL. Therefore, it can be replaced
by DataOneOf if it needs to enumerate data types or ObjectOneOf if it needs
to enumerate objects. These concepts allow the enumeration of literals and in-
dividuals, respectively (see [19] for more details).

Compatibility Formalization Between PR-OWL and OWL 9

BooleanRVState can be replaced by the boolean data type present in OWL.
Finally, the MetaEntity class, which includes all the entities that convey spe-
cific definitions about entities (e.g. typelabels that name the possible types of
entities), can be eliminated since all other entities were replaced by a concept
already present in OWL.

5 Conclusion

We described the main issues with PR-OWL probabilistic ontology language
with respect to its compatibility with the OWL ontology language and presented
possible approaches to deal with these issues.

The first issue described was the lack of mapping between PR-OWL random
variables (RVs) and the concepts defined in OWL. In its current state, though,
the relations defined in PR-OWL are not formally linked to concepts in OWL.
We have shown through an example how this mapping can be done.

The second issue described was that PR-OWL does not make use of the
primitive types used in OWL, as OWL did with respect to RDF and XML.
For this reason, concepts already defined in one language must be redefined in
the other. We have shown that every type defined in PR-OWL can be directly
mapped to concepts already present in OWL without any loss of generality.

This paper has provided qualitative descriptions and examples of how to deal
with these compatibility issues. We are currently working on formalizing these
qualitative descriptions and on modifying PR-OWL’s syntax and semantics to
incorporate the approaches presented here.

Acknowledgments. The authors would like to thank the Brazilian Office of the
Comptroller General (CGU) for their active support since 2008 and for providing
the human resources necessary to conduct this research.

References

1. Dean Allemang and James A. Hendler. Semantic web for the working ontologist.
Morgan Kaufmann, 2008.

2. Rommel Novaes Carvalho, Kathryn B. Laskey, Paulo C. G. Costa, Marcelo Ladeira,
Laecio Lima Santos, and Shou Matsumoto. Probabilistic ontology and knowledge
fusion for procurement fraud detection in brazil. In Proceedings of the 5th Un-
certainty Reasoning for the Semantic Web (URSW 2009) on the 8th International
Semantic Web Conference (ISWC 2009), Chantilly, Virginia, USA, October 2009.

3. Huajun Chen and Zhaohui Wu. On Case-Based knowledge sharing in semantic web.
In Tools with Artificial Intelligence, IEEE International Conference on, volume 0,
page 200, Los Alamitos, CA, USA, 2003. IEEE Computer Society.

4. Huajun Chen, Zhaohui Wu, and Jiefeng Xu. KB-Grid: enabling knowledge sharing
on the semantic web. In Challenges of Large Applications in Distributed Environ-
ments, International Workshop on, volume 0, page 70, Los Alamitos, CA, USA,
2003. IEEE Computer Society.

10 Compatibility Formalization Between PR-OWL and OWL

5. Paulo C. G Costa. Bayesian Semantics for the Semantic Web. PhD, George Mason
University, July 2005. Brazilian Air Force.

6. Paulo Cesar Costa, Kathryn B. Laskey, and Kenneth J. Laskey. PR-OWL: a
bayesian ontology language for the semantic web. In Uncertainty Reasoning for
the Semantic Web I: ISWC International Workshops, URSW 2005-2007, Revised
Selected and Invited Papers, pages 88–107. Springer-Verlag, 2008.

7. P.C.G. Costa, Kuo-Chu Chang, K.B. Laskey, and Rommel Novaes Carvalho. A
multi-disciplinary approach to high level fusion in predictive situational awareness.
In Proceedings of the 12th International Conference on Information Fusion, pages
248–255, Seattle, Washington, USA, July 2009.

8. A.-S. Dadzie, R. Bhagdev, A. Chakravarthy, S. Chapman, J. Iria, V. Lanfranchi,
J. Magalhes, D. Petrelli, and F. Ciravegna. Applying semantic web technologies to
knowledge sharing in aerospace engineering. Journal of Intelligent Manufacturing,
20(5):611–623, 2008.

9. W3C OWL Working Group. OWL 2 web ontology language document overview.
http://www.w3.org/TR/2009/PR-owl2-overview-20090922/, September 2009.

10. Thomas R. Gruber. Toward principles for the design of ontologies used for knowl-
edge sharing. Int. J. Hum.-Comput. Stud., 43(5-6):907–928, 1995.

11. Patrick Hayes and Alan Rector. Defining n-ary relations on the semantic web.
http://www.w3.org/TR/swbp-n-aryRelations/, 2006.

12. Ian Horrocks, Peter F Patel-Schneider, and Frank Van Harmelen. From SHIQ and
RDF to OWL: the making of a web ontology language. JOURNAL OF WEB
SEMANTICS, 1:2003, 2003.

13. Nicholas J. Kings and John Davies. Semantic web for knowledge sharing. In
Semantic Knowledge Management, pages 103–111. 2009.

14. Kathryn B. Laskey and Paulo C. G. Costa. Of starships and klingons: Bayesian
logic for the 23rd century. In Proceedings of the 21th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-05), Arlington, Virginia, USA, 2005. AUAI
Press.

15. Kathryn Blackmond Laskey. MEBN: a language for first-order bayesian knowledge
bases. Artif. Intell., 172(2-3):140–178, 2008.

16. K.B. Laskey, P. Costa, and T. Janssen. Probabilistic ontologies for knowledge
fusion. In Information Fusion, 2008 11th International Conference on, pages 1–8,
2008.

17. Suzanne Mahoney and Kathryn B. Laskey. Constructing situation specific belief
networks. In Proceedings of the 14th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-98), San Francisco, CA, 1998. Morgan Kaufmann.

18. Deborah L. McGuinness and Frank Van Harmelen. OWL web ontology language
overview. http://www.w3.org/TR/owl-features/, February 2004.

19. Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2
web ontology language structural specification and Functional-Style syntax.
http://www.w3.org/TR/owl2-syntax/, October 2009.

20. Livia Predoiu and Heiner Stuckenschmidt. Probabilistic extensions of semantic web
languages - a survey. In The Semantic Web for Knowledge and Data Management:
Technologies and Practices. Idea Group Inc, 2008.

21. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley Professional, 1999.

22. Galina V Veres, Trung Dong Huynh, Mark S Nixon, Paul R Smart, and Nigel R
Shadbolt. The military knowledge information fusion via semantic web technolo-
gies. Technical report, 2006.

Pronto: A Practical Probabilistic Description
Logic Reasoner

Pavel Klinov and Bijan Parsia

School of Computer Science
University of Manchester, United Kingdom

{pklinov,bparsia}@cs.man.ac.uk

Abstract. This paper presents a system description of Pronto — the
first probabilistic Description Logic reasoner capable of processing knowl-
edge bases containing about a thousand of probabilistic axioms. We de-
scribe the design and architecture of the reasoner with an emphasis on
the components that implement algorithms which are crucial for achiev-
ing such level of scalability. Finally, we present the results of the experi-
mental evaluation of Pronto’s performance on series of propositional and
non-propositional probabilistic knowledge bases.

1 Introduction

There are many proposed formalisms for combining Description Logics (DLs)
with various sorts of uncertainty, although, to our knowledge, none have been
used for a production ontology. We believe that this is due to two reasons: 1) there
is comparatively little knowledge about how to use these formalisms effectively
(or even, which are best suited for what purposes) and 2) there is a severe lack
of tooling, in particular, there have been no sufficiently effective reasoners.

This paper describes our work on the second problem. We present Pronto —
the reasoner for the probabilistic extension of DL SHIQ (named P-SHIQ) [1].
This logic can be viewed either as a generalization of the Nilsson’s propositional
probabilistic logic [2] or as a fragment of first-order probabilistic logic of Halpern
and Bacchus [3] [4] (with certain non-monotonic extensions). One attractive fea-
ture of these probabilistic logics is that they allow modelers to declaratively
describe their uncertain knowledge without fully specifying any probability dis-
tribution (in contrast to, for example, Bayesian networks). They are also proper
generalizations of their classical counterparts which, in the case of P-SHIQ,
means that modelers can take an existing SHIQ ontology and add probabilistic
axioms to capture uncertain, such as statistical, relationships.

In spite of their attractive features Nilsson-style logics have been criticized,
partly for the intractability of probabilistic inference. Reasoning procedures are
typically implemented via reduction to linear programming but it is well known
that corresponding linear programs are exponentially large so the scalability
is very limited. Over the last two decades there have been several attempts
to overcome that issue in the propositional case which led to some promising

2

results, such as solving the probabilistic satisfiability problem (PSAT) for 800-
1000 formulas [5]. It has been unclear whether the methods used to solve large
propositional PSATs can be directly applied to PSATs in probabilistic DLs.

To the best of our knowledge, Pronto is the first reasoner for a Nilsson-style
probabilistic DL which scalability is comparable (and often better) than scalabil-
ity of propositional solvers. In particular, it can solve propositional PSATs of the
same size as them but can also effectively deal with KBs with non-propositional
classical knowledge, such as large SHIQ terminologies. We present experimental
results which show that the level of scalability is comparable in the propositional
and non-propositional cases. In addition, Pronto implements all the standard rea-
soning services for P-SHIQ as well as useful extra services, in particular, finding
all minimal unsatisfiable fragments of a KB which is crucial for analyzing large
bodies of conflicting probabilistic knowledge.

2 Preliminaries

P-SHIQ [1] is a probabilistic generalization of the DL SHIQ [6]. It supports
probabilistic subsumptions between arbitrary SHIQ concepts and a certain class
of probabilistic concept assertions (but no form of probabilistic role assertions).
Any SHIQ ontology can be used as a basis for a P-SHIQ ontology which fa-
cilitates transition from classical to probabilistic ontological models. Finally, it
combines probabilistic and default reasoning. This allows for a consistent treat-
ment of exceptional individuals and subconcepts.

P-SHIQ is extends the syntax of SHIQ with conditional constraints, that is,
expressions of the form (D|C)[l, u] where C and D are arbitrary SHIQ concept
expressions. Conditional constraints can be used for representing uncertainty in
both terminological (TBox) and assertional (ABox) knowledge. A probabilistic
TBox (PTBox) is a 2-tuple PT = (T ,P) where T is a SHIQ TBox (sometimes
called the classical part) and P is a finite set of default conditional constraints (or
probabilistic part). Informally, a PTBox axiom (D|C)[l, u] means that “generally,
if a randomly chosen individual belongs to C, its probability of belonging to D
is in [l, u]”. A probabilistic ABox (PABox) is a finite set of strict conditional
constraints pertaining to a concrete probabilistic individual o. A knowledge base
(ontology) in P-SHIQ is a combination of a PTBox and a collection of PABoxes
(one for each probabilistic individual).

P-SHIQ semantics is based on probability distributions over possible worlds,
where each possible world is a subset of probabilistically relevant concepts Φ (i.e.
concepts used to define conditional constraints). Informally, each world can be
thought of as a concept type for a randomly chosen individual. A world is possible
if there exists an individual that is an instance of all concepts in the world (i.e.
the concept type is realizable). A KB is satisfiable if there exists a probability
distribution that satisfies all conditional constraints.

Standard reasoning tasks in P-SHIQ include PSAT, tight logical entailment
(TLogEnt), and tight lexicographic entailment (TLexEnt). The first two tasks
are probabilistic counterparts of classical satisfiability and entailment problems

3

in DL. In contrast, TLexEnt is a non-monotonic reasoning task which is reducible
to the logical entailment from the largest, conflict-free fragments of the KB.

See [1] for a formal presentation of P-SHIQ semantics, reasoning procedures
and complexity results.

3 Probabilistic Satisfiability Algorithm

In this section we briefly sketch the novel PSAT algorithm implemented in Pronto
(see Section 6 for its differences from the previously developed methods). For
clarity we will consider a special case of PSAT where the PTBox is of the form
PT = (T , {(Ci|⊤)[pi, pi]}) (i.e. all probabilistic statements are unconditional
constraints with point-valued probabilities). It is straightforward, but technically
awkward, to generalize the procedure to handle conditional interval statements.

A PTBox PT = (T , {(Ci|⊤)[pi, pi]}) is satisfiable iff the following linear
program admits a solution:

max
∑
I∈IΦ

xI

s.t.
∑
Ci∈I

xI = pi, for each (Ci|⊤)[pi, pi] ∈ P (1)

∑
I∈IΦ

xI = 1 and all xI ≥ 0

where IΦ is the set of all possible worlds for the set of concepts Φ in T .
Let A denote the matrix of linear coefficients in (1). At every step of the

simplex algorithm, A is represented as a combination (B,N) where B and N
are the submatrices of the basic and non-basic variables, respectively. Values of
non-basic variables are fixed to zero, and the solver proceeds by replacing one
basic variable by a non-basic one until the optimal solution is found. The index
of the non-basic column is determined according to the following expression [5]:

j ∈ {1, . . . , |N |} s.t. cj − uT Aj is minimal (2)

where cj is the objective coefficient for the new variable (it is always equal to 1
in (1)) and uT is the current dual solution of (1).

As the size of N is exponential in |Φ|, one should compute (2) without ex-
amining all columns in N . This is done using the column generation technique
in which (2) is treated as an optimization problem with the following objective
function:

min (1−
m+1∑
i=1

uia
j
i), Aj = (aj

i) ∈ {0, 1}m+1 (3)

4

Since columns in (1) correspond to possible worlds, aj
i = 1 means that Ci ∈ Ij

while aj
i = 0 means that ¬Ci ∈ Ij , where Ij is the possible world corresponding

to the column Aj . Thus it is possible to represent Ij as a conjunctive SHIQ
concept expression as follows (we call the correspondence function η):

Ij = η(Aj) =⊓Xi, where Xi =

{
Ci, aj

i = 1
¬Ci, aj

i = 0
(4)

The critical step is to formulate linear constraints for (3) such that every
solution corresponds to a concept expression that is satisfiable w.r.t. T , i.e. a
possible world. In the propositional case, where each Ci is a clause, this can be
done by employing a well known formulation of SAT as a mixed-integer linear
program [7]. For example, if Ci = xi1∨¬xi2∨xi3 then (3) will have the constraint
ai = xi1 + (1− xi2) + xi3 where all variables are binary.

In the case of an expressive language, such as SHIQ, there appears to be
no easy way of determining a set of constraints H for (3) such that its set of
solutions in one-to-one correspondence with IΦ (in particular, it is important to
ensure that, if Aj is a solution then T 2 η(Aj) ⊑ ⊥, i.e. H faithfully captures
the TBox T). Instead, Pronto implements a novel hybrid, iterative procedure to
compute H which can be summarized as follows:

Input: PTBox PT = (T ,P), current dual solution uT of (1)
Output: New column Aj or null
Initialize (3) using uT , H ← ∅1

while Aj 6= null do2

Aj ← current optimal solution of (3)3

if Aj 6= null then4

if satisfiable(η(Aj), T) then5

return Aj
6

else7

add constraints to H that prohibit Aj
8

end9

end10

end11

return null;12

Algorithm 1: Hybrid iterative column generation algorithm

The key steps are 5 and 8. On step 5 the algorithm invokes a SHIQ SAT
solver (in our case, Pellet) to determine if the computed column corresponds to a
possible world. If yes, the column is returned. If no, the current set of constraints
H is augmented on step 8 to exclude Aj from the set of solutions to (3). The
algorithm is called “hybrid” because it combines invocations of simplex and
SHIQ solvers and “iterative” because it iteratively tightens the set of solutions
to (3) until either a valid column is found or provably no such column exists.

The actual implementation is considerably more involved, in particular, be-
cause it is important to minimize the number of calls to the SHIQ solver.

5

Therefore the algorithm tries to learn the set H as quickly as possible. Such
details, as well as the description of step 8, are beyond the scope of this paper.

4 Architecture

Pronto has layered architecture presented on Figure 1. Each layer has one or
more components which invoke other components at the same or lower levels
(but not the other way around).

Linear Program
Manager (LPM)

LP Solver (GLPK)
Column Generator

(CG)
Description Logic
Reasoner (Pellet)

Linear Program Layer

PSAT/TlogEnt
Solver

Knowledge Base
Analyzer

Non-Monotonic
(Lexicographic)

Reasoner

Monotonic Reasoning Layer

Fig. 1: Architecture of Pronto

Linear Program Layer The components at the lowermost level are responsible
for managing linear programs which are optimized in order to solve PSAT or
TLogEnt problems. As mentioned earlier, these linear programs usually have
exponentially many variables so it is futile to try to represent them explicitly.
Therefore, the main function of the components, namely, the linear program
manager (LPM) and the column generator (CG), is to generate partial linear
systems (1) which have the same optimal objective values as their complete
versions.

The LPM is responsible for producing the initial version of the linear program
(1), incorporating each new column into it, and checking the optimality (i.e.
stopping) criteria. It interacts with the simplex solver, such as GLPK, which
solves the current program (1) and returns its primal and dual solutions. The
latter is supplied to the CG component.

The CG component implements Algorithm 1. It maintains the binary linear
program 3, accepts the dual values uT , and interacts with Pellet in order to
produce improving columns which are then returned back to the LPM. This
component implements a number of optimizations such as tuning the binary

6

program (3), learning and re-using constraints H that reflect the structure of
the TBox T , and others.

Monotonic Probabilistic Reasoning Layer The components on the next
layer use the underlying linear programs to perform monotonic reasoning, i.e.
solve PSAT and TLogEnt, and analyze unsatisfiable probabilistic KBs. The first
two tasks are straightforward. They amount to checking if a linear system gen-
erated by the components of the lower layer admits a solution (PSAT) or solving
it to optimality (TLogEnt).

The analysis of an unsatisfiable probabilistic KB is a problem of finding all
minimal unsatisfiable subsets of the KB where minimality is defined with respect
to the set inclusion. This is essential for 1) computing all maximal satisfiable
fragments of the KB during non-monotonic (lexicographic) reasoning, and 2)
computing explanations for the results of probabilistic reasoning.

On the linear system level this analysis is equivalent to discovering all irre-
ducible infeasible subsystems (IIS) which can be exponentially many [8]. The
task of finding all IISes is somewhat complicated by the fact that the linear
systems are never complete, so their set of IISes may not be the same as for the
complete system (despite that their objective values are optimal). Therefore the
analyzer has to repeatedly invoke the LP layer components to enrich the system
with new columns after finding each new IIS. Apart of that the analysis follows
the classical model-based diagnosis methodology based on hitting set trees [9].

Non-Monotonic Probabilistic Reasoning Layer The uppermost layer con-
sists of a single component: the lexicographic reasoner. It implements the TLex-
Ent algorithm which relies on the KB analyzer and the TLogEnt reasoner. TLex-
Ent is equivalent to solving TLogEnt for all lexicographically minimal subsets of
the KB [1]. The latter are computed in three phases: 1) KB analyzer computes
the structure called conflict graph which represents conflicts between pieces of
probabilistic knowledge, 2) the graph is used to rank conflicting statements by
specificity, and 3) conflicts are resolved by preferring more specific statements to
less specific (the resulting conflict-free fragments of the KB are lexicographically
minimal). The last phase may fail if equally specific statements happen to be in
conflict. In that case the reasoner reports probabilistic inconsistency (which is
different from probabilistic unsatisfiability, see [1] for details).

5 Experimental Evaluation

We have conducted two experiments to demonstrate that Pronto is practical to
use on ontologies of realistic size. Both experiments evaluate the performance of
solving PSAT (since all other reasoning tasks are reducible to it). KBs in the first
experiments are randomly generated sets of propositional conditional constraints
with no classical part. KBs in the second experiment are randomly generated
conditional constraints with TBoxes from real-life ontologies represented in ex-
pressive DLs: the GeoSkills ontology and the SWEET Process ontology, both

7

taken from the TONES repository1. There does not seem to be an easy way to
“propositionalize” these ontologies in order to use propositional PSAT solvers.

The results, which are presented in Table 1, were averaged over 10 PSAT
instances solved for each size. In the table n stands for the number of concepts
in the classical part of the KB and m — for the number of conditional constraints.
We used a conventional PC with 2GHz CPU and 2GB RAM.

Table 1: Performance on random propositional and non-propositional probabilistic KBs

Propositional KBs GeoSkills (ALCHOIN) Process (ALCHOF)

n m Time (s) n m Time (s) n m Time (s)

50 100 3 603 100 20 1537 100 5

100 200 12 603 200 38 1537 200 30

250 500 30 603 500 151 1537 500 92

500 1000 291 603 1000 332 1537 1000 176

The results show that Pronto performs comparably to the state-of-the-art
propositional PSAT solvers on propositional KBs [5]2. However, it can also han-
dle probabilistic KBs of the same size defined over highly expressive DL on-
tologies without significant loss of performance. In fact, expressive TBoxes may
improve the performance because they tend to shrink the space of all potential
columns (possible worlds) by constraining models. This can explain why the
probabilistic extension of the Process ontology is sometimes easier than random
propositional KBs of the same size. We are now in the process of investigating
this and other complexity factors through a more comprehensive and system-
atic evaluation. It is anticipated that understanding of such factors will help to
develop corresponding optimizations.

6 Related Work

To the best of our knowledge there are no other reasoners for Nilsson-style prob-
abilistic DLs. One exception is [10] but that system does not implement any
technique to reduce the size of the linear programs and is, therefore, limited to
10-15 probabilistic statements.

Among other tools the most closely related are propositional PSAT solvers
which also use the column generation method to cope with the size of the linear
systems [5] [11]. However, the main difference between Pronto and those tools lies
in the optimization problem (3) used to produce columns. They can encode the

1 http://owl.cs.manchester.ac.uk/repository/
2 We must mention that our problem generation methodology is slightly different.

Hansen and Perron experimented with unconditional constraints and point-valued
probabilities while we generated mixtures of conditional and unconditional state-
ments with intervals which, as we believe, are more useful for practical modeling.

8

entire structure of the propositional KB in the set of constraints H for (3) while
Pronto employs a SHIQ reasoner to compute such set iteratively. One important
consequence is that Pronto can be used for a Nilsson-style probabilistic extension
to any logic for which a SAT solver is available.

7 Summary

The primary conclusion of this work is that Pronto is practical to use for proba-
bilistic ontologies of a realistic size. PSAT and the various entailment problems
for P-SHIQ are EXPTIME-complete, so, as with any logic in the SH family,
practicality, efficiency, and scalability claims must be carefully qualified. How-
ever, Pronto handles P-SHIQ ontologies which are comparable in size to, for
example, various handcrafted Bayesian networks3, which gives good reasons to
believe that it will prove practical for future probabilistic ontologies.

More generally, our work also shows that P-SHIQ, as well as other Nilsson-
style extensions to DLs, can be practical (in terms of reasoning complexity)
probabilistic ontology languages. In a certain sense they are no less practical
than SHIQ. Although there will certainly be P-SHIQ ontologies that will de-
feat the current version of Pronto, this is also the case with any NP-hard logic.
However, now it makes sense for modelers to experiment with P-SHIQ and re-
port troublesome ontologies, so that tool developers can adapt to new challenges.

References

1. Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence
172(6-7) (2008) 852–883

2. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1) (1986) 71–87
3. Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence

46 (1990) 311–350
4. Bacchus, F.: Representing and reasoning with probabilistic knowledge. MIT Press

(1990)
5. Hansen, P., Perron, S.: Merging the local and global approaches to probabilistic

satisfiability. Int. Journal of Approximate Reasoning 47(2) (2008) 125–140
6. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-

tion logics. Journal of the IGPL 8(3) (2000)
7. Hooker, J.N.: Quantitative approach to logical reasoning. Decision Support Sys-

tems 4 (1988) 45–69
8. Gleeson, J., Ryan, J.: Identifying minimally infeasible subsystems of inequalities.

INFORMS Journal on Computing 2(1) (1990) 61–63
9. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32

(1987) 57–95
10. Näth, T.H., Möller, R.: ContraBovemRufum: A system for probabilistic lexico-

graphic entailment. In: Description Logics. (2008)
11. de Souza Andrade, P.S., da Rocha, J.C.F., Couto, D.P., da Costa Teves, A., Coz-

man, F.G.: A toolset for propositional probabilistic logic. In: Encontro Nacional
de Inteligencia Artificial. (2007) 1371–1380

3 See, in particular, the repository at http://genie.sis.pitt.edu/networks.html

Using f-SHIN to represent objects:
an aid to visual grasping

Nicola Vitucci, Mario Arrigoni Neri, and Giuseppina Gini

Politecnico di Milano - Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133 Milano, Italy

{vitucci,arrigoni,gini}@elet.polimi.it

Abstract. Description Logics (DLs) are nowadays used to face a va-
riety of problems. When dealing with numerical data coming from the
real world, however, the use of traditional logics results in a loss of useful
information that can be otherwise exploited using more expressive log-
ics. Fuzzy extensions of traditional DLs, being able to represent vague
concepts, are well suited to reason on such objects.

In this paper we present an architecture for the automatic building and
querying of a fuzzy ontology related to the representation of objects in
terms of their composing parts. Our approach mainly aims to face the
problem of visual grasping, which is of wide interest in the robotics field.

1 Introduction

The decomposition of an object in parts has been recognized as an important
problem in artificial intelligence: it is considered both as a human-like way of
reasoning on objects [1] and as a good way to reduce complexity in tasks like
object recognition [14]. Apart of the actual image decomposition phase, a major
issue is constituted by the semantic description of the extracted features and
their mutual relationships. Due to the vagueness affecting real world data, some
tolerance should be taken into account when formally representing the structure
of an object; this is a reason to take advantage of novel tools as fuzzy DLs [11].

Fuzzy DLs extend crisp DLs by adding imprecision and vagueness in the
reasoning process, thus giving some degrees of truth in place of binary answers
as yes or no. Although the available fuzzy reasoners are not yet as powerful
as their crisp counterparts, some interesting applications can be found. One of
them lies in the robotics field, in which a symbolic representation of objects
can improve the grasping capabilities of a robot by the use of some semantic
information, regarding both the type of grasp itself and the structure of the
object to be grasped.

To the best of our knowledge, the problem of semantic part decomposition is
still an open problem and there are no tools available to automatically create a
fuzzy ontology from raw concepts. The use of ontologies for object recognition has
been investigated in some works as [4,5,6], but none of them makes explicitly use
of fuzzy reasoning except for the creation of (crisp) descriptors as Very high to be

used in the classical way; furthermore, they rely on a previous phase of semantic
annotation by domain experts, while we focus on the automatic generation of
simple concepts, which are sufficient for our purposes.

There are some recent works in which fuzzy DLs are thoroughly used to rea-
son on multimedia information (see [7,8,10,12]) but little advantage is taken from
the expressiveness given by cardinality restrictions (when available). Generally
speaking, this is due to the fact that, for scene understanding purposes, it is
sufficient to know whether a kind of object is present or not (see [15,16]). On
the other hand, for object recognition purposes, it is often necessary to be able
to count the instances of each kind of recognized component.

In this paper, we show why we use f-SHIN [9] as the underlying DL for
addressing this problem, then we describe an architecture for the automatic
building of a (crisp) ontology and its use for object recognition via fuzzy ABox
reasoning services; eventually, in the last section, we make some considerations
and propose some future work. The architecture we propose here is still far from
being considered complete, yet we were able to obtain some interesting results.

2 The f-SHIN logic

The f-SHIN logic is the fuzzy extension of the SHIN logic [9]. The main im-
provement of this extension with respect to its crisp version is the possibility to
use assertions like Concept(p)[≥ 0.7], meaning that the individual p has a min-
imum degree of participation of 0.7 to the concept Concept, or role(p,q)[≤ 0.3],
meaning that the individuals p and q participate in the role role with a maxi-
mum degree of 0.3. The greatest lower bound (GLB) [11] is used to know “how
much” an individual can be considered to belong to a certain class. A complete
description of the f-SHIN logic can be found in [9].

For the f-SHIN logic there exists a reasoner called FiRE 1, while there exist
other reasoners like fuzzyDL2 which is based on the fuzzy extension of the SHIF
logic. The reason why we chose to use FiRE as reasoner is, independently from
the supported reasoning services, the high expressivity of the underlying f-SHIN
logic as it supports cardinality restrictions; on the other hand, such a choice needs
some functional blocks to be added to carry out operations like the definition of
concepts in terms of membership functions.

3 Architecture

As anticipated in the previous section, due to the limitations of the reasoner,
the whole architecture is complex and requires some functional elements to be
split among different modules (e.g. the reasoner used on the definitions ontology
is different from the one used on the objects ontology). The whole architecture
of the system is depicted in Fig. 1.
1 http://www.image.ece.ntua.gr/~nsimou/FiRE/
2 http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html

Types of features to
extract from the image

Names of fuzzy concepts
(e.g. LongObject)

Types and parameters of
membership functions

External ontology

Image segmentation
and part decomposition

Feature extraction
for each part

Selection of interesting
quantitative measures

Image analysis

Calculation of relationships
among the parts

Calculation and selection
of truth values

Fuzzy concepts with
truth degrees

Creation of component
axioms in the TBox

Creation of object axioms
in the TBox

Creation of roles related
to component concepts

Objects ontology building

Creation of component
assertions in the ABox

Creation of role assertions
in the ABox

Calculation of the GLB
for each component

Object recognition

Calculation of the GLB
for the whole object

Fuzzy reasoner

Fig. 1: The general architecture of the system

The “high level” information, which reflects the kind of knowledge that is
to be extracted from the image, is encoded in the external ontology; the image
analysis and the numerical calculations are performed with MATLABTM, while
the intermediate steps are performed either in MATLABTMor in JavaTM. The
FiRE reasoner is standalone, thus some steps are still to be carried out by hand.

As an example, we will model a fork in terms of its parts; thus, we will use
the images shown in Fig. 2.

3.1 External ontology

The external ontology, also called the “definitions ontology”, is used to specify
the kinds of membership functions to be used as well as the kinds of features to

be extracted from the objects found in the images (e.g. elongation, eccentricity,
parallelism with respect to other objects and so on) and the meanings of concepts
like LongObj and SmallObj in terms of membership functions.

Taking the ontology described in [2] as an example, we built a meta-ontology
(based on the crisp logic SHOIN (D) with datatypes) in which the features to
be extracted from the image are subclasses of the meta-class GeometricConcept
and the kinds of membership functions to use are subclasses of the meta-class
MembFunc. The ontology presented in [2] makes use of some “concrete” concepts
like TrapezoidalConcreteFuzzyConcept and TriangularConcreteFuzzyConcept, each
one having several properties defined as hasParameterX (where X stands for A,
B, K1 etc.) depending on the parameters needed by the considered membership
function; an individual tra1 represents a trapezoidal membership function with
given parameters.

In our ontology, a concept like “a long object” is modeled as an individual
longObject of meta-class Length which has, as its membership function, another
individual longMF of a subclass of MembFunc with the function parameters given
as datatype properties. By means of the Jena Ontology API3 and the Pellet
reasoner4, information like the kind and the parameters of a membership function
representing a concept related to the image is extracted to feed the image analysis
module; thus, a SPARQL query like:

SELECT *
WHERE {

?x rdfs:subClassOf :GeometryConcept .
?y rdf:type ?x .
?y :hasMembershipFunction ?z .
?z rdf:type ?w .
?w rdf:subClassOf :MembershipFunction .
FILTER (?w != :MembershipFunction) .
?z :hasParameter1 ?k1 .
?z :hasParameter2 ?k2 .
OPTIONAL {?z :hasParameter3 ?k3} .
OPTIONAL {?z :hasParameter4 ?k4}

}

is used to extract the individuals representing the actual fuzzy geometry concepts
(e.g. LongObject) used in the objects ontology and their related membership
functions data (e.g. a sigmoidal function with two parameters).

The ontology is built by a domain expert to reflect the physical characteristics
of the robot, so that for example an object can be considered “long” with respect
to the maximum aperture of the robot hand. Although a system of measurement
has to be established, we now use only pixel measures.

3 http://jena.sourceforge.net/
4 http://clarkparsia.com/pellet/

(a) Original image (b) Image after segmentation

(c) Image after edge dilation and part decomposition (with three parts
out of six put in evidence)

Fig. 2: Steps of the image analysis phase

3.2 Image analysis

In this phase, the original image is converted in a binary image after thresholding
and edge recognition performed by Canny method [17] (Fig. 2b); the resulting
edges are dilated, then the parts having an area over a threshold are selected
(Fig. 2c). This segmentation and decomposition phase is actually non-robust, so
that the use of fuzzy relationships can be better shown.

After the first phase, some features like the area, the length of the major
axis of the ellipse having the same normalized second central moments as the
selected region, and so on, are extracted from each found part (see Tab. 1 for
some examples of extracted values); then, some quantitative characteristics are
computed: for example, the measure of parallelness π, given α and β as the
angles between the major axes of the two objects and the x axis of the image,
is defined as π = | cos (α− β) |, while the distance between two parts, instead,
is defined as the minimum distance between their convex hulls.

Using the definitions from the external ontology, for every part we calculate
the degree of membership of each feature to its related membership functions.
For example, for the feature “length” (i.e. the length of its major axis), the
truth values for the functions “LongObj”, “MediumLengthObj” and “ShortObj”
are calculated; if a MediumLengthObj is associated to a generalized bell curve
membership function with parameters a = 240, b = 2.5, c = 600 and the length
of the major axis of the considered object is 456.61 pixels, the object will belong
to the class MediumLengthObj with a truth degree µ = 0.93.

Table 1: Examples of features extracted from the image

(a) Measures of parallelness be-
tween every pair of parts

p1 p2 p3 p4 p5 p6

p1 1.00 0.97 0.97 0.97 0.97 0.97
p2 0.97 1.00 0.89 0.90 0.88 0.89
p3 0.97 0.89 1.00 0.99 0.99 1.00
p4 0.97 0.90 0.99 1.00 0.99 0.99
p5 0.97 0.88 0.99 0.99 1.00 0.99
p6 0.97 0.89 1.00 0.99 0.99 1.00

(b) Other features (area and lengths are in
pixels)

Area Eccentricity
Major Minor

Axes ratio
axis axis

p1 14860 0.99 456.61 47.33 0.10
p2 12351 0.95 288.23 88.41 0.30
p3 2194 0.98 151.78 23.11 0.15
p4 500 0.99 93.09 8.81 0.09
p5 2617 0.98 181.07 25.79 0.14
p6 771 0.99 141.47 9.39 0.06

3.3 Objects ontology building

Using the results from the previous phase, and taking as a working hypothesis
that all the found parts belong to the same object (i.e. there is just one object in
the scene), for each part only the membership functions which give the highest
truth value for each feature are selected; for example, if a part has a truth degree
over a threshold for the membership function “MediumLengthObj”, the concept
MediumLengthObj is added to the concept representing that part in the fuzzy
ontology. At the end, we obtain a concept like (for the sake of simplicity we list
only some concepts and roles):

ObjClass1 ≡ MediumLengthObj u SmallObj u ≥ 5 parall u ≥ 1 near u . . .

where ObjClass1 is the newly created concept related to the part which has been
considered. A new fuzzy concept is created only if the current analyzed part does
not belong to any existing concept, i.e. there is no concept that fully describes
the part (it can be verified via the fuzzy reasoner). Since FiRE does not let us
write fuzzy TBox axioms, the degrees of truth are discarded in this phase.

When there are no parts left, a role for each concept is created. For example,
from the class ObjClass1 the role hasObjClass1 is created, so that the class Fork
can be created using the previously found number of objects per class:

Fork ≡ ≥ 1 hasObjClass1 u ≥ 4 hasObjClass2 u ≥ 1 hasObjClass3

This is due to the fact that the f-SHIN logic lacks of the qualified cardinality
restrictions, so a general hasPart role cannot be used. We use a “typographical”
operation, yet the problem of role creation has been faced in [3]. For the sake
of completeness, domain and range role axioms should be added to qualify the
new roles introduced, but the used reasoner does not fully support them yet.

3.4 Object recognition

Once the objects ontology TBox has been built, it is possible to find whether
an object, after it has been decomposed in parts, belongs to a class or not (i.e.

how much it can be considered to belong to the considered class with respect
to a certain threshold); the image analysis steps are the same for the ontology
building phase.

When for every part all the pertaining concepts and roles can be written
in the ABox, the fuzzy reasoning is performed to find the GLB of that part
belonging to a certain class; then, roles like hasObjClass1 are created with the
same value of the found GLBs and, at the end, the GLB of the main object is
calculated.

This procedure can be applied to determine whether a specific kind of grasp
can be performed or not on the selected object. For example, given the concept
defined as (for the sake of simplicity using no roles):

GraspableByPinch ≡ MediumLengthObj u HighlyEccentricalObj

representing objects that are graspable by a pinch grip, we can find which part
of the object (if any) can be grasped this way via a subsumption check.

4 Conclusions

In this paper we have presented a possible architecture for the generation and the
use of a fuzzy ontology for object recognition by means of objects decomposition
in parts. We take advantage of the use of fuzzy cardinality restrictions which, to
the best of our knowledge, have not been fully exploited in the current fuzzy DLs
applications (e.g. multimedia retrieval). Our results are preliminar and prone to
errors, partly due to limitations in the modules in use (e.g. the fuzzy reasoner
is still experimental), partly due to the approximations induced by the use of a
SHIN logic, while at least qualified cardinality restrictions would be needed.

As future work, we plan to take advantage of a more powerful fuzzy DL
as it seems to be needed for object modeling purposes, so we will work on a
more powerful reasoner and on a better integration between classical and fuzzy
knowledge bases; furthermore, as we plan to use the system as an aid to the
grasping task, we will add physical information (that can obtained via different
sensors, e.g. haptic devices) and further information on the grasping types along
with their quality measurements.

References

1. Biederman, I.: Recognition-by-components: A theory of human image understand-
ing. Psychological Review 94 2 (1987) 115-117

2. Bobillo, F., Straccia, U.: An OWL Ontology for Fuzzy OWL 2. Proceedings of the
18th International Symposium on Methodologies for Intelligent Systems (2009)

3. Haarslev, V., Lutz, C., Möller, R.: Foundations of spatioterminological reasoning
with description logics. Proceedings of Sixth International Conference on Principles
of Knowledge Representation and Reasoning (1998) 112–123

4. Hudelot, C.: Towards a cognitive vision platform for semantic image interpretation;
Application to the recognition of biological organisms. PhD thesis. University of
Nice Sophia Antipolis (2005)

5. Maillot, N.: Ontology based object learning and recognition. PhD thesis. University
of Nice Sophia Antipolis (2005)

6. Hudelot, C., Atif, J., Bloch, I.: Fuzzy spatial relation ontology for image interpre-
tation. In: Fuzzy Sets and Systems , 159 15 (2008) 1929–1951

7. Stoilos, G., Stamou, G., Pan, J.Z., Simou, N., Tzouvaras, V.: Reasoning with the
fuzzy description logic f-SHIN : Theory, practice and applications. In P.C.G. da
Costa et al. (eds): Uncertainty Reasoning for the Semantic Web I (2008) 262–281

8. Simou, N., Athanasiadis, T., Tzouvaras, V., Kollias, S.: Multimedia reasoning with
f-SHIN . Second International Workshop on Semantic Media Adaptation and Per-
sonalization (2007) 44–49

9. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrocks, I.: The fuzzy descrip-
tion logic f-SHIN . International Workshop on Uncertainty Reasoning For the
Semantic Web (2005)

10. Mylonas, P., Simou, N., Tzouvaras, V., Avrithis, Y.: Towards semantic multimedia
indexing by classification and reasoning on textual metadata. Knowledge Acquisi-
tion from Multimedia Content Workshop (2007)

11. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in Description
Logics for the Semantic Web. Journal of Web Semantics 6 4 (2008) 291–308

12. Straccia, U.: Towards Spatial Reasoning in Fuzzy Description Logics. Proc. of the
2009 IEEE International Conference on Fuzzy Systems (2009)

13. Suh, I. H., Lim, G. H., Hwang, W., Suh, H., Choi, J.-H., Park, Y.-T.: Ontology-
based multi-layered robot knowledge framework (OMRKF) for robot intelligence.
IEEE Int. Conf. on Intelligent Robots and Systems (2007) 429–436

14. Wan, L.: Parts-based 2D shape decomposition by convex hull. IEEE International
Conference on Shape Modeling and Applications (2009) 89–95

15. Dasiopoulou, S., Kompatsiaris, I., Strintzis, M.G.: Applying Fuzzy DLs in the
extraction of image semantics. Journal of Data Semantics 14 (2009) 105–132

16. Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information re-
trieval. Journal of ACM 48 5 (2001) 909–970

17. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8 6 (1986) 679-698

