
Web Services Based Execution of Business Rules

Rainer Schmidt1

1 University of Cooperative Education Lörrach, Hangstraße 46-50,79539 Lörrach, Germany
Rainer.Schmidt@ba-loerrach.de

Abstract. The inherent distributed structure of business rules shows a high
affinity to the execution of business processes across the internet, as needed for
e-business and e-commerce. However, doing e-business also requires the
integration of an evolving set of heterogeneous services into the business
processes. To cope with these requirements, a web service based execution
model is proposed.

1 Introduction

The execution of business processes across the internet is the core of e-business and
e-commerce. These business processes are not static, but dynamically evolving. Many
services have to interoperate seamlessly, such as ordering, billing, calculation services
etc. In addition, the set of services is not fixed, because business process changes and
extensions require the integration of additional services. The services are scattered
around different enterprises and implemented using different platforms, programming
languages etc. Due to the fact, that there is no centralized organization, the services
are evolving independently. In summary, the execution of business processes means
not only the distributed execution of business processes, but also the integration of an
evolving set of heterogeneous services.
Business processes can be described by a variety of means for instance objects
[FeSi94], [FeSi96], [UML] or events [Sche94]. Describing business processes by
business rules [HKMS94] is done by splitting up the business process to patterns,
which follow an event-condition-action scheme. Therefore, each rule describes which
actions have to be done if a defined event happens and a defined condition is met.
Thus, business rules provide a kind of modularization for business processes and offer
advantages such as flexibility and reusability. Business process changes can be easily
implemented by the exchange of business rules and individual business rules can be
easily reused across different business processes.
The inherent distributed nature of business rules make them a perfect fit for the
distributed execution of business processes across the internet, due to their distributed
nature. However, to support business processes across the Internet, the execution of
business rules has also to meet the other requirements identified above. Therefore,
business rules need an appropriate execution model and environment to cope with the
additional requirements.
Web services [W3WS], [GrSi02] address these requirements, which are not provided
by business rules yet. Therefore, this paper will present first ideas how to combine the

2 Rainer Schmidt

processing of business processes using business rules with the capability of web
services to integrate heterogeneous and evolving sets of services.

2. Web Services

The goal to integrate evolving sets of heterogeneous services has been already
addressed by many approaches, which converge into the concept of middleware.
There are different middleware technologies such as object-oriented middleware
technologies, for instance CORBA [OMG] or component-oriented middleware, for
instance DCOM [Chap96]. Both gave the promise to integrate services in a distributed
environment across operating systems, implementation languages and programming
paradigms.
However, these approaches failed. Although CORBA created a basic interoperability
via IIOP, it does not provide complete interoperability across the different
implementations of CORBA by different vendors [Giso01]. Furthermore,
technologies such as CORBA or DCOM require a large infrastructure, creating huge
efforts in cost and time for their introduction. See [GrSi02], [IBM1] for a detailed
discussion.
To avoid such problems, web services follow another approach to provide service
integration. Web services use existing internet technologies such as HTTP and XML
[XML] as technological basis and therefore are able to use the infrastructure available
in many enterprises. By this means, many problems due to incompatibilities can be
avoided. Furthermore, web services do not try to create another middleware such as
CORBA, DCOM, but reuse the functionality already provided by them.
Web services are implemented by a set of technologies (see [GrSi02] for a complete
description). The basic technology of web services is SOAP [W3WS], the simple
open access protocol. SOAP specifies how services can interoperate over the Internet,
by “wrapping” requests and the responses as XML-documents.
The basic principle of SOAP can be illustrated by a request response sequence, as it is
used for remote procedure calls in a client-server relationship (see Figure 1). The
client can be implemented in any programming language and platform. The same
applies for the server. The soap converter translates the programming language and
platform dependent request of the client into a so-called soap request. This is a XML-
document, following a schema defined in [W3WS]. This document is sent to the
receiver of the request, using standard internet protocols such as HTTP or SMTP,
facilitating the traversal of firewalls. On the server side, another soap converter
decodes the XML-document representing the request into the format required by the
server. After the server has processed the request, the converter encodes the result as
an XML-document, a so-called SOAP-response that is sent back, converted for the
client, and delivered to him.

Web Services Based Execution of Business Rules 3

Firewall Firewall

Figure 1: SOAP request-response sequence

A common misunderstanding about SOAP is that the remote procedure call style
described above is the only one supported by SOAP. However, SOAP is really
specified as a one-way, stateless protocol [W3WS], which can be used to create rather
complicated processing protocols. The key to this capability is the structure of the
XML-document used for the transport of the SOAP-request, the so-called SOAP
envelope (see Figure 2). SOAP envelopes, contain a body for the “pay-load” of the
request (e.g. the procedure parameters), but also a header. The header contains meta-
information controlling the processing of the information in the body. Typical uses
are the definition of the transaction or security context of the information in the body.
However, the information in the header can be freely defined. It may contain any
information, separated into different entries. The structure and the semantics of each
entry may be defined by different XML-namespaces. Thus, a clear separation of the
entries is provided.

Figure 2: Structure of a SOAP-envelope

This structure of a SOAP envelope can be used to control the processing of
information in multiple steps by so-called intermediaries. An intermediary is the
addressee of a header entry, which defines the operations to be performed by the

Envelope

Body

Header

Entry 1

Entry 2

SOAP
Response

SO

Soap converter

SOAP
Request

SOAP
RequestInternet Soap converter

Client Server

AP

Response

4 Rainer Schmidt

intermediary. E.g., entry 1 in Figure 2 may control the processing by intermediary
one, entry 2 the processing of intermediary two etc. By use of intermediaries,
complex processing protocols may be implemented based on web services.

3. An Execution Model for Business Rules Using Web Services

The capability of SOAP-envelopes to control the processing over multiple

igure 3: Basic execution model

Because the header entries may use any namespace, business rules represented in

intermediaries is the basis for an execution model for business rules using web
services. In this execution model, the execution of business processes is done by
forwarding an SOAP-envelope between intermediaries, which are responsible for
processing one or several business rules. The first processing point is called initiator,
the last one addressee. The business rules to be processed are represented by header
entries of a SOAP envelope. By defining an execution sequence of the header entries,
we can represent the execution sequence of the business rules.

Initiator Intermediary 1 Intermediary 2 Addressee

Header entries

Body

F

RuleML [rule] may be inserted as entries into the header of an SOAP-envelope.
Furthermore, not only linear but also network-like processes with alternative
execution can be supported by this concept. As shown in Figure 4 intermediary 1 may
continue execution with intermediary 2a or intermediary 2b by choosing one of both
for the further processing of the SOAP-envelope. This decision may be dependent on
the evaluation of conditions in the business rules. For example, the execution may be
continued with intermediary 2a if a condition is met, otherwise it is continued with
intermediary 2b.

Web Services Based Execution of Business Rules 5

Header entries

Body

Intermediary 1 Intermediary 2a Addressee Initiator

Intermediary 2b

Figure 4: Alternative execution

Furthermore, for differentiating individual instances of a business process we need a
concept to store individual status information and instance specific data. For example,
if we consider an insurance claim process, then the instance specific data represents
the concrete claims number 1,2,3, ..n with different data such as claim value, date etc.
In the execution model process proposed here, for each instance of the business
process, a separate SOAP envelope is used. In figure 5, we see two envelopes, each
representing two process instances with different status. The existence of multiple
envelope instances allows representing the different status of the process instances.

Envelope 1 Envelope 2

Intermediary 1 Intermediary 2 Addressee Initiator

Figure 5: Instance representation using multiple envelopes

The execution of the business rules is done fully distributed, because no dependencies
exist between the executions of business rules by different intermediaries. This is
facilitated by the message-oriented processing of the business rules, which allows,
that each business rule is executed independently by an intermediary. No interaction
with other intermediaries is necessary except when receiving and sending of SOAP
envelopes. This contrasts to RPC-oriented approaches, where a centralized

6 Rainer Schmidt

mechanism is necessary for initiating the – possibly distributed – processing of
business rules.
The execution model proposed offers also a high degree of flexibility, because
changes to the business rules can be easily implemented by changing the XML-
document. Therefore, business rule changes require only changes to a text document.
Other approaches such as the Meteor- and Meteor2-Project [Wang95], [MSKW96]
require the recompilation of program code to implement changes to business rules.
Furthermore, the execution model proposed provides also the transparent evolution of
business processes. Different versions of a business process may be represented by
different versions of the SOAP envelope as shown in figure 6. Versioning of the
SOAP envelope is done by using the XML namespace concept [XML]. By using
different versions of the SOAP envelope, different versions of the business process
may coexist transparently.

Business
Process
Version 2

Business
Process
Version 2

Envelope 1 Envelope 2

Addressee Intermediary 1 Intermediary 2 Initiator

Figure 6: Instance representation using multiple envelopes

The evolution of business processes not only requires the change of business rules but
also the integration of additional services. These additional services can be easily
found by using UDDI (universal description discovery and integration) [UDDI],
another web services technology. It provides a registry that allows quickly finding
additional web services for implementing a process change. The integration is
facilitated by using the web service description language WSDL [W3WS].
The capabilities of SOAP can be used to integrate services transparently into the
business rules encoding the business process. The services may be scattered around
the internet, implemented using different programming languages and running on
different platforms, nevertheless they are transparently accessible by the use of web
services. E.g. during a purchasing process, a check of the buyer’s solvency may be
easily done by a web service based request to the issuer of the buyer’s credit card.

Web Services Based Execution of Business Rules 7

4. Related work

The distributed nature of business processes in e-business and e-commerce obstructs
centralized approaches for process support such as workflow-engines, e.g. [WfMC].
Therefore, the support of business processes in distributed environments has been the
subject of extensive research. The Broker/Services Model in combination with the
EVE middleware [GeTo97], [GeTo98], provides the support of business processes
with ECA-Rules. However, a centralized rule engine is needed. Also the WIDE-
Project [WIDE], [CeGS97], [CGPP97] has the goal to support distributed business
processes, but uses centralized rule engines. The Meteor- and Meteor2-Projekt
[Wang95], [MSKW96] have the aim to create a fully distributed support of business
processes by creating compiled task managers. However, the compilation process
creates a huge effort to implement business process changes. The “Business Rules in
e-Commerce”-Project [IBM2] focuses on semantic interoperability. The Business
Rule Beans (BRBeans) Project [IBM3] still uses Enterprise Java Beans, a component-
oriented middleware with similar restrictions as CORBA.

5. Summary and further work

The use of web services as foundation for the execution of business rules not only
allows a fully distributed execution of business rules but also to cope with the
integration of an evolving set of heterogeneous services and their independent
evolution. Furthermore, using the namespace mechanism of XML allows seamlessly
introducing different versions of business process instances, which may coexist
harmoniously.
However, there still needs work to do. For example, concepts for storing the process
state information have to be developed. They are needed to monitor the execution of
business process instances. In addition, the model has to be extended by registry
services for web services such as UDDI [UDDI].

8 Rainer Schmidt

References

 [BoTW01] H. Boley, S. Tabet, G. Wagner: Design Rationale of RuleML: A
Markup Language for Semantic Web Rules.

[CeGS97] S. Ceri, P. Grefen, G. Sánchez: WIDE - A Distributed Architecture for
Workflow Management. RIDE97. Seventh International Workshop on
Re-search Issues in Data Engineering, Birmingham, England, April
1997.

[CGPP97] F. Casati, P. Grefen, B. Pernici, G. Pozzi, G. Sánchez. WIDE Workflow
model and architecture,
http://dis.sema.es/projects/WIDE/Documents/ase30_4.ps.gz.

[Chap96] D. Chappell: Understanding ActiveX and OLE. Microsoft Press,
Redmond, 1996.

[FeSi94] O. K. Ferstl, E. J. Sinz: From Business Process Modelling to the
Specification of Distributed Business Application Systems - An Object-
Oriented Approach. Bamberger Beiträge zur Wirtschaftsinformatik Nr.
20, Bamberg, 1994.

[FeSi96] O. K. Ferstl, E. J. Sinz: Flexible Organizations Through Object-oriented
and Transaction-oriented Information Systems. Bamberger Beiträge zur
Wirtschaftsinformatik Nr. 37, Bamberg, 1996.

[GeTo97] A. Geppert, D. Tombros: Ereignisgesteuerte Workflow-Ausführung in
verteilten Umgebungen. In [JaBS97].

[GeTo98] A. Geppert, D. Tombros: Event-based Distributed Workflow Execution
with EVE. Technical Report 96.05 (revised 1998). Department of Com-
puter Science, University of Zürich, 1998.

[Giso01] D. Gisolfi: Web services architect, Part 3: Is Web services the
reincarnation of CORBA?. July 2001. http://www-
106.ibm.com/developerworks/library/ws-arc3/index.html

[GrSi02] S. Graham, S. Simeonov et. Al.: Building Web Services with Java,
SAMS Publishing, Indianapolis, Indiana, USA, 2002

http://dis.sema.es/projects/WIDE/Documents/ase30_4.ps.gz

Web Services Based Execution of Business Rules 9

[HKMS94] Herbst, H., Knolmayer, G., Myrach, T., Schlesinger, M., The
Specification of Business Rules: A Comparison of Selected
Methodologies, in: A.A. Verrijn-Stuart, T. W. Olle (Eds.), Methods and
Associated Tools for the Information System Life Cycle, Amsterdam et
al.: Elsevier 1994, pp. 29 - 46 [IBM] www.ibm.com/developerworks

[IBM1] http://www-106.ibm.com/developerworks/library/ws-spmyths.html

[IBM2] http://www.research.ibm.com/rules/home.html

[IBM3] http://www.research.ibm.com/AEM/brb.html

[MSKW96] J. A. Miller, A. P. Sheth, K. J. Kochut, X. Wang: Corba-based run-time
ar-chitectures for workflow management systems. Journal of Database
Management, Special Issue on Multidatabases, Juli 1996.

[OMG] http://www.omg.org

[rule] http://www.dfki.uni-kl.de/ruleml/

[Sche94] A.-W. Scheer: Wirtschaftsinformatik. Referenzmodelle für industrielle
Geschäftsprozesse, 4. Auflage. Springer Verlag, Berlin, 1994.

[UDDI] www.uddi.org

[W3] www.w3.org

[W3WS] http://www.w3.org/2002/ws/

[Wang95] X. Wang: Implementation and Evaluation of CORBA-Based
Centralized Workflow Schedulers. Master’s thesis. University of
Georgia, August 1995.

[W3C] www.w3c.org

[WfMC] Workflow Management Coalition:
http://www.aiai.ed.ac.uk/project/wfmc/

[WIDE] WIDE Projekt: Project Description and Objectives.
http://www.sema.es/projects/WIDE/Objectives.html

[WSI] www.ws-i.org

[XML] www.xml.org

http://www.research.ibm.com/rules/home.html
http://www.w3.org/
http://www.w3c.org/
http://www.aiai.ed.ac.uk/project/wfmc/
http://www.sema.es/projects/WIDE/Objectives.html
http://www.xml.org/

	References

