OntoAgent: A Platform for the Declarative
Specification of Agents

Andreas Eberhart

International University in Germany
eberhartQi-u.de
http://www.i-u.de/schools/eberhart/
Campus 2, 76646 Bruchsal, Germany

Abstract. This paper presents a detailed description of our OntoAgent
framework. It allows a software agent to be specified entirely using stan-
dard mark-up languages from the Semantic Web community, namely
RDF, RDF Schema, and RuleML [2]. The basic agent components are
identified and their implementation using relational databases and Java
technology is described. The agents communicate via standard Inter-
net protocols. Furthermore, we suggest action rules that allow agents to
become active spontaneously, as well as a framework for interfacing the
agents with intelligent applications that can perform learning algorithms
or other complex tasks.

1 Introduction

In the recent years we have witnessed the tremendous success of browser-based
web applications. A vast array of goods and services can be bought or reserved
online. Most of these offerings require manual interaction though. Therefore, a
lot of work has been done in trying to automate processes across the Internet.
The B2B community had some success in defining message and API standards
for information exchange. However, the general consensus seems to be that agent
technology will ultimatively allow previously unseen levels of flexibility in the
interaction and ad-hoc configuration of a swarm of agents. A lot of research has
been done in this area; however, agent technology has yet to achieve a major
impact on today’s Internet. Recently, the Semantic Web initiative has gotten a
lot of attention. The idea is that with the definition of a stack of standard mark-
up languages such as RDF, RDF Schema, DAML+OIL, and RuleML, software
agents will be able to collaborate on a large scale without having to be dependent
on a set of predefined interfaces. Common shared ontologies are thought to be
the crucial centerpiece of this vision by formally conceptualizing the agents’ ap-
plication domain [1]. Boley et al. extend this idea and suggest that an agent can
be constructed entirely using mark-up [2], allowing a declarative specification of
software agents. We believe that this approach would simplify the development
and adoption of agents tremendously. In this paper, we present OntoAgent, a
platform for the specification of agents using RDF, RDF Schema, and RuleML.

Our initial implementation of OntoAgent described in [3] is extended with a de-
tailed classification of rule types and their implementation, an extensive overview
of the architecture and our design choices, as well as a description of possible
future work on integrity constraints and intelligent agents.

The rest of this paper is organized as follows. The next section describes
the generic components of an agent and how these can be modeled using Se-
mantic Web mark-up techniques. Section 3 describes the individual modules of
the OntoAgent framework in detail. This section ends by introducing a possible
extension allowing the system to learn by having an intelligent application in-
terface with the agent and adapt the agent rules as a result of learning progress.
The paper concludes with an outline of future work and a summary.

2 Background

In the recent years, several definitions for the term agent have been given.
Franklin and Graesser provide a nice overview of different definitions in [6].
They define an autonomous agent as “... a system situated within and a part
of an environment that senses that environment and acts on it, over time, in
pursuit of its own agenda and so as to effect what it senses in the future”.

2.1 A Generic Agent Architecture

Boley et al.’s definition refines the statement above by identifying the five ma-
jor components illustrated in figure 1. The following paragraphs explain each
component’s function as well as how it can be represented using Semantic Web
mark-up languages.!

Mental State Every agent has a mental state, which is a set of facts it believes to
be true. While there are a large variety of knowledge representation techniques
available, simple directed labeled graphs have become the method of choice in the
Semantic Web community. Objects or resources, represented by graph nodes, are
interconnected via labeled relationships. The Resource Description Framework
(RDF) can be used to serialize such graphs.

Schema for the Mental State Shared Ontologies are thought to be the key en-
abling technology for agent interoperation. A class taxonomy along with proper-
ties defined for the classes are the basic components of such an ontology. There-
fore, ontology representation languages like RDF Schema and DAML4OIL pro-
vide syntax for the definition of classes and properties and they can be used
to model a schema of an agent’s mental state. Before agents can successfully
exchange und understand each other’s messages, they should agree on a com-
mon ontology to use. Otherwise it is not guaranteed that the data is interpreted
according to the shared domain conceptualization.

! Refer to http://www.w3.org/RDF/, http://www.daml.org/, and http://www.
dfki.uni-kl.de/ruleml/ for the detailed specifications.

' t

MSG In Send Command
Event Condition Action Rules

Deductive Database
Derivation Rules

Integrity Constraints Facts

Fig. 1. Components of a generic agent.

Integrity constraints Rules play a pivotal role as they appear in
the following three agent components. Integrity constraints such as IF
condition-not-fulfilled THEN error can be viewed as logic statements used
to exclude illegal mental states. The RuleML initiative is currently planning to
include integrity constraints in one of the next versions. Currently, they appear
for example in SQL (check, create assertion, referential integrity, etc.) or UML’s
Object Constraint Language (OCL).

Derivation rules The classical form of rules are derivation rules such as
IF condition THEN conclusion. They specify the agent’s terminological and
heuristic knowledge and allow deriving new information from the basic set of
facts known to the agent.

Reaction rules Reaction rules define the agent’s behavior in response to events
and messages. Reaction rules are often referred to as Event Condition Ac-
tion (ECA) rules and have the following form: UPON message RECEIVED: IF
condition THEN action. While derivation rules influence the agent’s reasoning
by establishing conclusions, reaction rules can trigger actions such as sending
email, printing a message, or sending a message to another agent.

2.2 Rationale for Rule Extensions

In addition to these three rule types that are used to model these basic agent
building blocks, we introduce the following two categories.

Queries In many applications it is desirable for some sort of intelligent applica-
tion to query an agent’s mental state. We therefore consider queries, which can
be viewed as a derivation rule without rule head. Rather than deriving conclu-
sions, a query yields the variable assignments for which the query’s condition is
true: IF condition THEN yield-result. These variable assignments are then
returned to the caller.

Action Rules Finally, we consider the situation where an agent not only reacts
to external events, but can also act spontaneously. Therefore, we define action
rules to be a special case of reaction rules where only the condition is necessary
to trigger the action part. Table 1 summarizes the three basic rule types and our
two additional rule classes.

The main argument for our extension comes from the question of how the
message flow between agents is initiated. Our standpoint is that an agent should
also be able to actively examine, i.e. query, its environment. In certain situations,
these queries should be activated without an external stimulus. We think that
agents will often try to obtain information from a legacy system via an RDF
wrapper interface. The alternative standpoint is a more workflow-oriented view.
Such a scenario might have sensors outside the agent that actively inform agents
via the proposed event interface. Even though it makes the implementation more
complicated, we choose the first approach in order to solve the message initiation
problem.

Rule Type |Description Invokation |Example
Derivation |Define derived concepts on top of|Other rules |[IF condition THEN
Rules base concepts conclusion

Action Rules IF' condition THEN

action

Like derivation rules but can con-
tain commands like send email,
print message, or assert new fact
in the rule head

Like action rules but in addition to
a condition, an external event or
message is needed for the rule to
fire

After update

Reaction
Rules (ECA)

Incoming
message

UPON message RE-
CEIVED: IF condi-
tion THEN action

Queries Obtain base data and derived data|Application |IF condition THEN
from derivation rules yield-result

Integrity Make sure that the agent’s internal|After update|IF condition-not-

Constraints |state is legal with respect to the fulfilled THEN error

application domain

Table 1. OntoAgent rule types

2.3 Rule Execution

The rule classes expose important differences with respect to their execution
behavior. Queries are initiated by an external component like an application or
another agent. The local agent then services this request. The search condition
is evaluated against the base facts and the derived facts. Therefore, derivation
rules will be triggered if the search condition tests predicates that appear in

T MSG In Intelligent App . Remote Query
A Update Change Rules Query
=}
§ g OntoSQL (RuleML to SQL)
5 S JDBC
T &
& Dat
g ET atabase Derivation Rules
<
Integrity Constraints Facts

Fig. 2. Components of an agent running on the OntoAgent platform.

the rule heads of derivation rules. All these operations are read only due to the
backward-chaining nature of our system. Action rules and integrity constraints,
however, react to changes to the base facts. Integrity constraints need to be check
after each update operation in order to make sure the new state is consistent.
Similarly, action rules can only be activated after an update. If this were not the
case, they would fire permanently. Thus, both types of rules can be activated by
a one-time event of a fact being inserted. ECA rules also react to such an event.
Rather than an update, an incoming message or event is the deciding trigger for
these kinds of rules.

These observations play an important role for the implementation of our
OntoAgent platform.

3 Implementation of the Agent Framework

There are several rule engines available today, many of them even supporting
RuleML. SweetRules [7] and the TRIPLE system [8] are arguably is the most
prominent among those. We chose to base the OntoAgent platform mainly on
our OntoSQL platform. OntoSQL’s main advantage is the fact that it bases on
mainstream relational database technology. Executing such an agent specifica-
tion requires a data store, an inference engine operating on top of it, as well as a
messaging system for incoming and outgoing communication. This section will
pick up the generic agent components mentioned in the previous section and
describe the underlying major design decisions as well as the implementation
basing on the OntoSQL [4] system.?

2 The OntoAgent and OntoSQL software is available at http://www.i-
u.de/schools/eberhart/

3.1 Deductive Database

As illustrated in Figure 2, the fact base along with the derivation rules build
the agent’s foundation. Derivation rule engines are often referred to as deductive
databases. This section briefly describes how a relational database server can
function like a deductive database.

Storing the Facts We chose a very straightforward approach for storing the RDF
graph representing the agent’s mental state. A table is created for every predicate
or graph label found. OntoSQL can read this information directly from the RDF
Schema file specifying the ontology to be mapped.

create table [PredicateName]Fact
(
subject varchar(255),
object varchar(255),
primary key(subject, object)

A tuple (S,0) in the table PFact then represents the RDF triple (S,P,0).
Note that the choice of the composite primary key avoids duplicate entries in
the respective predicate tables. Every subject and object refers to a resource.
The resource’s type is stored in the typeFact table, which is implicitly created.
We do not require referential integrity of subjects and objects to subjects in the
typeFact table since a resource with no type information is treated as the most
general type RDF-Resource.

Derivation Rules Using relational databases as deduction engines is a well-
established practice in the database community. OntoSQL implements the ideas
presented in [5]. Every predicate is converted into an SQL view as follows. As-
sume rule-1 through rule-n contain the predicate in their rule heads:

create view [PredicateName] as
select subject, ’[PredicateName]’, object
from [PredicateName]Fact
union
select clause for {\tt rule-1}
union

union
select clause for {\tt rule-n}

The first query selects the known base facts from the respective table. These
definitely must be included in the result. The remaining components of the
overall union query can be obtained from the derivation rules. The individual
rules are translated to SQL queries as outlined in the following example. Consider
the rule a(X,Y) « b(X,Y) A ¢(Y, “const”). The conjunction is translated into

the equi-join of b and ¢ on the variable Y. In turn, the columns to be selected are
determined by the position of the variables in the rule head and body. Further
conditions such as ¢’s object having to be equal to “const” appear as additional
conditions in the query’s where clause:

select b.subject, ’[PredicateName]’, b.object
from b, c
where b.object = c.subject and

c.object = "const"

Note that b and c are again views, not the fact tables. This causes them
to be executed if the select statement above is evaluated. Obviously recursive
rule definitions will clash with a relational database’s evaluation algorithm and
an error will be raised when the view is to be created. OntoSQL provides two
solutions for this. IBM’s new version of DB2 supports SQL99 recursive query
definitions allowing a view to appear in its own definition. OntoSQL also sup-
ports other databases by simply computing the union of a series of self joins on
the table. This works fine if the recursion depth is smaller then the maximum
number of times the table is self-joined. Unfortunately, this number depends on
the current state of the fact base and might therefore exceed the fixed number
of self-joins during runtime. Consequently, this workaround should be avoided if
possible.

Integrity Constraints An important means to keep the database clean and in
a correct state are the so-called integrity constraints. It is desirable to perform
as many checks directly inside the database as possible, rather than pushing
this duty up to an application. The SQL check mechanism allows restricting the
range of a certain attribute. Referential integrity and uniqueness constraints are
usually used for clean modeling of database schemas. However, the traditional
database integrity constraint mechanisms are not really applicable in our case
since the schema used is very generic. It can essentially be reduced to a single
subject, predicate, object table. This approach has clear advantages in dealing
with semi-structured data; however, it requires more effort to be put on the
definition of constraints.

The create assertion construct would solve this problem, since it allows a
constraint to be defined as a condition including several tables. In contrast,
the check construct only allows referring to other attributes of the same table.
Unfortunately none of the major database vendors currently implements this
feature.

We propose to use SQL triggers in this case. Consider the following example
of a trigger ensuring that the domain of the predicate fatherOf is the class of all
males.

create trigger fatherOfSignature
on fatherOfFact, typeFact
for insert, update, delete

as
if exists (
select * from father(Of where subject not in
(select subject from type where object = ’Male’)

begin
raiserror (’Fathers must be Male’, 16, 1)
rollback transaction

end

Triggers basically consist of an SQL statement that is executed upon an
update. A trigger must be defined for a certain table. It seems natural to de-
fine this trigger on the fatherOfFact and typeFact tables since their views
appear in the condition’s SQL statement. However, other predicates such as
isParentOf can imply fatherhood via a derivation rule. The respective fact ta-
bles, isParent0fFact in this case, would therefore also need to have this trigger
defined on them. The trigger syntax allows using the pseudo tables deleted and
inserted in the body. These tables have exactly the same structure as the base
table, but only contain the deleted or the changed and inserted tuples of the ta-
ble. This feature can be used to do incremental checks only on the tuples affected
in the current transaction.

The question arises, whether we can use these pseudotables rather than re-
computing the entire views again. While this is possible for simple cases, for
example if the predicate does not appear in any derivation rule, the general case
seems to get quite complex. One would have to rewrite the queries described
in the previous section by replacing [PredicateName] with inserted. Further-
more, the delete case would require different logic. If the triple (Pat, type, Male)
is deleted from the type base facts, the integrity constraint is only violated if
Pat is a father and there are no other facts, such as (Pat, type, Tall M ale), that
allow us to conclude that Pat is male.

In case of a constraint violation, the trigger causes the current transaction
to be rolled back, undoing all changes that lead to the violation. Figure 3 shows
an example of the above trigger in action. It shows Microsoft Access which is
used as a graphical front-end for SQL Server. The “Fathers must be Male” error
shows up since Fido the dog cannot be Peter’s father.

The RuleML initiative is currently working on extending their rule language
to include syntax for constraints as well.

Currently, OntoAgent provides no support for the specification of integrity
constraints. This quite non-trivial task is entirely left up to the application de-
signer. At least applying the brute-force strategy of defining the trigger for all
tables can solve the problem of deciding which tables need to be associated with
a certain trigger. Another complication is that constraints often require existence
and forall quantification. The example above could be read as: raise an error if
there exists a father who is not in the set of male persons.

=10l x|

e _lolx
1 [subject ohject | — _““ng“j
Peatar Male | 1 | subject | object
Jane Female | Bter anie
Fido Do | Fldu Feter
1
51

"’ij ODBC--insert on a linked tabls 'ontosgl_fatherof' failed,

[Micrasoft][ODBC SOL Server Driver][SOL Server]Fathers must be Male (#50000)

Help I

Fig. 3. Triggers can enforce integrity constraints at the database level. The dog Fido
cannot be Peter’s father and the transaction is rolled back.

3.2 Agent Actions

The previous section laid the agent’s foundation by providing the fact store,
inferencing, and the capability to exclude illegal mental states. This section will
now explain how agent’s can perform actions in order to interact with their
environment,.

Command Library We chose to implement the command library in Java. Java
offers a rich array of build-in functionality such as threading capabilities and
a large selection of abstract data types. Furthermore, an extensive variety of
external libraries are available as Java archives for sending email or SOAP RPC
functionality. Table 2 shows the most important commands that can be triggered
from rules.

print (X) prints X to the console
assert(triple) permanently asserts new fact
delete(triple) permanently deletes fact
email (X,Y) sends X the email with text Y
load (URL) loads RDF from URL and asserts the triples
send(X,triple-1,...,triple-n) sends X a message consisting of triples

Table 2. OntoAgent command library

The send, email and load commands are executed within their own thread,
since these operations can potentially take a long time and could stall the en-
gine’s execution. The load command allows the agent to interface with any RDF-
enabled information source. This could be an enterprise information system as
well as another agent’s remote query interface.

Asserting new facts has to be used with care, since a potentially only tem-
porarily valid agent state can cause facts to be asserted permanently. Never-
theless, we believe that the assert and delete functionality is very important.

Assume an agent wants to maintain a history of important events in order to
use them for making further decisions. Data about the events could be stored
and deleted by action rules. The decision-making rules could be designed with
the temporary nature of the data in mind. For example, these rules could have
a heuristic character.

Action Rules As shown in table 1, action rules, like integrity constraints, get
evaluated upon updates to the fact base. Again, triggers seem to be the natural
choice, especially since both the Oracle and IBM database servers support Java
stored procedures. This would make it extremely convenient to combine Java’s
flexibility with the reuse of an existing trigger mechanism. However, there is
a complication. Integrity constraints must hold all the time. Therefore, it does
not matter if they are evaluated when it is not really necessary, i.e. due to the
problems we described with the triggers’ incremental strategy.

Action rules, however, must only fire, if a variable binding makes the con-
dition true when it was not beforehand. The following example illustrates the
issue: If all parents receive a congratulation email, we only want them to get
the email if their child was just born. If we’d simply check the condition, every
parent would get the mail after any child was born.

Due to this problem we opted for a solution where action rules are triggered
from outside the database. After each update, the action rules’ conditions are
checked via the JDBC interface. The resulting tables containing the variable
assignments are stored in a Java abstract data type, along with the command
they trigger. This information is then compared to the previous state and calling
the appropriate methods in the command library performs all new actions:

set currentState = EMPTY
forever
upon update:
check action rule conditions
store results in variable newState
for each action in newState and action not in currentState
perform action
currentState = newstate
next

3.3 Communication Subsystem

In our system, we distinguish between two basic types of messages: queries and
information messages. Figure 2 shows that the message input and remote query
components handle the respective incoming events and messages, whereas out-
going messages and queries originate from the command library. This section
describes the structure of the messages, their effect on the agent, as well as the
implementation basing on the modules previously introduced.

Queries from Remote Agents An agent sends queries in a synchronous manner,?,

in order to obtain data from another agent. Since most RDF parsers support
reading data from URLs, it seemed natural to package the query inside an HTTP
GET request. This simple mechanism can easily be replaced by using SOAP
middleware. We are working on an implementation using the axis web service
engine* in conjunction with the tomcat web server. The answer obtained is
then an RDF/XML document. We support very simple queries retrieving all
outgoing arcs from an RDF resource (subject,?,?) or all outgoing arcs from an
RDF resource with a specified label (subject, predicate,?). A query sent to the
agent at host could look as follows:

http://host/servliet/Query?subject=...&predicate=...&object=7

The RDF result is then added to the querying agent’s fact base via the
update interface. Figure 2 shows that messages or queries from the agent are
initiated from the command library which is in turn activated by the action rule
component. The following action rule causes the agent to query some information
host for a customer’s preferences, which are then also asserted into the local
database:

queryAndAssert(” http : //infohost/servlet/”, Cust,” hasPreference”,”?”)
+ isCustomerO f(Cust, Comp)

The implementation of the query servlet only requires reading the requested
predicate view and formatting the result in RDF. Future versions of OntoAgent
might incorporate an RDF query language or the recently published RuleML
query specification, in order to allow for more flexibility in the queries.

Reaction (ECA) Rules Obviously reaction rules are quite similar to action rules.
Consider the following example:®

ON RECEIVE requestReservation(?CarGrp, 7Period) FROM ?Customer
IF hasCapacity(?CarGrp, 7Period)
THEN SEND askIf(blacklisted(7Customer)) TO Headquarter

The first challenge is to correctly associate an incoming message with a cer-
tain ECA rule. The condition will again be computed via an SQL view. There-
fore, the second task is to pass the incoming values into the view. One approach
would be to use triggers again. Triggers themselves are ECA rules. A table MsgIn
would be created for incoming messages. For the example above, the message
handler stores a tuple (requestReservation, CarGrp, Period, Customer). A trig-
ger reacts on inserts into this table. We can pass the tuple values into the SQL
condition by joining the message table with the other predicates:

3 Synchronous meaning that the calling thread is blocked. Note that, as described
in section 3.2 the caller specifically starts a new thread to be able to resume its
operation.

* http://xml.apache.org/axis/

5 The example is taken from http://tmitwww.tm.tue.nl/staff/gwagner/AORML/

create trigger HandleRequestReservation

on Msgln
for insert
as

for all tuples in (
select hc.sender from hasCapacity hc, inserted i
where i.msgType = ’requestReservation’
and hc.subject = i.pari
and hc.object = i.par2

call send(askIfBlacklisted, hc.sender, Headquarter)
remove message

Compared to the action rule case, this trigger only needs to be defined to
react upon inserts in the message table, since only an incoming message can
trigger an action. Nevertheless, we decided against this approach for the following
reasons. First and foremost, this approach requires quite a lot of additional
functionality in OntoSQL. Secondly, triggers and trigger actions tend to be fairly
dependent on the implementation of the database server. It would be quite hard
to support the major vendors. Finally the following alternative turns out to
nicely leverage our action rule functionality. We treat the predicates that appear
in the message as regular RDF Schema predicates. The handler for the incoming
messages temporarily inserts the contents of the message into the database.
Note that we use the intermediate resource Reservation to represent the ternary
relationship between Customer, CarGrp, and Period:

request Reservation(Customer, Reservation)
hasCarGrp(Reservation, CarGrp)
hasPeriod(Reservation, Period)

The rule is rewritten by treating the ON RECEIVE part as a normal condition.
If the entire condition is met, the rule fires which mimics the desired reaction
rule behavior. After the insert, which triggers the ECA rules (which actually
become action rules), the message facts are deleted again:

receive message M(pl, p2, ..., pn)

insert parameters (pl, p2, ..., pn) into fact base
(this can trigger certain actions of ECA rules)

remove parameters (pl, p2, ..., pn)

3.4 Intelligent Application

Agents become intelligent agents if they are able to learn. Since machine learn-
ing techniques usually base on a wide variety of computational algorithms, it
seems awkward to try and implement rule-based learning algorithms. We pro-
pose a different setting. Figure 2 shows an intelligent application component
that interfaces with the basic agent framework. In such as layered architecture,

the learning algorithms can be implemented in any language or system using
traditional techniques. The base data, however, can come from the deductive
database via the query interface. The intelligent application can influence the
basic framework in two ways. It can assert and delete base facts altering the in-
ference results and ultimately the agent’s behavior. More importantly, though,
the rules themselves can be modified over time. Since we operate on top of a
relational database, this would only require drop/create trigger/view statements
that can even be performed while the agent is running.

We believe that the declarative specification is a great tool to let researchers
and developers focus on the learning and behavioral aspects of agent technology
located in the top layer of the architecture shown in figure 2. We currently using
OntoAgent in the development of a collaborative agent system for document
retrieval [3]. The idea is that a community of users all shares their personal
collection of links to relevant online reading material. Rules are used to determine
whom to ask in a given situation. The idea of an intelligent application might
even be something as simple as a feedback system, where the user, over time,
tells its document retrieval agent who provided the best links.

4 Future Work

Besides the application mentioned above, we are working on some of the aspects
that are currently not implemented. We follow the RuleML developments with
respect to queries, reaction rules, and integrity constraints.

Other important aspects are security and trust amongst the agents. Cur-
rently, a malicious agent can query the entire deductive databases of all other
agents. To solve this issue, we are thinking about dropping the remote query
mechanism and require an agent to send a regular message instead. This would
allow the other agent to decide what to reply. We are also thinking about certain
fact metadata fields such as who asserted a fact and possibly where it came from.

Last but not least we need to gain more experience on performance issues
as well as the handling of different approaches, for example regarding integrity
constraints. It will make sense to revisit the Java vs. SQL design choices, once
the database vendors support more functionality.

5 Summary

This paper bases on Boley et. al’s [2] idea of specifying an agent entirely using
the Semantic Web mark-up languages RDF, RDF Schema, and RuleML. We
described our implementation of OntoAgent, which bases on the OntoSQL tool
that allows using a relational database as an inference engine. With a set of add-
ons, written in Java, we were able to augment the system with the necessary
components, i.e., reaction rules, a command library, and a messaging subsystem
based on HTTP. Several design choices and trade-offs were discussed. In several
cases we opted against the pure SQL variant with assertions and triggers due

to varying database implementations, unimplemented features, and engineering
simplicity.

We believe that this is an extremely promising approach since it relieves
programmers from many of the burdens that are usually inherent with the im-
plementation of agent systems. It also makes it easier to integrate agents written
by different teams. Agreeing on a common RDF Schema and proper action and
reaction rules that enable collaboration would be prerequisites for that.

Acknowledgements

We want to thank Gerd Wagner at the Eindhoven University of Technology
as well as the reviewers for their valuable comments and suggestions.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
pages 28-37, May 2001.

2. H. Boley, S. Tabet, and G. Wagner. Design rationale of RuleML: A markup language
for Semantic Web rules. In Semantic Web Working Symposium, 2001.

3. A. Eberhart. An agent infrastructure based on semantic web standards. In Proc.
of the AI-2002 Workshop on Business Agents and the Semantic Web, May 2002.

4. A. Eberhart. Automatic generation of Java/SQL based inference engines from RDF
Schema and RuleML. In Proc. of the International Semantic Web Conference 2002,
Sardinia, February 2002.

5. R. A. Elmasri and S. B. Navathe. Fundamentals of Database Systems, chapter 24,
pages 729-760. Addison-Wesley, second edition, 1992.

6. S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy for
autonomous agents. In Agent Theories, Architectures, and Languages, pages 21-35,
1996.

7. B. Grosof. Representing e-business rules for the semantic web: Situated courteous
logic programs in ruleml. In Proc. of the Workshop on Information Technologies
and Systems (WITS ’01), 2001. Also refer to the extended version of the paper at
http://ebusiness.mit.edu/bgrosof/paps/wits01-extended-working-paper-12-01.pdf.

8. M. Sintek and S. Decker. TRIPLE - an RDF query, inference, and transformation
language. In Proceedings of the International Conference on Applications of Prolog,
Tokyo, Japan, October 2001.

