
Design of supplier agents for an auction-based

market?

Stefan Botman, Mark Hoogendoorn,
Vasile Bud, Ashutosh Jaiswal, Steve Hawkins,

Yelena Kryzhnyaya, Janice Pearce, Anne Schoolcraft, Espen Sigvartsen,
John Collins, and Maria Gini

University of Minnesota

Abstract. We are interested in supporting multi-agent contracting in
which customer agents solicit the resources and capabilities of other self-
interested supplier agents in order to accomplish their goals. Goals may
involve the execution of multi-step tasks in which different tasks are
contracted out to different suppliers.
In this paper we focus on the design of supplier agents. The agents are
designed to operate in the context of the MAGNET (Multi AGent NEgo-
tiation Testbed) system, but the design could easily be adapted to other
situations in which agents interact through a market infrastructure.
MAGNET supplier agents can register their capabilities with the market,
be notified of open and relevant requests for quotations, and submit
bids that specify which tasks they are able to undertake, when they
are available to perform those tasks, and at what price. Supplier agents
attempt to maximize the value of their resources.
The paper describes the detailed design of supplier agents and presents
preliminary experimental results.

1 Introduction

Online marketplaces offer benefits to both buyers and sellers. For buyers, a
marketplace can significantly ease the process of searching for and comparing
providers, while for sellers, marketplaces provide access to much broader cus-
tomer bases. The major challenge in extending currently available online mar-
ketplaces comes from the necessity to go beyond simple buying and selling. A
realistic system needs to incorporate time constraints, to enforce deadlines, to
interact with a highly distributed web of suppliers with different capabilities and
resources, to interact over long periods of time through the completion of the
contracted work, and to deal with failures in contract execution.

The proliferation of business-to-business portals such as CommerceOne
(www.commerceone.com) and VerticalNet (www.verticalnet.com) shows the
need and industry demand for value-added services such as security, match-
making, and trusted intermediaries. A framework which can successfully address
? Work supported in part by the National Science Foundation, awards NSF/IIS-
0084202 and NSF/EIA-9986042

E Yu
35

2

the full spectrum of the requirements mentioned above needs to provide support
for contracting activities among participants, as well as provide support for au-
tomated agents that act on behalf of human participants.

In order to model these features the MAGNET (Multi-Agent Negotiation
Testbed) system has been designed at the University of Minnesota [Collins et
al., 1998]).

2 The MAGNET system

The MAGNET architecture provides a framework for secure and reliable com-
merce among self-interested agents. What makes MAGNET unique is its ability
to support negotiation of contracts for tasks that have temporal and precedence
constraints [Collins et al., 2002]. MAGNET shifts much of the burden of market
exploration, auction handling, and preliminary decision analysis from human
decision-makers to a network of heterogeneous agents.

2.1 A Motivating Example

For example, imagine that we need to construct a house. Figure 1 shows the
tasks needed to complete the construction. The tasks are represented in a task

network where links indicate precedence constraints. The first decision we must
make is how to sequence the tasks in the Request for Quotes (RFQ) and how
much time to allocate to each of them. For instance, we could reduce the number
of parallel tasks, allocate more time to tasks with higher variability in duration
or to tasks for which there is a shortage of laborers, or to allow more slack
time. We assume that suppliers are more likely to bid, and to submit lower-cost
bids, if given greater flexibility in scheduling resources [Babanov et al., 2002], so
time windows in the RFQ might overlap. A sample RFQ is shown in Figure 1.
Note that the time windows in the RFQ do not need to obey the precedence
constraints; the only requirement is that the accepted bids obey them.

Roofing

Masonry InteriorPlumbing

Electric

Exterior

2

3

4

1 5 6

1086420
week

Roofing

Interior

Masonry

Exterior

Electric

Plumbing

Fig. 1. A task network example and a corresponding RFQ.

E Yu
36

3

Market

Market
Ontology

Market
Session Determination

Bid
Advice

Bid

State
Information

SupplierAgent

Communication

Market
Communication

SalesGoal
Advice

Cost
Advice

PriceManager

SalesAnalyst

AgentState

BidManager Resource
Manager

Manager

Top-Level
Goal

Re-Plan

Re-Bid Assignment
Task

Task
Network

CustomerAgent

Planner

Bid
Manager

Execution
Manager

Model
Domain

Protocol
Bid

Market
Statistics

Responses
Events &

Bid Protocol

ModelDomain
MarketStatistics,

Fig. 2. The MAGNET architecture.

2.2 The MAGNET Architecture

The architecture of MAGNET is illustrated in Figure 2. The MAGNET system
consists of supplier agents, customer agents, and a market. The supplier agent
has resources to offer, while the customer agent has resource and/or service
needs.

This is a schematic outline of the main interactions among agents.

– A customer agent issues a Request for Quotes (RFQ) which specifies tasks,
their precedence relations, and a time line for the bidding process. For each
task, a time window is specified giving the earliest time the task can start
and the latest time the task can end.

– Supplier agents submit bids. A bid includes a set of tasks, a price, a portion
of the price to be paid as a non-refundable deposit, and estimated duration
and time window data that reflect supplier resource availability and constrain
the customer’s scheduling process.

– The customer agent decides which bids to accept. Each task needs to be
mapped to exactly one bid (i.e. no free disposal [Nisan, 1999]), and the
constraints of all awarded bids must be satisfied in the final work schedule. In
MAGNET the customer can chose from a collection of winner-determination
algorithms (A*, IDA*, simulated annealing, and integer programming).

– The customer agent awards bids and specifies the work schedule.

3 Architectural Design Principles

We now briefly outline the design principles behind MAGNET. We have adopted
several design principles that make it easy to plug components together and to
reconfigure the system. Examples are:

1. The system is written in Java and has been tested on multiple platforms.
This makes it easy to adopt on whatever platform you happen to be using.

E Yu
37

4

2. The system is organized into a set of components, and a set of systems
that can be constructed from various subsets of components. Each system is
constructed to serve a particular experimental purpose.

3. All the major behavioral modules are written as abstract classes, with (po-
tentially) multiple implementations that can be “plugged in” to implement
a particular behavioral variant.

4. Virtually every feature of the system is selectable and configurable from a
configuration file, and many of these can be viewed and changed from a user
interface. This includes the choice of behavioral plug-ins.

5. The interface between the agents and the Market is also abstracted. This
allows connection with multiple types of markets (such as one that looks up
price and availability info from a catalog or timetable) and through multiple
communications protocols.

6. Much of the activity of the agent is agenda-driven, and development and
maintenance of the agenda is an important activity in its own right. Agenda
items can select plug-ins, update configuration details, evaluate options, in-
teract with the market or other agents, update the agenda, and record re-
sults.

7. A pervasive logging and data collection system allows for both detailed ex-
amination of behavior and the generation of experimental data. The level of
logging detail may be independently configured for different modules, and
the various logging levels have well-defined meanings.

The MAGNET market exists as an EJB and interacts with customer and
supplier agents through the use of the SOAP services described earlier. Market
sessions exist also as EJBs and are created and accessed through the us of market-
related SOAP services. Session persistence is addressed through the use of entity
beans, which are persistent as needed through the use of an application server’s
database. Session-related EJBs are used by the RFQ, bid submission, and bid
award SOAP services.

3.1 Security

The current MAGNET implementation does not have robust security, except for
the rudimentary security provided by Java’s sandbox model. The security needs
for the system can be classified into three main components: (1) authentication,
(2) authorization, and (3) non-repudiation.

Authentication is the process of identifying an entity, based on the informa-
tion provided by it and verified by the system. In MAGNET, agents join and
leave as needed to carry out transactions with other agents. The agents need to
be authenticated before they join the system. We plan to carry out this process
through the market. Absence of a secure authentication mechanism leaves the
potential for rogue agents sneaking into the system.

An agent operates on behalf of its principal, which may be a person, a cor-
poration or some other physical entity. Authenticating an agent would mean

E Yu
38

5

authenticating the principal indirectly. Public Key Infrastructure (PKI) and Ker-
beros are two acknowledged methods used for authentication. The first involves
using digital certificates from certificate authorities, which are presented by an
entity to the authenticating system each time its identity needs to be established.
Kerberos involves using unique keys, called tickets, to exchange secure messages
between two entities on an open network. The decision on which system to use
requires analyzing the computational power needed to perform encryption of the
channel.

Authorization is the process of granting or denying access to system objects
to an entity based on its identity. This step is usually preceded by authentication.
In the MAGNET system, agents utilize market resources to exchange messages
with other agents, place and receive bids etc. In order to use the market resources,
the agents need to have proper authorization. This can be done based on the
origin of the code (signer) or the user executing the agent code.

Non-repudiation is a property achieved through cryptographic methods which
prevents an entity from denying having performed a particular action related to
a set of data [OECD, 1997]. What this means is that an agent would not be
able to deny an operation after committing it. This is a desirable property to
maintain trust in the system. If the first two components are executed properly,
non-repudiation would just require the use of logs for these transactions.

3.2 Recovery of Agent State

To increase reliability, MAGNET agents periodically save their state in a database,
which allows for recovery in case of a crash.

The database we selected is JDBM 1 (Java Data Base Manager). JDBM
offers persistent storage, and is a relatively fast and simple database engine. All
updates are transactionally safe. JDBM offers scalable data structures, such as
Hash trees and B+ trees. All operations in the database have ACID properties,
and the database uses a transaction log and can perform a recovery in case of a
crash.

The JDBM database engine can be configured in different ways. For exam-
ple, by choosing to synchronize the transaction log less frequently, the database
performs better. The trade-off is that a recovery will be more time consuming.
This feature is interesting when trying to keep the overhead as low as possible,
as it is the case in MAGNET. In our current implementation, the agent state is
saved between the time- and resource-consuming processes, such as the search
algorithms for winner-determination.

4 Designing the Supplier Agent

Now the design of the supplier agent is discussed. The agent-oriented design
and modeling methods used are discussed. The supplier Agent is designed to

1 downloadable from http://www.sourceforge.net

E Yu
39

6

make the MAGNET system able to handle fully automated business-to-business
interaction.

4.1 Method for high-level design

The method we chose for high-level design is Desire, by Brazier, Jonker and
Treur [Brazier et al., 2000]. This approach makes it easy to specify all the infor-
mation types and components. The actual framework consists of more than just
a design method; it includes software tools to support system design, a formal
specification language, an implementation generator to automatically translate
specifications into code, and verification tools for static properties of components
such as consistency, correctness, completeness. We used Desire only to specify
the general structure of the supplier agent, and we chose Avalon for the imple-
mentation (described later in Section 4.2), since Desire does not support Java.
More details on using Desire and other tools as an agent design tool can be found
in [Shehory and Sturm, 2001].

Desire specifications are based on an architecture made of components with
a hierarchical relationship between them. Each component has its own input and
output information types and uses its own task control knowledge, so the system
is structured in a decentralized manner. The structure within the components
is hidden from the “outside world”—only the interface types are defined. A
component can consist of multiple sub-components if the task the component
performs is too complex for one component to manage.

4.2 Method for component design

We have chosen Avalon [Loritsch, 2001] to implement the supplier agent. Using
Avalon, it is straightforward to have the components of the supplier agent in-
teract, to instantiate different instances of the components, and to reuse code.
Avalon allows us to switch components on the fly, which is very useful in test-
ing. It is also possible to configure Avalon using XML files, which specify which
components and which instances have to be included.

There are seven major interfaces that can be extended in order to fit a compo-
nent inside the Avalon framework: Activity, Component, Configuration, Context,
Logger, Parameters, Thread and Miscellany. Each of those categories represents
a unique concern area. Each component should at least implement one of these
interfaces, but can also implement several of them.

The lifecycle of a component is split into three phases: Initialization, Active
Service and Destruction. These phases occur in sequential order.

The general structure of the Avalon architecture contains the following ele-
ments: Components, Component Manager, Component Selector and Component

Container. The Components are the cornerstones of the Avalon framework and
model components as used in design methods. The Component Manager pro-
vides a framework for allowing components to access each other. The Component
Selector is responsible for managing the instances of the Components. In order
to retrieve Components it needs a specification of the role and a ‘’hint” to tell

E Yu
40

7

it which version to use. Finally, the Component Container contains the Compo-
nents it is responsible for.

In Figure 3 we show the proposed architecture of the supplier agent using
Avalon.

Supplier Agent

Component Manager/Component Selector

Resource ManagerPrice Manager Sales AnalystBid Manager

Communication Manager Agent State

Fig. 3. Proposed architecture using Avalon

The SupplierAgent2 is modeled as a Component Container. The Suppli-

erAgent has no other function but to control the lifecycle of all the components.
All six components are controlled by the ComponentManager. They all get a
reference to the ComponentManager in order to be able to access the other
components. If there are multiple instances of a component, the ComponentS-

elector can be retrieved from the ComponentManager and with this the
right instance can be selected.

4.3 Specifying the components

We are now ready to specify the component architecture and the interfaces of
the components.

Defining the component architecture The SupplierAgent is responsible
for the components managed by the ComponentManager, including Commu-

nicationManager, AgentState, BidManager, SalesAnalyst, PriceM-

anager and ResourceManager

The task of the ComponentManager is to manage the components owned
by the SupplierAgent. It can provide its components with references to other
components it manages.

The AgentState is responsible for maintaining the state of the agent and
the market. This consists of keeping track of time and events coming from the

2 A note to clarify the text formatting: we use italics to denote Avalon interfaces and
AllCaps to refer to implemented components.

E Yu
41

8

market. It also includes the saving of all information that needs to be main-
tained, like bids that have been submitted and incoming RFQs. Furthermore,
components can subscribe to certain types of events and be notified by the
AgentState when they occur.

The task of the CommunicationManager is to receive information from
and communicate information to the Market. This data includes RFQs, bids,
bid awards and penalty payments.

The BidManager must decide whether to submit single or multiple bids,
and whether to bid on individual tasks or block of tasks. Furthermore, it decides
if the bid is to be submitted early in the bidding cycle or to wait until the last
minute, and whether to bid on the entire available time windows or on some
subset.

The task of the SalesAnalyst is to give other components advice on whether
to engage in negotiation with the customer. It keeps track of its history and rela-
tionship with various customer agents in the market. It also keeps track of sales
goals for the business represented by the supplier agent. Another duty is giving
advice on which task(s) to make into milestones in the bids. Milestones are tasks
that require a notification be sent to the customer agent upon completion of the
task.

The ResourceManager is responsible for determining, given the current
resources and the tasks, upon which tasks to bid. It also suggests upon which
time windows to bid, and it is responsible for the management of the resources.
This includes executing awarded tasks and handling the payments for these
tasks.

The job of the PriceManager is to determine the price to bid. It can
determine this price using the sales goals for these tasks, which it retrieves from
the SalesAnalyst. In order to determine the price, it also needs to know the
cost of the resources for these tasks. This information is retrieved from the
ResourceManager.

4.4 Design using UML

The mapping between the higher-level design discussed previously and the more
detailed design as presented here is completed as follows: the components be-
come classes and the flow of information from one component to another com-
ponent is accomplished through the parameters of a method call. Similarly, the
information types have been modeled as classes and the information included
in the information types can be accessed through method calls. When the flow
of information is synchronous, the method call returns the result. When the
communication is asynchronous, the information will be sent through a method
call in the requesting component. A combination of both is also possible. For
example, when you subscribe to a particular event you will get a confirmation
through a synchronous return value. However, the event notification will be sent
asynchronously.

Assume that the RFQ has already arrived at the CommunicationManager

and that the BidManager has already received a reference to the Communi-

E Yu
42

9

cationManager and the AgentState. If aggregate transactional statistics
are desired, they will be retrieved from the market.

Next, the SalesAnalyst will be asked to give the BidManager advice
concerning upon which tasks to focus, given its history with the customer. For
this, the BidManager will have to retrieve the reference to the SalesAna-

lyst from the ComponentManager and, when multiple instances exist, the
ComponentSelector is also used. After the reference has been received, the
BidManager will pass the RFQ to the SalesAnalyst.

In our house-building example, the SalesAnalyst knows that the customer
that issued the RFQ has issued a RFQ before concerning the “Interior” task, and
did not pay in time. The SalesAnalyst decides not to include this task but
to include the rest of the tasks in the advice. Another issue is to decide which
milestones to include in the bids. The SalesAnalyst knows that the customer
finds the masonry very important, so it advises that this task be flagged as a
milestone.

The reference to the ResourceManager is retrieved in the same way as
with the SalesAnalyst. The BidManager will pass the task plan through to
the ResourceManager. After this has been done, the ResourceManager

checks the availability of the resources needed to complete the five tasks that are
left. The ResourceManager concludes that it is unable to provide the nec-
essary resources for the Roofing task during the specified period. Therefore, it
advises the BidManager to bid only on the other four tasks. The Resource-

Manager decides to recommend the same time windows for the remaining tasks
as specified in the RFQ. The resulting task plan is retrieved and will be used to
determine the number of bids. In our case, the BidManager decides to issue
only one bid.

Now that the bid has almost been constructed, the price needs to be calcu-
lated. For this the PriceManager is asked for advice. The reference is retrieved
in the same way as described above and the task plan and the customer agent’s id
are passed to the PriceManager. The PriceManager may ask for the sales
goal for this customer from the SalesAnalyst and the ResourceManager

will be consulted for the costs of the resources included in the task plan. The
references are retrieved in the same way as with the BidManager. After the
PriceManager has received the aforementioned information, it will determine
the price and return it. Now the BidManager is able to make the collection of
bids (one, in our case) and stores them until the time comes to issue them.

5 Current implementation of Supplier Agents

5.1 ResourceManager

Motivation. The consumption of resources by a task is analogous to the fulfill-
ment of tasks in a task plan. The consumption of resources is considered to be
a lower level of abstraction. It is therefore a necessary underpinning that allows

E Yu
43

10

for the modeling of complex task fulfillment. The motivation for the Resource-

Manager is to provide an abstraction for other supplier components to keep
them from worrying about the details of production and consumption.

There is more to managing resources than simply modeling the consumption
of consumable resources. Fixed resources, such as machines in a manufacturing
cell, have a cost even when not in use. Because their use needs to be scheduled, a
central part of the job of the ResourceManager is to maintain their schedule.
An additional future goal is to learn cost-minimization strategies to contribute
to the SupplierAgent’s profit-maximization goal and to work on methods for
dynamic allocation of tasks to different resources within the supplier agent (as,
for instance, in [Fatima and Wooldridge, 2001]).
Design. The design of the ResourceManager encompasses the design of a
resource production and consumption model and the design of the component.

The resource model makes two main simplifications in creating a lower level
of abstraction. First, instead of considering time windows, the production and
consumption of resources are quantized to discrete points in time. Second, a
generic interface is presented that does not consider the explicit modeling of
exotic resource attributes. Details such as price elasticity, storage, and purchas-
ing are considered below this interface, but can still be modeled. This allows
resources to simply be thought of as something the supplier agent has in time,
not something the agent acquires in time.

The ResourceManager may control many Resources. Each Resource

acts as a wrapper to a hash table of quantized production times and correspond-
ing amounts of reserved resources. Using this hash table, given an implemen-
tation of the productionLevel method and a confidence level, getAvailable will
return the likely amount of resources available.

For each SubtaskRequest in a task plan, a ResourceRequirement spec-
ifies the type of resource it requires and acts as an iterator to a set of evaluation
times. At these evaluation times, the ResourceRequirement can be queried
for the maximum and minimum requirements. We assume that after setting a
start time, the set of evaluation times and resource requirements are determin-
istic.

In our current implementation, the design of the ResourceManager is
straightforward. From the interfaces mentioned above, the ResourceManager

steps through the set of consumption times using a naive strategy for resource al-
location to determine satisfiability for the getTasks and getTimeWindows meth-
ods. Once a bid is made, the ResourceManager is responsible for specula-
tively reserving some amount of resources. Then, once a bid award event has been
received from AgentState, the ResourceManager is responsible for the ex-
ecution of those tasks. Presently, this amounts to tracking whether its resources
meet the resource requirements and logging the successful or unsuccessful result.

5.2 PriceManager

Motivation. We believe that a smart PriceManager will help provide MAG-
NET suppliers with a competitive advantage and an incentive to join the mar-

E Yu
44

11

ketplace. The lure for customers is clear: they can choose the “best deal” from
those submitted. Suppliers might be hesitant to join such a market, for fear that
prices will be driven too low. Our hope is that this price management technology
will assure suppliers a profitable position in the market.

Design. The algorithm used by the PriceManager in this implementation
endeavors to search through the space of prices for each task type and find the
optimal price. That is, it looks for the price which maximizes profit as often as
possible. We have developed two methods for conducting this search. One is a
derivative-following (DF) technique, based on the work of Kephart [Kephart et
al., 2000]. The other is based on simulated annealing (SA)[Reeves, 1993].

For both methods, we track a markup percentage, so that prices reflect cost.
Markups are tracked for each of the n task types the agent is interested in per-
forming. Certainly, price tracking for sequences of tasks would provide a nice
level of accuracy. However, the number of combinations would tend toward in-
finity as the size of the task plans increased. With long enough market exposure,
the prices for individual tasks should be sufficiently shaped by their environment,
so single-task schedules should provide a reasonable model.

The DF algorithm is initialized with a markup Mi, 1 ≤ i ≤ n of 50% for
each of the n task types, a maximum step size D of 50% and a price-movement
direction δ of 1. When δ equals 1, the algorithm intends to raise the markup, if
δ equals -1, it means to lower the percentage.

The PriceManager is called by the BidManager with a list of tasks
the agent has decided to bid on (usually based on the ResourceManager’s

recommendations). A price for each task type is determined as follows. A step
size is randomly chosen between zero and D. This value is multiplied by δ and
added to the last bid’s markup value. Next, the cost Ci of the task in question
is retrieved from the ResourceManager. The price Pi for the task is stored as
Mi ∗ Ci + Ci. These individual Pi’s are totaled for all the tasks in the bid and
returned to the BidManager as the bid’s price, P t.

Once the time for awarding bids arrives, the DF PriceManager is noti-
fied by AgentState. The PriceManager takes stock of its performance and
makes adjustments for the next round. A set of values πc

i , 1 ≤ i ≤ n repre-
sents the profit gained on the previous transaction. If the bid was awarded, the
PriceManager calculates its profit, πnew

i and checks to see if πnew
i > pici . If

so, δ remains unchanged. However, if profit decreased or the bid was rejected, δ
is switched to its opposite. πc

i is set to the value of πnew
i and stored for the next

bid’s comparison.

The SA PriceManager works in a somewhat similar way. Each task type’s
annealing schedule is initialized with a “current” markup M c

i , 1 ≤ i ≤ n of 50%.
The PriceManager calls the Resource Manager and obtains from it the
cost Ci of performing each task. Next a markup M b

i is chosen for each task type.
This is determined by taking a random step, less than an ever-shrinking distance
D, away from the current price. (D is initialized to 0.5.) The price Pi for the
task is stored as Mi ∗Ci +Ci. The prices for all the tasks are summed to give a
total price, P t, which is returned to the BidManager.

E Yu
45

12

The SA PriceManager is notified by AgentState if has received an award
for the work it bid on or not. The PriceManager now calculates its profit on
this transaction, if any, and compares it to past performance. A set of values
πc

i , 1 ≤ i ≤ n represents the best profit so far3 for each of the n types. For
each task type i, M b

i and its cost are retrieved, and the profit πnew
i is calculated

if the bid was awarded. For rejected bids, πnew
i = 0. We next find the value

E = πnew
i −πc

i . If E is positive, we have made an “uphill” step, an improvement
in profit. Therefore, we accept the change and P c

i is set to the value of P b
i . If

E < 0, it was a “downhill” step, so we will only take it with probability eE/T .
This allows us to avoid local minima and also filters out “fluke” high profits. T
is the countdown timer, so smaller and smaller steps are taken as we zero in on
the profit-maximizing price.

Research is currently underway to determine the market conditions where
each of these performs best.

5.3 SalesAnalyst

Motivation. The SalesAnalyst can analyze customer agents and derive the
most effective advising strategy, given the current customer agent. With this
strategy, the profitability of the supplier agent will grow.
Design. We intend to include several features within the SalesAnalyst. First
of all, we would like to use data mining techniques to derive information about
profiles of the customers. The information on which the data mining tool is used
should be maintained within the SalesAnalyst itself. This is because the infor-
mation should include a history of payments and bid awards; this is considered
to be private information. The profile can be used for several advising tasks: It
can be used to decide on what sales goal to pass to the PriceManager. If the
SalesAnalyst decides that this customer should become a regular customer,
it can pass a sales goal to bid a lower price. The SalesAnalyst is also useful
for giving advice on when not to bid, such as when the customer in question fits
a “bad credit” profile. Finally, the profile of the customer can be used to decide
which milestones to include in the bid.

5.4 Preliminary Experimental Results

In order to show that our design works, we ran our system using for the RFQ
the example of building a house illustrated earlier in Figure 1.
Stage I The RFQ from Figure 1 was sent to each of the three suppliers.
Stage II Each supplier’s ResourceManager chose the tasks and time win-
dows of the bid. Since, in this case, all the suppliers bid on all the tasks, each
PriceManager set a price that was near the market average price of $14,300.
The BidManager of each agent took these pieces of data and formed a single
bid.

3 This is actually the profit for the last step that was accepted by the algorithm. It
may not be the highest profit seen so far, if any “downhill” steps have been taken.

E Yu
46

13

Stage III The bids were received and analyzed by the customer agent. It decided
to accept the bid of Supplier 1.

We are testing more complex strategies for choosing which tasks to bid on
and what price to bid.

6 Related Work

Markets play an essential role in the economy, and market-based architectures are
a popular choice for multiple agents (see, for instance, [Chavez and Maes, 1996,
Sycara and Pannu, 1998, Wellman and Wurman, 1998, Tsvetovatyy et al., 1997,
Karacapilidis and Moräıtis, 2001, Choi and Liu, 2001]. Most market architec-
tures limit the interactions of agents to manual negotiations, direct agent-to-
agent negotiation [Sandholm, 1996, Faratin et al., 1997], or various types of
auctions [Wurman et al., 1998].

Existing architectures for multi-agent virtual markets typically rely on the
agents themselves to manage the details of the interaction between them, rather
than providing explicit facilities and infrastructure for managing multiple nego-
tiation protocols. As discussed above, agents interact with each other through a
Market. Our Market infrastructure provides a common vocabulary, collects sta-
tistical information that helps agents estimate costs, schedules, and risks, and
acts as a trusted intermediary during the negotiation process.

Little research appears to have been done in bidding strategies for the style
of auction used by MAGNET. However, Kephart, Hanson, and Greenwald have
written a survey article aimed at understanding collective interactions among
agents that dynamically price services or goods [Kephart et al., 2000]. In this ar-
ticle, several useful pricing strategies for sellers are discussed. The game-theoretic
computation, GT, chooses prices randomly from a distribution which is com-
puted from buyer parameters as well as the number of sellers bidding. Like
MAGNET, this pricing strategy assumes that no seller observes another seller’s
price before setting its own price. A second algorithm discussed is called the my-
optimal, MY, or the best-response Cournot. Like the GT algorithm, MY requires
perfect knowledge of the buyer population as well as the number of sellers in the
Market. The third algorithm discussed is called the derivative-follower, DF. It
does not require any knowledge about buyers or assumptions about the number
of sellers. Rather it uses a learning technique by experimenting with increases or
decreases in price. It continues to move its price in the same direction until the
observed profitability level begins to fall, seeking a local maxima of profitability.

The first two pricing strategies discussed in this article could only be em-
ployed by supplier agents in MAGNET if the MAGNET server were to give out
information on the number of other suppliers registered to bid on a given task.
The MAGNET server shall certainly have this information, but it is not clear
that this information should be given to supplier agents. The learning employed
in the DF algorithm is designed to be used in situations where sales occur re-
peatedly. This algorithm was the inspiration for the simulated-annealing-based
PriceManager.

E Yu
47

14

7 Conclusion and Future Work

At this time we have a full implementation of the customer agent, but only a
partial implementation of the supplier agent. In the Market, work is needed to
develop mechanisms for transferring resources from the supplier to the consumer
task and for tracking the monetary situation of the SupplierAgents. In the
ResourceManager work is needed in implementing and testing the learning
of cost minimization as well as resource reservation and allocation strategies.
Finally, it might be interesting if the current use of task plans were to be made
hierarchical. In this way, some ResourceManagers would act as consumers
until an atomic level of a task was reached.

The system is not yet mature enough to test whether the PriceManager

can “learn” a good pricing strategy. Once the system is ready, we would like
to see if profit margins can be improved and which features of the environment
have an effect on profits. For example, we want to see the difference between
markets with homogeneous supplier agents and markets with heterogeneous ones.
It might also be interesting to see how the size of RFQs affect profitability. The
ratio of suppliers to customers could be another interesting parameter to study.

The system does not support payments yet, so at this time it is not possible
to collect the data necessary for the SalesAnalyst. When these features are
implemented, we would like to whether or not we can promote loyalty among
good customers and see if we can avoid high-risk tasks and ill-behaved customers.

So far, the MAGNET system has been used for several types of studies.
Recent work includes experiments with performance of winner-determination
algorithms [Collins et al., 2002], and studies of the RFQ composition prob-
lem [Babanov et al., 2002]. We are currently studying how to use an evolutionary
approach to let the market develop and stabilize so that which various supplier
strategies can be studied. Our longer-term goal is to support studies of supplier
strategies, and studies of mixed-initiative decision making with human users in
realistic market simulations.

References

[Babanov et al., 2002] Alex Babanov, John Collins, and Maria Gini. Risk and expec-
tations in a-priori time allocation in multi-agent contracting. In Proc. of the First

Int’l Conf. on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, July
2002.

[Brazier et al., 2000] F. Brazier, C. Jonker, and J. Treur. Design of multi-agent sys-
tems. Technical report, Vrije Universiteit Amsterdam, 2000.

[Chavez and Maes, 1996] Anthony Chavez and Pattie Maes. Kasbah: An agent mar-
ketplace for buying and selling goods. In Proc. of the First Int’l Conf. on the Practi-

cal Application of Intelligent Agents and Multi-Agent Technology, London, UK, April
1996.

[Choi and Liu, 2001] Samuel P. M. Choi and Jiming Liu. A dynamic mechanism for
time-constrained trading. In Proc. of the Fifth Int’l Conf. on Autonomous Agents,
pages 568–575, 2001.

E Yu
48

15

[Collins et al., 1998] John Collins, Ben Youngdahl, Scott Jamison, Bamshad
Mobasher, and Maria Gini. A market architecture for multi-agent contracting. In
Proc. of the Second Int’l Conf. on Autonomous Agents, pages 285–292, May 1998.

[Collins et al., 2002] John Collins, Maria Gini, and Bamshad Mobasher. Multi-agent
negotiation using combinatorial auctions with precedence constraints. Technical Re-
port 02-009, University of Minnesota, Department of Computer Science and Engi-
neering, Minneapolis, Minnesota, February 2002.

[Faratin et al., 1997] Peyman Faratin, Carles Sierra, and Nick R. Jennings. Negoti-
ation decision functions for autonomous agents. Int. Journal of Robotics and Au-

tonomous Systems, 24(3-4):159–182, 1997.
[Fatima and Wooldridge, 2001] S. Shaheen Fatima and Michael Wooldridge. Adaptive
task resources allocation in multi-agent systems. In Proc. of the Fifth Int’l Conf. on

Autonomous Agents, pages 537–544, 2001.
[Karacapilidis and Moräıtis, 2001] Nikos Karacapilidis and Pavlos Moräıtis. Intelligent
agents for an artificial market system. In Proc. of the Fifth Int’l Conf. on Autonomous
Agents, pages 592–599, 2001.

[Kephart et al., 2000] Jeffrey O. Kephart, James E. Hanson, and Amy R. Greenwald.
Dynamic pricing by software agents. Computer Networks, 32(6):731–752, 2000.

[Loritsch, 2001] B. Loritsch. Developing with Apache Avalon. Apache Software Foun-
dation, 2001.

[Nisan, 1999] Noam Nisan. Bidding and allocation in combinatorial auctions. In 1999

NWU Microeconomics Workshop, 1999.
[OECD, 1997] OECD. Guidelines for cryptography policy.
http://www1.oecd.org/dsti/sti/it/secur/prod/crypto2.htm, 1997.

[Ossher and Tarr, 2000] H. Ossher and P. Tarr. Multi-dimensional separation of con-
cerns and the hyperspace approach. In Proc. Symposium on Software Architectures

and Component Technology: The State of the Art in Software Development. Kluwer,
2000.

[Reeves, 1993] Colin R. Reeves. Modern Heuristic Techniques for Combinatorial Prob-

lems. John Wiley & Sons, New York, NY, 1993.
[Sandholm, 1996] Tuomas W. Sandholm. Negotiation Among Self-Interested Compu-

tationally Limited Agents. PhD thesis, Department of Computer Science, University
of Massachusetts at Amherst, 1996.

[Shehory and Sturm, 2001] Onn Shehory and Arnon Sturm. Evaluation of modeling
techniques for agent-based systems. In Proc. of the Fifth Int’l Conf. on Autonomous

Agents, pages 624–631, 2001.
[Sycara and Pannu, 1998] Katia Sycara and Anandeep S. Pannu. The RETSINA mul-
tiagent system: towards integrating planning, execution, and information gathering.
In Proc. of the Second Int’l Conf. on Autonomous Agents, pages 350–351, 1998.

[Tsvetovatyy et al., 1997] Maxsim Tsvetovatyy, Maria Gini, Bamshad Mobasher, and
Zbigniew Wieckowski. MAGMA: An agent-based virtual market for electronic com-
merce. Journal of Applied Artificial Intelligence, 11(6):501–524, 1997.

[Wellman and Wurman, 1998] Michael P. Wellman and Peter R. Wurman. Market-
aware agents for a multiagent world. Robotics and Autonomous Systems, 24:115–125,
1998.

[Wurman et al., 1998] Peter R. Wurman, Michael P. Wellman, and William E. Walsh.
The Michigan Internet AuctionBot: A configurable auction server for human and
software agents. In Second Int’l Conf. on Autonomous Agents, pages 301–308, May
1998.

E Yu
49

E Yu

