
On the Use of Patterns in Agent System Design

Michael Weiss1

1 School of Computer Science, Carleton University, Ottawa, Canada
weiss@scs.carleton.ca

1 Introduction

In this paper we make a case for a pattern-driven approach to agent system design that
complements the goal-driven approach of most design methodologies.

Current approaches to agent system design such as Gaia [15], and MASSIVE [11],
are generally goal-driven. This is understandable given the nature of agents as goal-
driven entities. Therefore, in these design approaches, an agent system is designed by
iteratively decomposing system goals until they can be assigned to individual agents.

However, this may lead developers to solve the same design problems over and
over without benefiting from how they were resolved in the past, resulting in dupli-
cated effort, and inconsistent designs. A more effective and less ad hoc approach is to
build an agent system incrementally from well-documented interaction patterns.

In the sections below we introduce the notions of patterns and agent patterns, and
discuss the role of patterns in agent system design. Following that we outline the
steps of a pattern-based methodology, and relate it to our current work on formalizing
agent patterns using the non-functional requirements (NFR) framework [5].

2 Agent Patterns

Patterns are reusable solutions to recurring design problems, and provide a vocabulary
for communicating these solutions to others. The documentation of a pattern goes
beyond documenting a problem and its solution. It also describes the forces or design
constraints that give rise to the proposed solution [1]. These are the undocumented and
generally misunderstood features of a design. Forces can be thought of as pushing or
pulling the problem towards different solutions. A good pattern balances the forces.

Patterns are not used in isolation. Although individual patterns are useful at solv-
ing specific design problems, we can benefit further from positioning them among
one another to form a pattern language. Each pattern occupies a position in a network
of related patterns, in which each pattern contributes to the completion of patterns
“preceding” it in the network, and is completed by patterns “succeeding” it.

A pattern language guides developers through the process of generating a system.
Beck and Johnson [4] describe this generative quality of patterns: “Describing an archi-
tecture with patterns is like the process of cell division and specialization that drives
growth in biological organisms. The design starts as a fuzzy cloud representing the

E Yu
16

system to be realized. As patterns are applied to the cloud, parts of it come into focus.
When no more patterns are applicable, the design is finished.”

There is by now a growing literature on the use of patterns to capture common de-
sign practices for agent systems [3, 8, 7]. Aridor and Lange [3] describe a set of do-
main-independent patterns for the design of mobile agent systems. They classify mo-
bile agent patterns into traveling, task, and interaction patterns. Kendall et al [8] cap-
ture common building blocks for the internal architecture of agents in patterns.

Deugo and Weiss [7] identify a set of patterns for agent coordination, which are,
again, domain-independent. They classify agent patterns into architectural, communi-
cation, traveling, and coordination patterns. They also describe an initial set of global
forces that push and pull solutions for coordination. Kendall [9] reports on work on a
domain-specific catalog of patterns developed at BT. Weiss [14] describes a pattern
language for agent-based e-commerce. In related work, Kolp and Giorgini [10] docu-
ment organizational styles for multi-agent systems using the Tropos framework.

The separate notion of an agent pattern can be justified by differences between the
way agents and objects communicate, their level of autonomy, and social ability [6].
Agent patterns are documented in a similar manner as patterns, except for the structure
of an agent pattern where we will make use of role models [13, 9] instead of collabora-
tion diagrams. The distinction between role models and collaboration diagrams is the
level of abstraction: a collaboration diagram shows the interaction of instances,
whereas a role model shows the interaction of roles to be filled.

3 Pattern-driven Agent System Design

Instead of proceeding from high-level goals and arriving at an implementation through
iterative refinement, in a pattern-driven approach we start from proven solutions, and
compose our system by systematically instantiating patterns. The goal-driven and
pattern-driven approaches to design are, of course, complementary. Our experience
building agent systems suggests that the design approach that proceeds in both a top-
down and a bottom-up direction in parallel will lead to the best results

Fig. 1. Complementarity of the pattern-driven and goal-driven approaches

E Yu
17

The implementation of the pattern-directed approach involves the following steps.
We are currently building a tool that assists the designer with this process.

Identify Domain Forces. For a given domain identify the core design trade-offs
(called forces in patterns) that push and pull the design into different directions. For
example, for the e-commerce domain, these include information overload, search costs,
privacy, ensuring quality, and identity (see [14] for more detail). In addition, there are
forces motivating the use of agents (such as autonomy, need to interact, multiple
interfaces, and adaptability) to be considered for all domains.

Document Roles. Document the roles and their subtypes used in the pattern
language. Individual patterns document how these roles interact in a given design
context. The task of the designer is, by selecting patterns, to assign roles to agents. In
the example of the e-commerce domain, we identified four top-level roles as User,
Task, Service, and Resource; these should be applicable to other domains, as well.

Document Patterns and their Dependencies. Document the patterns and their
dependencies in the form of a pattern language. Each pattern should document the
forces it helps resolve, and how instantiating the pattern will change the system. This
includes the resulting role model and the forces that still need to be resolved. Semi-
formal methods can be used to document the forces in a pattern. In Araujo and Weiss
[2] we have investigated the use of the NFR framework to document patterns.

Identify the Overall Design Goals. Identify the overall design goals, both
functional and non-functional. Generally, the identification of patterns based on merely
functional goals is rather straightforward. However, although multiple patterns may
satisfy the same functional goals, their implications on the design in terms of non-
functional goals must be carefully considered. The main thrust of our semi-formal
pattern representation is geared towards matching on non-functional goals.

Select Patterns. In a first pass, select patterns based on how well they match the
functional goals of the system, and then refine the selection by considering non-
functional design goals. Compare the patterns and rank them on basis of their
compatibility with these goals. In our tool we will use the algorithm described in
McPhail and Deugo [12]. Repeat this step until all forces have been resolved.

4 Conclusion

In this paper we described a pattern-driven approach to agent system design. This
approach is complementary to the goal-driven approach that most published method-
ologies use. The combined design approach proceeds, in parallel, in a top-down (goal-
driven) and a bottom-up (pattern-driven) direction.

E Yu
18

Work on agent patterns is still at an initial stage. Before patterns can play the same
role for agent system design as in the object-oriented world, further work is required.
One problem is that only a relatively small number of agent patterns have been docu-
mented to date, when compared to the number of object patterns.

More work is required to document the forces that govern agent system design, and
to understand their interactions. A related open problem is the selection of a pattern
that is compatible with the stated functional and non-functional goals of an applica-
tion. We are working on a new pattern representation using the NFR framework.

References

1. Alexander, C., A Pattern Language, Oxford University Press, 1977
2. Araujo, I., and Weiss, M., Using the NFR Framework for Representing Patterns, sub-

mitted to Pattern Languages of Programming (PLoP-02), 2002
3. Aridor, Y., Lange, D., Agent Design Patterns: Elements of Agent Application Design,

Second Intl. Conference on Autonomous Agents, IEEE, 1998
4. Beck, K., and Johnson, R., Patterns Generate Architectures, European Conference on

Object Oriented Programming (ECOOP-94), 139-149, 1994
5. Chung L., Representing and Using Non-Functional Requirements: A Process-Oriented

Approach, Department of Computer Science University of Toronto, 1993
6. Deugo, D., Oppacher, F., et al,!Patterns as a Means for Intelligent Software Engineer-

ing, Intl. Conference on Artificial Intelligence (IC-AI 99), CSREA Press, 605-
611,1999

7. Deugo, D., Weiss, M., and Kendall, L., Reusable Patterns for Agent Coordination, in:
Omicini, A., et al (eds.), Coordination of Internet Agents, Springer, 2001

8. Kendall, E., Murali Krishna, P., Pathak, C. et al, Patterns of Intelligent and Mobile
Agents, Second Intl. Conference on Autonomous Agents, IEEE, 1998

9. Kendall, E., Role Models: Patterns of Agent System Analysis and Design, Agent Sys-
tems and Applications/Mobile Agents (ASA/MA-99), ACM, 1999

10. Kolp, M., Giorgini, P., Mylopoulos, J., A Goal-Based Organizational Perspective on
Multi-Agent Architectures, Eighth Intl. Workshop on Agent Theories, Architectures,
and Languages (ATAL-2001), 2001

11. Lind, J., Iterative Software Engineering for Multi-Agent Systems: The MASSIVE
Method, LNCS 1994, Springer, 2001

12. McPhail, J.C., and Deugo, D., Deciding on a Pattern, 14th Intl. Conference on Indus-
trial and Engineering Applications of Artificial Intelligence and Expert Systems
(IEA/AIE-01) LNCS 2070, Springer, 2001

13. Riehle, D., and Gross, T., Role Model Based Framework Design and Integration, Con-
ference on Object- Oriented Programs, Systems, Languages, and Applications
(OOPSLA-98), 117-133, ACM, 1998

14. Weiss, M., Patterns for e-Commerce Agent Architectures: Using Agents as Delegates,
Pattern Languages of Programming (PLoP-01), 2001

15. Wooldridge, M., Jennings, N., and Kinny, D., The Gaia Methodology for Agent-
oriented Analysis and Design, Journal of Autonomous Agents and Multi-Agent Sys-
tems, 2002

E Yu
19

