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Abstract.  Multiagent systems have received much attention in recent years due 
to their advantages in complex, distributed environments.  A number of 
methodologies have been proposed for engineering multiagent systems, 
however, these methodologies do not adequately address the information 
domain of the system, which is an integral part of designing proper system 
execution.  Previous work at the Air Force Institute of Technology (AFIT) has 
developed a methodology for analyzing, designing, and developing multiagent 
systems, called Multiagent Systems Engineering (MaSE).  This research 
extends the MaSE methodology to include the use of ontologies for information 
domain specification.  The extensions allow the designer to specify information 
flow by using objects from the ontology as parameters in agent conversations.  
The developer can then ensure system functionality by verifying that each agent 
has the information required to accomplish the system goals.  

Introduction 

In recent years, interest in multiagent systems has increased as software designers 
look for new methods of so lving problems in complex environments.  As agent 
technology has progressed, research into agent -oriented software engineering has 
attempted to develop methodologies to help develop robust and reliable multiagent 
systems [ 10]. 

Constructing multiagent systems involves all the problems of traditional distributed 
systems along with the problems that arise from the behavior of the individual agents.  
For instance, the individual behavior of the agents can combine to form emergent 
system behavior that is adverse to proper system execution.  Designers need an 
engineering approach for system development of multiagent systems to address and 
avoid these problems. 
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Integrating legacy systems further increases the difficulties of designing multiagent 
systems due to the varying semantics of different information systems.  Different 
systems can have different terms that represent the same concept, introducing a 
complication in integrating the systems.  Any complete methodology for building 
multiagent systems must address the data models used by the system and the 
individual components in the system. 

Currently several methodologies exist for building multiagent systems, each 
varying in their level of development [5,9,15].  MESSAGE [5] is one of the few 
methodologies that address the information domain of the system.  Just as important 
as the system’s representation of the information domain is the various agents’ 
information domain view.  Heterogeneous systems can contain agents with differing 
data models, a case that can occur when reusing previously built agents or integrating 
legacy components into the system.  Most existing methodologies lack specific 
guidance on the development of the information domain specification for a multiagent 
system and for the agents in the system. 

Failure to incorporate information domain specifications results in designs that do 
not fully address multiagent system behavior.  The interaction between agents in the 
system frequently occurs through communication.  Although communication can 
occur by the simple passing of performative messages, systems of a complex nature 
will require the passing of information between agents in the form of parameters.  
Without specifying the information domain of the system, the designer cannot specify 
what data types are passed as parameters and cannot describe the information flow in 
the multiagent system. 

The Multiagent Systems Engineering (MaSE) methodology has been developed at 
the Air Force Institute of Technology (AFIT) to assist in the development of 
multiagent systems by leading the designer from the initial system specifications to a 
set of formal design models [3].  The transformations from each step in MaSE are 
formally defined and provide the engineering approach needed for multiagent system 
engineering.  Despite its benefits in multiagent systems design, MaSE does not 
currently address the design of the information domain, leading the developer to 
construct a set of design documents that do not fully specify the semantics of the data 
passed between agents. 

In this paper, we expand MaSE to include ontologies as a mechanism for 
specifying the information domain of the system and the individual agents.  The next 
section presents an overview of MaSE before ontologies were introduced, followed 
by a discussion of the changes made to the methodology.  The extended MaSE is 
analyzed in a later section based on experiences of using it to design a distributed 
course scheduling system. 

Background – Multiagent Systems Engineering  

The Multiagent Systems Engineering (MaSE) methodology has been researched at the 
Air Force Institute of Technology for the last few years.  Research focuses on 
developing a robust methodology for constructing multiagent systems.  MaSE divides 
the development of multiagent systems into analysis, design, and implementation 
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phases [3].  MaSE originally consisted of three steps in the analysis phase and four 
steps in the design phase as shown in Figure 1.  The developers of MaSE intended for 
these phases and steps to be applied iteratively.  During system implementation the 
models from the analysis and design phases are used to program the system into code.  
This paper discusses the addition of the System  Ontology step, shown in Figure 1, 
into the MaSE methodology. 
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Fig. 1.  Extended MaSE Phases, Steps and Models 

Analysis Phase 

The Analysis Phase is concerned with establishing a set of roles and assigning tasks to 
those roles to describe the system requirements.  The Capturing Goals step starts this 
phase with the transformation of the initial system specification into a goal hierarchy.  
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This step allows the designer to organize the goals that the system needs to 
accomplish. 

The basic scenarios that the system should perform are captured in the Applying 
Use Cases step.  Use cases are created and then transformed into sequence diagrams.  
The final step of analysis, Refining Roles, uses the outputs from the previous two 
steps to create roles and assign the tasks to be performed by those roles in the system.  
Tasks are associated with each role to describe the behavior that the role must have to 
accomplish its assigned goals.  Figure 2 is an example of a Role Model in MaSE, that 
indicates the goals each role is assigned, the tasks associated with each role, and the 
communication between the tasks using the protocols indicated by arrows. 

 

Fig. 2.  Example MaSE Role Model [2] 

 

Fig. 3.  HandleTasking Concurrent Task Diagram [2] 

Tasks are defined graphically using a finite state automaton, as shown in the 
Concurrent Task Diagram of Figure 3.  Transitions in the concurrent task diagrams 
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follow the syntax trigger [guard] ^ transmission(s).  This syntax represents that a 
transition is enabled only when the event trigger occurs and the condition guard 
evaluates to true.  When the transition is executed, the specified transmission(s)  will 
be executed by the role.  Once in a state, the task remains in that state until all actions 
defined in that state have been completed and a transition out of the state has been 
enabled. 

Design Phase 

Once the requirements for the system have been modeled during the Analysis Phase, 
the design of the multiagent system begins.  The first step in the Design Phase is 
Creating Agent Classes, where the roles are assigned to specific agent classes.  This 
step creates an Agent Class Diagram, as shown in Figure 4, that shows the classes in 
the system, the roles played by the agent classes (listed under the agent class name), 
and the conversations between classes (denoted by arrows pointing from the initiator 
class to the responder class). 

 

Fig. 4.  Example Agent Class Diagram [3] 

Details of the conversations are defined in the Constructing Conversations step, 
where finite state automata are used to show the states in a conversation.  Each 
conversation has two diagrams: one for the initiator and one for the responder of the 
conversation, with Figure 5 demonstrating the diagram for the initiator of the 
RequestNotification conversation of Figure 4.  The set of conversations that an agent 
class participates in is derived from the communications of the roles that the agent 
plays.  For example, the FileNotifier and AdminNotifier  roles are defined by 
concurrent tasks that communicate with each other.  Since these two tasks are in 
separate agent classes in Figure 4, this communication becomes the 
RequestNotification conversation. 

The third step in design, Assembling Agent Classes, defines the components of the 
agent architecture, allowing for the logical decomposition of agents.  The final step of 
System Design creates a Deployment Diagram to show the amount and location of 
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each type of agent in the system.  The outputs from the design steps describe the 
actions and conversations used in the multiagent systems.  The semantics of the 
parameters passed in those conversations were not previously defined in the MaSE 
process.  

 

Fig. 5.  RequestNotification Conversation Diagram [3] 

agentTool 

agentTool is an automated development environment that supports the MaSE 
methodol ogy by allowing the designer to create the MaSE Models in a graphical 
environment [3].  Using transformations defined in [13], agentTool allows for the 
automatic generation of design documents based on the role models and task 
diagrams.   Once the designer specifies the system in agentTool, the program can 
output Java code for the system.  Because information domain specifications are not 
incorporated in the MaSE methodology, the code produced from agentTool classifies 
all parameters as Java Objects.  The implementer must then go through and change 
the declarations to the appropriate data structure used to represent the semantic 
concepts of the parameters.  Including the construction of the system data model 
removes the necessity of this step, as the parameters can automatically be specified as 
the correct type. 

Including Ontologies in Multiagent Systems Engineering 

The word ontology was taken from philosophy where it represents the study of the 
nature of being.  Much debate exists on the exact definition of an ontology when used 
for knowledge engineering or artificial intelligence [8].  The most common 
definitions state that an ontology is a specif ication of a conceptualization [7] or that 
an ontology is the shared understanding of some domain of interest [14].  This 
research uses the latter definition, specifically  that an ontology defines classes, 
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functions, object constants, and axioms to constrain meaning of some type of world 
view of a given domain. 

The classes in an ontology describe the objects in the system’s view of the 
information domain.  The functions and object constants define the properties of and 
relationships between those objects.  The analyst uses axioms to describe any 
additional relationships or restrictions on concepts in the ontology.  For instance, an 
axiom might specify that a student must be registered or signed up to take at least one 
class.  With these concepts, the ontology describes the concepts and relationships 
used to interact in the domain. 

In this research, we use ontologies to specify the information domain of a 
multiagent system.  Just as it is important to specify the data model in a traditional 
software development process, the data model for a multiagent system must also be 
specified.  The agents in the system interact by passing messages and these messages 
frequently involve passing parameters.  These parameters are objects of some sort, 
and without an information domain specification, the methodology cannot address the 
information contained in these parameters. 

To use ontologies to describe the information domain of a system in MaSE, this 
research introduces a new step in which the designer constructs the ontology for the 
system during the MaSE analysis phase.  We determined the step should occur after 
the Applying Use Cases step.  This placement allows the designer to use terms from 
the goal hierarchy, use cases, and sequence diagrams as possible concepts in the 
ontology.  The resultant ontology can be used to create tasks in the refining roles step 
of MaSE.  Tasks often indicate parameter passing, so the step is placed after the 
construction of the ontology to allow the designer to specify the type of the 
parameters as classes from the ontology.  The extended MaSE diagram is shown in 
Figure 1. 

Constructing Ontologies for Multiagent Systems 

An appropriate methodology for developing ontologies must be defined for designers 
to use for specifying domain representations in multiagent systems.  The existing 
methodologies for designing domain ontologies are built to describe everything about 
a specific domain; however, this is not appropriate for multiagent systems because the 
system ontology should only specify the information required for proper system 
execution.  The system ontology acts as a prerequisite for future reuse of the system, 
as the ontology specifies the view of the information domain used by the multiagent 
system.  Any system that reuses the developed multiagent system must ensure that the 
previously developed system ontology does not conflict with the ontology being used 
in the new system. 

Reinventing the wheel, by developing a whole new methodology, does not make 
sense, because many years of research have gone into developing domain ontology 
methodologies.  Instead, we extract the main steps common to the IDEF5 and 
Methontology methodologies [11,6]. 

To construct the ontology, the designer first determines the purpose and scope of 
the ontology and then collects and analyzes data from the information domain for 
possible use in the ontology.  Finally, the analyst constructs the initial ontology and 
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refines, validates, and matures the model into a complete ontology.  Each of these 
steps is discussed in detail below. 

Define Purpose and Scope of Ontology 
The designer must describe why the ontology is being developed as well as the range 
of intended users of the ontology.  This facilitates ontology reuse by allowing others 
to quickly see the reason the ontology was constructed and what information the 
ontology contains.  For example, when designing a multiagent system to perform 
course scheduling, the ontology must define classes regarding courses, quarters, 
instructors, classrooms, etc.  The software requirements and the goal hierarchy help 
define the purpose of the ontology, as the purpose of the ontology is to fulfill the 
information needs of the multiagent system.  The purpose describes why the ontology 
exists, such as to list all classes in the education domain required when scheduling 
courses .  The scope defines the level of detail to which the ontology describes the 
objects, such as defining only the semantic ideas necessary to schedule courses in a 
distributed network environment. 

To further define the scope, the designer can utilize the previously identified use 
cases to determine the types of data that the system will use.  For example, a use case 
may describe one agent passing another agent a specific course to schedule.  The 
designer uses this situation to determine the level of detail necessary to describe a 
course so that the system can properly execute the events described in the use case. 

Collect Data 
Having defined the scope, the analyst knows the level of detail and domain the 
ontology represents and can start building the model.  The designer first creates a list 
of possible terms or concepts that the ontology must describe.  Designers form this list 
by examining the goal hierarchy, use cases, and sequence diagrams from the previous 
MaSE steps for candidate ontology terms.  The analyst looks for nouns in these 
models that could represent some type of information in the system.  For instance, 
when reviewing the sequence diagram for scheduling courses, the analyst might place 
schedule, lock, section, student, instructor, and classroom  in the candidate list, if 
these terms appear in the sequence diagram.  The actions in the sequence diagram 
illustrate that these terms could be part of the information passed in the system.  The 
designer examines the system requirements, goal hierarchy, and use case models in a 
similar manner to create the candidate term list for the ontology. 

Construct Initial Ontology 
To construct the initial ontology, the designer takes the list of terms or concepts and 
organizes them into classes and attributes and produces an initial draft of the data 
model.  When creating the ontology, the analyst must remember to only specify the 
concepts that the system needs to accomplish its goals.  For example, the ontology 
should not specify all attributes of a Human, such as height, age and weight, when the 
system only requires the name of a Human to function. 

Before creating an entirely new ontology, the designer must determine whether any 
existing ontologies can meet the system needs.  The user reviews ontology libraries 
and existing company data models looking for objects that resemble the concepts 
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listed in the term list built earlier.  The benefit to using an existing ontology is that the 
system is interoperable, in terms of passing data, with any other system that uses the 
same data model.  If no existing ontologies fully specify the information needed for 
the system, the designer must build a new ontology.  If the designer finds an ontology 
that partially satisfies the system needs, that ontology can be used as a starting point 
for the new ontology.  Users should post created models in some shared repository so 
that others can reuse the data model, increasing the interoperability of future systems. 

Continuing the course-scheduling example, the analyst decides what terms from 
the candidate list should become classes and then organizes them into the class 
hierarchy shown in the left most pane of Figure 6.  Terms that will become attributes 
of the classes or that the designer decides are not necessary as classes are not 
included.  For instance, the lock term identified earlier is not included in the example 
ontology.  The analyst can decide that the term will be implemented in a manner that 
will not require the creation of a Lock class.  The attributes of each class describe the 
properties of the class and the relationships to other classes.  Figure 6 shows how the 
Schedule class has two attributes: composedOfSections and courseTypes .  The 
composedOfSections attribute is multiple, indicating it is a list of the Section  objects 
included in the schedule.  The courseTypes  attribute is a list of String objects used to 
describe the type of courses that the schedule contains, such as AERO or CSCE. 

 

Fig. 6.  Ontology Editor Program  

Refine and Validate Ontology 
Once the designer defines the classes, attributes, and axioms of the ontology, he must 
validate that the ontology meets the system requirements.  To validate the model, the 
analyst examines the situations described in the use cases and sequence diagrams to 
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ensure that the ontology describes all the information needed in the execution of those 
scenarios. Any missing information is added to the ontology, and any extraneous 
information is removed from the ontology.  If any information is incorrectly specified, 
the designer makes the necessary corrections to the ontology. 

This step is repeated throughout the development of the system.  If at any time the 
designer realizes that some piece of information is missing from the ontology, the 
ontology is modified to include this information.  The ontological construction is 
complete once the analyst is satisfied that the ontology represents all the necessary 
information from the sequence diagrams and use cases. 

In the course-scheduling example, the analyst realizes there is a problem when 
trying to schedule the classes in the use cases.  Instructors and students might have 
other events that conflict with the scheduling of sections, such as department 
meetings, but the ontology is incapable of representing these events.  The project adds 
a ScheduledEvent object as a parent of a Section to represent these other events.  A 
Person then has a scheduledEvents  attribute that contains a list of all events that 
individual is required to attend.  With these additions, the scheduler can verify that an 
individual has no activity scheduled during a specific time frame. 

Using Ontologies in Multiagent Systems 

Once the system ontology is constructed, a multiagent system design methodology 
should allow the analyst to specify objects from the data model as parameters in the 
conversations between the agents.  To ensure the proper functionality of the 
multiagent system, the designer must be able to verify that the agents have the 
necessary information required for system execution.  Since the information is 
represented in the classes of the data model, the design of the methodology must show 
the classes passed between agents.  We modified the Refining Roles and Constructing 
Conversations steps that involve message passing, to include specification of the 
types for the parameters passed in the messages in MaSE. 

Previously, parameters in the Conversation State and Concurrent Task diagrams 
were described only by their name.  Now, the data type of each parameter is specified 
along with their name.  For example, in Figure 7, the analyst specified that the 
parameter schd is of a type Schedule, that is defined in the ontology.  Actions can now 
use the information contained in the attributes of the parameters, as the parameter 
type is known along with the attributes of that data type.  The internal variables of the 
tasks and conversations can also be typed according to the system ontology.  Using 
the data values of the parameters and variables, the validity of the conversations can 
be automatically verified.  This benefit is discussed in the next section. 

Along with building a system data model, the multiagent system design 
methodology should allow agents to have their own individual data models.  By 
addressing this capability, the methodology allows for the development of 
heterogeneous systems.  The requirement for a multiagent system to integrate with 
existing systems often creates such heterogeneous systems.  With the various data 
models comes the requirement to show how the information models relate.  

The methodology should provide the ability for the designer to show the relations 
between the data models in some manner.  Showing the relationships indicates to the 
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code developers what information from one model is required to create objects in the 
other model.  Without describing these relations, the developers may not be able to 
know how to translate objects in a conversation between two agents with separate 
data models, as each agent uses different classes to describe the information. 

 

Fig. 7.  Sample Finite State Automata with Information Passing 

The Assembling Agent Classes step now includes the ability for designers to 
specify ontologies for the different agent components and to map them to the overall 
system ontology.  These component ontologies can be used to represent the data 
models of existing agents or systems that are included in the system. The designer 
could map the component ontologies to one another or two the system ontology.  
When mapping between the component ontologies, if one component interacts with 
many different components that each have a separate ontology, a large number of 
mappings will result.  If there are n agent components, and each component interacts 
with every other component, there will be (n-1)! mappings.  By showing the 
component ontologies relationships to the system ontology, the system will at have at 
most n mappings, one for each component. The designer maps to the system ontology 
to reduce the number of possible mappings required. 

To describe the relationships between the ontologies, the analyst specifies which 
objects and attributes correspond in the ontologies.  For instance, Figure 8 shows that 
the Course object from the component ontology matches the Class object in the 
system ontology.  It also shows that the Course Number attribute of a Course 
corresponds to the number  attribute of a Class.  With these relationships defined, an 
implementer  

To assist the user with the ontological mapping, we developed an information 
retrieval ranking model that computes the similarity between ontology classes.  
Typically in information retrieval, the user specifies a query and the search engine 
ranks the documents in a collection based on their similarity to the query.  We 
consider the mapping process similar to an information retrieval process, where the 
user is searching for a class in the system ontology that is similar to the class in the 
component ontology. 

The ranking model uses the characteristics and attribute structures of two classes to 
compute their similarity score.  In this manner, the user can be presented with a list of 
classes from the system ontology ranked by their similarity to a given class in the 
component ontology.  For example, in , the ranking model returned the Class  object 
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as the third most similar to the Course object.  The attribute structures of the Section 
and Student objects resembled the structure of the Class object, and were thus 
returned as more similar. 

 

Fig. 8.  Ontology Mapper Program 

Analysis 

To test the ability of MaSE to assist the user in developing the system and agent 
ontologies and to evaluate the benefits of including the information domain in the 
development of multiagent systems, we designed a distributed course scheduling 
system using the extended MaSE [4].  The rest of this section discusses the 
exp eriences of using MaSE based on the design of the sample system. 

The creation of the system ontology occurs at the appropriate time in the 
development process.  The steps in MaSE prior to constructing the ontology, 
Capturing Goals and Applying Use Cases, provide a set of terms for consideration as 
possible objects in the ontology.  The step after the ontology creation passes messages 
and information amongst the roles.  This information passing occurs with parameters 
that are specified as objects from the ontology.  By placing ontology creation right 
before task creation, the methodology allows the user to analyze the problem domain 
thoroughly before creating the data model.  Designers can determine exactly what 
information is necessary for the system while creating the data model before it is 
required for the rest of the development process. 

MaSE describes tasks and conversations using finite state automata, so the 
experience with using the ontology is the same for each case.  With the existing data 
model, the designer can specify the type of objects passed between agents, as shown 
in Figure 7.  The designer specifies that a Schedule object is received as a parameter 
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in the updateClassrooms message.  Additionally, the analyst describes the actions that 
the task performs on the composedOfSections  attribute of the Schedule object to 
update the classroom information.  The data types are now defined, including their 
attributes, as a part of the development process and can be used in behavior diagrams. 

With the ability to specify parameter types, designers also know the exact structure 
of the information passed between agents and can verify that each agent has all the 
information needed to accomplish its goals.  Previously, the designer passed in a 
parameter assuming the developers would realize to code that information into that 
object.  With a specified data model, the user can specify the object and ensure the 
information is encoded as an attribute of the object. 

By specifying agent component ontologies, the developer can reuse agents from 
previous systems or integrate existing legacy systems to form a heterogeneous 
system.  The designer can specify mappings between the component and system 
ontology to illustrate which data types represent the same semantic concept in the 
various ontologies. 

Another result from the inclusion of ontologies is that agentTool can output more 
complete code.  A Java class is created for each object in the ontology with the 
appropriately defined attributes.  The code for the agents and conversations can then 
use these classes based on the data types defined in the design diagrams, requiring the 
developer to modify less code. 

The automatic conversation verification mechanisms in agentTool [12] can also be 
expanded to check the data types of the parameters in conversations.  The verification 
procedure checks for deadlock, non-progress loops, and for valid message sequences 
comparing the signatures of messages.  These signatures can be expanded to include 
the data types of parameters passed in the messages.  This additional checking verifies 
that the conversations are valid in terms of t he data types of the parameters in a sent 
message matching the parameters of a message received by some agent in the system. 

The addition of ontologies also allows for the creation of security related 
verification in agentTool.  The ontology can be expanded to support the classification 
of the data objects.  For example, an AirTaskingOrder object defined as a classified.  
Objects can be specified as classified or unclassified, or the ontology can be expanded 
to support additional levels of classification.  The system designer can then define the 
classification level of the individual agent classes.  The conversations could then be 
automatically verified to ensure that the system ensures that classified information is 
not passed to non-classified agents. 

The inclusion of ontologies also assists with the development of organizational 
rules in MaSE.  Organizational rules can define constraints between roles and 
protocols, roles and data, or between roles themselves.  The axiom and attribute 
characteristics in the ontology can define organizational constraints placed on the 
information.  Using the ontology to develop functions that describe the data in the 
system can expand these constraints.  For example, the function classesRegistered(s) 
could return the Section objects that the Student object s is currently registered for.  
These functions can be combined with protocol functions to describe relationships 
that organization of agents must ensure are met during system execution [1]. 
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Conclusions  

In this paper, we have shown how we extended MaSE to include the development and 
use of ontologies to define the information domain of the system.  This addition to 
MaSE allows the user to define a system ontology and to specify data model objects 
in MaSE behavioral models.  The extensions mesh with the previous version of MaSE 
to ensure the MaSE steps logically flow through a software development process 
where the outputs of one step become inputs to the following steps.  Designers may 
now construct system and component ontologies by creating and structuring classes 
and attributes using terms extracted from the goal hierarchy, system requirements, and 
use cases.  Agents can then use these classes to share information with one another. 

By adding these steps to address the information domain, this research matures 
MaSE towards a more complete methodology for building multiagent systems.  MaSE 
now addresses the system’s behavioral, structural, and data models, thus defining the 
aspects required to ensure a coded system will fulfill the initial requirements.  With 
these models, the designer can ensure that each agent has the required information to 
fulfill all of the system requirements. 

When automated in agentTool, the inclusion of ontologies can increase the ability 
to automatically verify the conversations in the system by comparing the signature of 
messages.  With ontologies, agentTool could also verify the security of the multiagent 
system, ensuring that classified information is not passed to unclassified agents. 

The methodologies built to construct and use ontologies discussed in this paper can 
be integrated into other agent oriented design methodologies in a manner consistent 
with the models of each methodology.  This paper presents the integration of the 
concepts into MaSE as an example implementation of including ontological 
engineering into multiagent systems development methodologies. 
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