
An Application of Agent UML

to Supply Chain Management

Marc-Philippe Huget

Agent ART Group
University of Liverpool
Liverpool L69 7ZF
United Kingdom

M.P.Huget@csc.liv.ac.uk

Abstract. Agent UML is a graphical modeling language for describing
multiagent systems but until now, it has not been applied to real-world
applications. The aim of our project is to apply Agent UML to Supply
Chain Management. This project has several objectives: (1) it allows us
to discover which diagrams have to be enhanced, modi�ed or created
and, (2) it allows us to de�ne a methodology based on Agent UML and
several tools. This paper summarises our preliminary results on applying
Agent UML to Supply Chain Management and gives an overview of the
UML diagrams that are of particular interest to design and development
of multiagent systems. We conclude with a discussion of future work in
this area.

1 Introduction

For several years, methodologies and graphical modeling languages have been
supplied to designers in order to design systems, software and components. UML
[3] is certainly the best known graphical modeling language. For several years,
multiagent system designers have the same possibility with some modeling lan-
guages like Agent UML [9] [2]. Agent UML is based on UML. As Odell and
Bauer quoted it, it is not possible to directly use UML since several di�erences
exist between agents and objects like the autonomy or the ability to cooperate
[8]. However, it seems to be important to capitalize on the skills of designers.
Multiagent system designers are often software engineers who use UML or are
aware of it. Even if a strong interest is manifest on Agent UML (see the Internet
site http://www.auml.org for papers on the subject), at present, it does not exist
an application of Agent UML to real-world applications. The only example that
we can give is MOTIV-PTA [1] but this paper does not present the impact of
Agent UML during the design.

We currently lead a project trying to apply Agent UML to the example of
Supply Chain Management [10] in order to (1) �nd which diagrams in Agent
UML have to be enhanced, modi�ed or created and (2) design methodologies
and tools for Agent UML. This paper presents our �rst results on applying Agent
UML to the application of Supply Chain Management.

E Yu
117



Due to lack of space, we only present here our conclusions on applying Agent
UML diagrams. A longer version of this paper is in [5].

2 Agent UML Diagrams

As stated in introduction, Agent UML is an extension of UML in order to tackle
the di�erences between agents and objects. As a consequence, Agent UML has
several representations:

1. Sequence diagrams
2. Collaboration diagrams
3. Activity diagrams
4. Statechart diagrams
5. Use case diagrams
6. Class diagrams
7. Object diagrams
8. Packages
9. Component diagrams
10. Deployment diagrams

Sequence diagrams are used in Agent UML to represent interaction proto-
cols. These diagrams are already modi�ed [9] [2] [6]. The application gives us
some feedback on what could be done: (1) it is impossible during all the inter-
action to stop and to prevent abnormal execution. The notion of exceptions and
triggering actions are not present. Such proposals are given in [6]. Moreover, it
is not possible to link several protocols together. We do not speak about nested
or interleaved protocols but about the side e�ect of protocols each other. For in-
stance, if the agents currently consider the negotiation and simultaneously, the
client cancels her order, the �rst protocol is no longer valid. It is not possible to
notify the side e�ects between interaction protocols. (2) implementing this kind
of protocol diagram by hand is painful and it does not prevent errors. Designers
need tools for designing their protocol diagrams.

Collaboration diagrams and activity diagrams are not considered for the
moment.

Statechart diagrams allow us to represent the dynamic of the system and
particularly, the �ow between elements in the system. Statechart diagrams con-
sider the di�erent states of the system and how to go from state to state through
actions. Statechart diagrams seem to be an interesting approach in order to rep-
resent agents' behaviors. When reading statechart diagrams, readers can point
out that it is impossible to know (except with notes) who is responsible for the
events and to whom the actions are addressed. The main drawback in statechart
diagrams when considering multiagent systems seems to be the inability to rep-
resent concurrent actions. Actually, it is possible that the order acquisition agent
receives an order while negotiating another one.

Use case diagrams represent the use cases, the actors and the relationships
between the actors and the use cases. A use case can be seen as a scenario in

E Yu
118



the system, for instance when the user tries to log on a system and a password
is required. In multiagent systems, use cases are interesting when realizing the
requirement analysis. They are helpful during meetings between end users and
designers since they are graphical. It is easier for users to seize the di�erent
elements of the system. The main advantage of the use cases is to focus on the
what and not on the how, that is to say on the system behavior and not how
the system is implemented.

Class diagrams in UML represent the di�erent classes and their connections.
Class diagrams correspond to the architecture of the system. Class diagrams
seem to be interesting in order to represent the di�erent agent roles and the
relations between the roles. Since agents and objects are not exactly the same,
we think that class diagrams have to be updated in order to consider agent
features like beliefs, intentions, plans or knowledge. UML class diagrams only
consider attributes and operations. A �rst proposal of extension of these class
diagrams is in [1]. We enhance this proposal in [4].

UML and as a consequence Agent UML allow us to represent several level of
abstractions when designing class diagrams. Sometimes it is not interesting to
have an accurate view of the system with the dependencies and the attributes.
High-level class diagrams allow to seize the system in its entirety. We consider
here two levels: the conceptual level and the implementation level. The concep-
tual level is a high-level view of the system getting rid of the details such as how
agents are implemented or the connected classes. The implementation level is
a detailed view of the system with the detailed information. Designers can also
de�ne a range of view between these two ones according to their requirements.

Class diagrams are central and a lot of details have to be given on class
diagrams. It is not easy to do that without a proper method. It seems to be
important to have a methodology for de�ning these class diagrams.

Object diagrams are not considered for the moment. They allow to represent
the snapshot of instances of classes during execution. They could be interesting
for a validation stage if designers want to check if at some moment, agents have
a particular state.

Component diagrams describe the physical elements used during run-time.
Components represent elements accessible by interfaces. Components are Java
classes, data �les, databases, legacy software, etc. Previous diagrams presented
above concern the design of multiagent systems. This diagram and the next one
deal with the development of multiagent systems.

It seems that component diagrams are required in multiagent systems in
order to perform compilation of agents and in order to know the dependencies
between elements. The �rst use does not arise some missing elements in these
diagrams.

Deployment diagrams are used to represent the multiagent system con�gu-
ration at run-time; that is, these diagrams describe how agents and resources
are deployed on machines.

Deployment diagrams intervene at the very end of the development and allow
to describe the needed resources and how agents are deployed. These diagrams

E Yu
119



seem to be worthwhile when multiagent system designers and deployment de-
signers are not the same. Deployment diagrams represent the static view of the
deployment. It could be a problem in the context of mobile agents since they are
not able to represent the translation.

3 Conclusion

The graphical modeling language Agent UML is now in the toolbox of multia-
gent system designers. However, Agent UML is in its infancy and further e�ort
is required in order to instantiate completely Agent UML to the domain of mul-
tiagent systems. Until now, there is few work on Agent UML and less work on
applying Agent UML to real-world applications. The aim of this paper is to
present our very �rst results on the application of Agent UML to the Supply
Chain Management example. This example seems to be enough important to
allow designers to seize what is missing in Agent UML and what is wrong.

The application of Agent UML to Supply Chain Management arises several
questions and highlights some lacks in the current version of Agent UML. Nu-
merous directions of research are possible. We speci�cally follow these directions:
(1) going deeper in the design of this application in order to �nd what is missing
in Agent UML, (2) designing tools for handling Agent UML diagrams1 and (3)
de�ning a methodology for the design of diagrams.

References

1. B. Bauer. UML class diagrams revisited in the context of agent-based systems. In
M. Wooldridge, P. Ciancarini, and G. Weiss, editors, Proceedings of Agent-Oriented
Software Engineering (AOSE 01), number 2222 in LNCS, pages 1�8, Montreal,
Canada, May 2001. Springer-Verlag.

2. B. Bauer, J. P. Muller, and J. Odell. An extension of UML by protocols for multia-
gent interaction. In International Conference on MultiAgent Systems (ICMAS'00),
pages 207�214, Boston, Massachussetts, july, 10-12 2000.

3. G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language User
Guide. Addison-Wesley, Reading, Massachusetts, USA, 1999.

4. M.-P. Huget. Agent UML class diagrams revisited. Technical Report ULCS-02-013,
Department of Computer Science, University of Liverpool, 2002.

5. M.-P. Huget. An application of agent UML to supply chain management. Technical
Report ULCS-02-015, Department of Computer Science, University of Liverpool,
2002.

6. M.-P. Huget. Extending agent UML protocol diagrams. In F. Giunchiglia, J. Odell,
and G. Weiss, editors, AAMAS Workshop on Agent-Oriented Software Engineering
(AOSE), Bologna, Italy, July 2002.

7. M.-P. Huget. A language for exchanging Agent UML protocol diagrams. Technical
Report ULCS-02-009, Department of Computer Science, University of Liverpool,
2002.

1 A �rst step towards this goal is to de�ne a format for exchanging diagrams. For
further details see [7].

E Yu
120



8. N. R. Jennings and M. Wooldridge. Agent-oriented software engineering. In
J. Bradshaw, editor, Handbook in Agent Technology. MIT Press, 2000.

9. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In G. Wag-
ner, Y. Lesperance, and E. Yu, editors, Proceedings of the Agent-Oriented Informa-
tion Systems Workshop at the 17th National conference on Arti�cial Intelligence,
Austin, Texas, july, 30 2000. ICue Publishing.

10. J. Swaminathan, S. Smith, and N. Sadeh-Koniecpol. Modeling supply chain dy-
namics: A multiagent approach. Decision Sciences, April 1997.

E Yu
121




