WidgetLens: Interaction Through The Looking Glass

Bhavna Agarwal *

Wolfgang Stuerzlinger t

Department of Computer Science & Engineering, York University, Toronto, Canada

ABSTRACT

Computer and mobile device screens are increasing in size and
resolution. This increase in resolution causes problems with
graphical user interfaces designed for lower resolution screens, as
all information gets smaller and smaller. We present two novel
techniques to make graphical user interfaces on high-resolutions
screens more accessible and usable. We introduce a new in-place,
localized zooming technique that works on a per widget basis. We
also present a novel widget magnification technique that
implements special modalities for common user interface
elements, which affords widget-dependent magnification.

KEYWORDS: Graphical user interfaces, widgets, accessibility,
human performance.

INDEX TERMS: H.5.2 [User Interfaces]: Graphical User Interfaces

1 INTRODUCTION

Computer monitors are getting bigger and bigger and resolutions,
i.e. the number of pixels, continue to increase. This trend exists
both on handheld devices, such as smartphones, as well as
traditional laptops and desktops. In general, bigger displays are
preferred as users can display more information and see more
detail simultaneously. More relevant to our current work is that
the pixel density of screens, i.e. the number of pixels per inch
(ppi), is also increasing steadily. Currently smart phones and
portable book readers use screens with 150-300 ppi, laptops 100-
250 ppi, and desktops 100-200 ppi.

However, most graphical user interfaces (GUI’s) are designed
for monitors with a constant pixel density, typically about 100 ppi,
the lower end of today’s displays. This makes all user interface
elements, including text, appear (too) small on displays with
higher densities. This causes problems for users with poor
eyesight, but affects even average people when they upgrade their
system. In many common GUI toolkits there is little or no support
for scaling of widgets and their elements, such as images or text,
to resize or render them differently depending on the resolution.
Partial fixes to this problem exist in the form of a global, system
wide scale factor or full screen pixel-wise zoom. However, this
reduces either the information content per window, or provides
less screen space for other programs. This quickly becomes a
problem if the user is working with more than one application at a
time. The zoom/pan facilities associated with the “canvas” widget
used in browsers, text editors and drawing programs etc., address
this problem for that type of widget, but this solution does not
generalize. Reworking existing GUI toolkits to provide scalable
widgets is labour intensive and time consuming and will likely
require significant adaptation in existing applications. Hence,
methods are needed to enhance the readability of existing GUI’s
without reducing content.

In this article, we present a novel technique to make user
interface widgets more scalable for different screen resolutions

" e-mail: bhavna@cse.yorku.ca

T e-mail: wolfgang@cse.yorku.ca

and thus more accessible. We explore target expansion for GUI’s
composed of densely tiled widgets and present new widget-
dependent magnification techniques.

2 PREVIOUS WORK

A GUI consists of many densely tiled targets, i.e. widgets. In such
arrangements, the user needs to be able to quickly select and
easily interact with any given widget. For this situation,
dynamically expanding targets have been proposed based on their
implications on human performance [1, 2, 3]. This established that
dynamically changing a widget’s size aids in selection tasks. Ruiz
and Lank [2] presented a cost/benefit model for expanding targets
in a tiled arrangement using kinematic endpoint prediction. They
found a net benefit in expanding targets that occupy less than 4%
of the display resolution.

Another area of relevant work is interface customization, i.e.
adaptive and user-adaptable interfaces. Among this large body of
work, Facades is particularly relevant [4]. This system permits
seamless copy and paste of window regions using direct
manipulation techniques, while maintaining full interactivity and
without changes to the application code. Fagades implements this
by obtaining widget-related information through the accessibility
API’s supported by modern GUI toolkits and by redirecting
events and screen output accordingly. Figure 1 shows the event
management and image flow in Fagades.

i App 1 App 2 App3 = Widget-r
application

Applications

Metisse Server

off-screen windows
A

-

¢ FywmCompositor]]

Composition

Screen content
and input

S S S R S VS 71

Input ———» <— Input
Fagade:holdsr

P Drawing commands, eeeeee P Accessibility API
Image stream (of GUI toolkit)

— Input Events

Figure 1: Facades architecture, from [4].

3 NEW TECHNIQUES

The basic idea behind WidgetLens is a localized widget zoom.
Essentially, we map the widget under the cursor to a larger
overlay window displayed over it. This design choice is motivated
by the fact that we work in a (fixed) densely tiled arrangement of
widgets, where there is likely no free surrounding space. Hence,
we cannot move other widgets “away”, similar to the OS X Dock.

Figure 2: lllustration of widget displacement relative to cursor.

26

For this localized widget zoom, we present two new techniques
using pixel magnification and widget replacement. Both use the
accessibility API of modern toolkits to retrieve information about
widgets, such as position and/or interaction possibilities.

31 Local Widget Zoom

In this version of a WidgetLens, the pixel image of the current
widget is used as a texture for an enlarged version, which is
overlaid on top. The widget in focus is thus enlarged in each
direction (by default a factor of two). We move this enlarged
version proportional to the distance of the corresponding edge of
the original widget from the cursor, which provides a sliding
effect. Mouse motions are mapped to guarantee that as soon as the
mouse cursor leaves the original widget, the local widget zoom
switches to the corresponding next widget. Any mouse or
keyboard interaction with the fully zoomed version is passed
through to the original widget.

*Unsaved Document 1 - ge

Edt vie Search | Tools Documents ||p

= q = O AR
Open edo Cut
— Sav Undo —F——

red Docurmert P rint...
is a TEST docunerressss—

Figure 3: Widget in focus 2x zoomed and partially obscured widgets
1.5x zoomed. Red boundaries added for visualization.

As neighbouring widgets may be hidden by the expanded
widget, we generate partially enlarged versions and overlay them
at the respective corner closest to the cursor in an intermediate
layer, which increases the visibility of these surrounding widgets.
Figure 3 depicts the local widget zoom.

3.2 Smart WidgetLens

Straightforward magnification causes an undesirable blur in text
and images. To address this, we present a novel form of widget
lens that replaces widgets with higher resolution versions. This is
implemented by traversing the widget tree of the underlying
application and by duplicating each widget on a one-to-one basis
in a separate window. The replication then uses larger fonts. If the
system recognizes also the filename of an icon, it also uses a
higher-resolution version of the corresponding image. Then, each
of these enlarged versions is instantiated as a fagade and overlaid
on the original window as described in the local widget zoom
(Figure 4). For simple widgets, such as buttons or menus, all
interactions, such as mouse clicks are simply redirected to the
original widget. The display mechanism, mouse events, and
partially obscured widgets are handled as described above.

More complex widgets, such as combo-boxes or text fields, are
managed differently. In this situation there are more interaction
possibilities, such as selection, scrolling, or editing. We address
this by allowing the user to interact directly with the overlaid
widget and pass the resulting higher-level events, such as text
changes or selection events, to the original widget. Another issue
is that simple magnification may cause parts of the widget to fall
outside of the monitor. Hence, we limit the number of lines, list
items, and/or the number of characters to make sure that the
widget stays within the boundaries of the monitor. We currently
do not provide WidgetLens functionality for canvases. A naive
magnification would only lead to an explosion of white space.

Moreover, we can assume that the application already provides
zoom facilities for a canvas widget.

A
Edlt Search]'ools
View E =5
@ | oe

Q-'QsearCh Save Undo Redo Cut
Tools
Documents||
Help
= New
= 9

‘Open

Figure 4 Left: Fagade window with larger font (normally invisible),
Right: User view.

Mode: | Normal o]
opacity: NOFPQal | =
" IDissdlve
. Behind -
Colour erase
Multiply
Divide
Screen
Overlay V]

Figure 5: Combo-box with larger font and scrollbar.

4 CONCLUSION AND FUTURE WORK

We presented a new method for end-users to interact with user
interface elements on screens with high pixel densities. Based on
the Fagades system, we implemented two new methods that
increase the visual accessibility and interactivity of GUI widgets.

We are working to implement various other effects, such as
high-contrast display of widgets. Moreover, we are currently
improving the animations to make the zoom effect less noticeable
and dependent on cursor speed. Also, we are expanding the set of
smart WidgetLenses further. Finally, we are considering a user
study to analyze the benefits of WidgetLenses.

REFERENCES

[1] A. Cockburn, P. Brock. Human on-line response to visual and motor
target expansion. In Proc. Graphics interface, volume 137, pages 81-
87, ACM GI, 2006.

[2] J. Ruiz, E. Lank. Speed pointing in tiled widgets: understanding the
effects of target expansion and misprediction. In Proc. Intelligent
User Interfaces, pages 229-238, ACM, 2010.

[3] M. McGuffin, R. Balakrishnan. Acquisition of expanding targets. In
Proc. SIGCHI, pages 57-64. ACM, 2002.

[4] W. Stuerzlinger, O. Chapuis, D. Phillips, N. Roussel. User Interface
Fagades: Towards Fully Adaptable User Interfaces, pages309-318,
ACM UIST, 2006.

27

