
i* on ADOxx
®
: A Case Study 

Margit Schwab
1
, Dimitris Karagiannis1, Alexander Bergmayr

1
 

1 Universitaet Wien, Faculty of Computer Science, 

Department of Knowlede and Business Engineering, 

Bruennerstrasse 72, 1210 Vienna 

{ms, dk, ab}@dke.univie.ac.at 

Abstract. Based on the ADOxx® meta-modelling platform, the conceptualization 

of the i* method is discussed by means of a case study. The focus lays on the 

“translation” of i* concepts into a conceptual model leveraging the instantiation of 

meta-classes provided by the utilised ADOxx® platform. Thereby the 

consideration of all concinnities of both the i* meta-model and corresponding 

instance models within a specific domain is essential. The claim is that the 

ADOxx® platform supports this with adequate abstraction mechanisms. When 

using a meta-modelling platform, the first step of semantic integration can be 

achieved, where the modelling language and the platform use a meta-modelling 

approach as a concept. The result of this case study is accessible on 

www.openmodel.at/istar. 

Keywords: meta-model, modelling language, i*, ADOxx®, meta-modelling 

platform, method-engineering and -engineer; 

1 Introduction 

The construction of models and by their means processing particular information is 

nowadays a common procedure. Depending on the domain, the purpose and the 

underlying meta-model, the resulting instance models are “by definition” more or less 

complex. We use the classification of model hierarchies and language levels according 

to Kühn [11, p 32]. As we speak of instance models we think of graphical models and 

refer to the distinction of different types of models [9, 10, 8]. The end user of the meta-

model, let‟s call him/her modeller, will use the modelling method at hand ideally in 

terms of the method engineer. In addition s/he will shape and refine the information to 

be conveyed with the instance model in the best possible way. This task is in general at 

least twofold.. Firstly, there is the design of the model and secondly, there is nearly at 

all times the need to consider further concinnities, like additional model descriptions in 

natural language, time-related data, necessary skills during processing, or applicable 

forms or regulations of the model. In fact the effort spent for the latter varies depending 

on the purpose and the target group the instance model is designed for. This demands 

flexibility from the underlying meta-modelling platform, in concrete for the case study 

ADOxx
®
. Although there are already a number of solutions available providing an 

implementation of this method [2], the crucial distinction feature in this study case is 

that the design and realization of the i* method [6, 16, 19] is based on a meta-modelling 

92



approach, as described in Section 2. Section 3 is devoted to lessons learned. Section 4 

concludes the paper and gives an outlook on further research questions to be addressed.  

2 The i* Method Case Study 

In this case study the i* method on one hand and the ADOxx
® 

meta-modelling platform 

on the other hand have been used. The former provides a specification for the syntax, 

the semantic and the notation. The method concepts: actor, role, agent and position are 

subsumed under the term “intentional actor”. Furthermore there are the elements goal, 

softgoal, task, resource and belief. These elements form the group “intentional 

elements”. Connections comprise the constructs of a dependency link, association link, 

means-end link, decomposition link and contribution/correlation link [6, 19]. On the 

other side the ADOxx
®
 supports the process of method customization and allows the - 

mostly graphical - creation, persistence, maintenance and usage of models. Further it 

offers functionality to freely define and configure arbitrary meta-models of modelling 

languages including the definition or adaptation of the corresponding procedures and 

mechanisms applicable to models. By means of these tools the method engineer 

elaborates the translation of the i* method into a conceptual model. The result of this 

development is a semi-formalised structure of the available modelling concepts and 

their dependencies. For the construction of graphical models the i* method also 

provides integrated mechanisms, especially to perform goal satisfaction evaluations, 

based on these models. For these mechanisms further requirements related in particular 

to the notation of the modelling concepts can be specified during the developing phase 

by the method engineer. In the following the focus lays on the elaboration of the i* 

conceptual model, in the translation part and the customization concepts, in the 

instantiation part [1]. 

2.1 Part I: The Translation 

The starting point for the translation is the ADOxx
®
 metameta-model which exhibits 

the structure for the matching of i* concepts. In the following selected concepts of this 

metameta-model are used to exemplarily demonstrate mappings between the method 

and the platform. The method engineer has to know these concepts in order to fulfil the 

intellectual process: to design a holistic view of the i* conceptual model (see Fig.1.). 

The first applicable concept is library. The library is a container to which all 

formalisms and constructs of an instance of a modelling language are assigned to. Yet, 

the meta-model possesses also a particular structure so that the assigned elements are 

not loosely arranged abreast on an equal level. The next step is to allocate the constructs 

of the modelling language to model types. The i* method comprises two different types 

of models, the strategic dependency model and the strategic rationale model. The model 

type is a modularisation element for the available modelling concepts of a method. 

Hence, a model type strategic dependency model groups for example all modelling 

concepts necessary to map strategic dependencies for a particular scenario. 

i* on ADOxx®: A Case Study

93



 

Fig. 1. Holistic View of the i* Conceptual Model [part] 

The modelling concepts are described with classes which are assigned to a particular 

model type. In ADOxx
®
 modelling classes, which are in the i* method, actor, agent, 

role etc. and for the relation classes, which are dependency link, association link etc.  

are distinguished.The different classes have particular properties. In this point the i* 

method gives the method engineer an opportunity of a precise formal description about 

the syntax of the classes by means of attributes. The only mandatory requirement of 

the platform is that each class, modelling class or relation class, has a name attribute, 

because technically speaking, it becomes a global identifier. We distinguish between 

class attributes and instance attributes. The differene between these two lay in the values 

the attribute can adopt. Class attributes are context neutral and not to be filled by the 

end user or modeller using the method after implementation. Instance attributes are 

context dependent and will be used by the modeller to capture data and convey certain 

information [11, p. 100]. The attribute type is determined by the value the attribute can 

adopt when using the method, i.e. which data should be captured. Beside commonly 

known datatpyes ADOxx
®
 additionally provides support for inter model references, 

expressions, tables, or programm calls to name some of them. This list can be extended 

for applying the algorithms and mechanisms on the instance models. 

2.2 Part II: The Instantiation 

The instantiation should lead to a mapping between the ADOxx
®
 meta-classes with the 

i* modelling and relation classes. After this step the customizing effort can be 

determined. The customizing is conducted on the level of the modelling language - 

considering the notation, the syntax and the semantic - on the method procedure level as 

well as from the processing point of view within mechanisms and algorithms. For 

demonstrating the work which is involved is shown in an example concerning the 

customizing of the notation.  

Proceedings of the 4th International i* Workshop - iStar10

94



 

Fig. 2. Actor i* Notation: Graphrep Representation 

The i* method gives guidelines how the different classes look. It specifies the shape. 

Furthermore that for the modelling classes the value of the name attribute is displayed in 

the centre of the shape. The intentional actors can furthermore possess a boundary. The 

intentional actors are represented with a boundary, to express that all intentional 

elements within this boundary are explicitly desired by that intentional actor. For the 

relation classes association link and contribution/correlation link several type of links, 

for example if the association link is a “covers”, “plays” etc. association, are specified. 

They are visualised with a respective label. This requirement can be fulfilled with the 

Graphrep formalisms which are provided by ADOxx
®
. Fig.2. gives an example of the 

actor specification and the realization in the ADOxx
®
 Graphrep. In analogy, the 

customization effort for syntactical and semantical requirements is fulfilled through 

ADOxx
®
 functionality. The version of the i* method which has been translated and 

customized on the ADOxx
®

 platform as described in the case study at hand is available 

on the open models platform.  

3 Some Lessons Learned 

The i* method provides a high degree of maturity in terms of method specification. 

Nevertheless, the mapping on the meta-modelling platform ADOxx
®
 showed that the 

offered platform functionality gives new input to further conceivable extensions. 

Suggestions for extensions rely on the analysis of instance models provided in different 

papers and can be structured by extensibility for syntax and notation as well as by 

interpretability [16, 17]. 

Extensibility. The syntax is related to the notation as some attributes are only 

necessary for the “orchestration” of a certain graphical representation, for example that 

the actor is represented with a boundary. The actor boundary belongs to a very specific 

actor and if a boundary is required to express the delineated semantic, it should be 

i* on ADOxx®: A Case Study

95



possible that the modeller can activate and deactivate the boundary on the drawing area 

as needed. In ADOxx
®
 this can be done by defining an attribute, e.g. boundary and two 

possible predetermined values „with‟ or „without‟. Another extension concerns the 

colour as it is an important distinction element, to keep the available shapes and as a 

consequence their meaning apart, there is the suggestion to use coloured elements. The 

reason for this is that if the instance models are of a certain size they tend to become 

hard to overlook and to read. From the experience of working with end users and 

addressees of instance models we know that the rectilinear an instance model is 

mapped, the easier the reader picks up the content and the better s/he understands the 

scenario captured with it.  

Interpretability. During the analysis phase of instance models it became obvious, that 

the two previously identified model types – strategic dependency model and strategic 

rational model – are candidates for applying the ADOxx
®
 view concept. As both types 

use most of the available classes of the i* method mutually. The latter refines the former 

entirely or only in parts by using the same instance objects. Hence, what in the i* 

method is expressed by two different types of models is considered as a view or mode 

in the meta-model of the ADOxx
®
 platform. Despite of using the mode concept at least 

one model type needs to be defined. The suggestion for a name of the newly specified 

model type is Intentional actors and elements model. As the name should be specific 

for the i* method and should convey as precisely as possible the context that should be 

documented with a strategic dependency model and a strategic rational model. The new 

model type has two modes, once the strategic dependency mode and twice the strategic 

rational mode whereas the former is defined as the default mode. 

The explained lessons learned are concerning the conceptualization of a particular 

method. The deployment of the instantiated method is beyond the focus of the case 

study, although there are related technical questions the method engineer needs to 

answer in order to provide a “ready-to-use” tool. The ADOxx
®

 platform offers 

respective support for this task. 

4 Conclusions 

Instance models and with them the modelling method they have been created with are 

commodity, this is also valid for the i* method. There will always be the need for new 

methods or extended functionality of existing ones in order to convey information in the 

intended way. Once modelling methods are to be used by a broader group of people and 

drift off the initial inventing team it becomes advantageous if the method is supported 

by a tool. The more the modelling method avoids ambiguity in expressing certain 

information the more difficult it is to “translate” this modelling method and support it 

by a platform. From our experience one reason for that is that today‟s meta-modelling 

platforms lack in providing the full range of required functionality. Further research on 

the side of meta-modelling platforms and furthermore on the end user side is essential. 

This even more if this is seen in context of the integration of different modelling 

methods. For the later this is a claim in form of a non-functional requirement with 

regards to the utilisation of the modelling method by the end user resulting in user-

friendly handling and as a consequence user acceptance [5, 18]. 

Proceedings of the 4th International i* Workshop - iStar10

96



Acknowledgments. The authors thank all the colleagues from the University of Vienna 

and the Open Models Community for helpful discussions and comments during the 

realization of this case study. 

 

References 
1. Karagiannis, D.; Kühn, H.: ”Metamodelling Platforms”; in Proceedings of the Third 

International Conference EC-Web 2002 – Dexa 2002, Aix-en-Provence, France, September 

2 – 6, 2002, LNCS 2455, Springer Verlag, Berlin Heidelberg, p 182 ff. 

2. List of i* tools, http://istar.rwth-aachen.de/tiki-index.php?page=i*%20Tools, last access 5th 

of March 2010. 

3. Cares, C., Franch, X., Perini, A., Susi, A.: „iStarML The i* Mark-up Language: Reference„s 

Guide; Barcelona, Spain, August 2007. 

4. Franch, X., Grau, G.: “Towards a Catalogue of Patterns for Defining Metrics over i* 

Models”, CAiSE 2008, Springer-Verlag Berlin Heidelberg 2008, LNCS 5074, pp. 197–212. 

5. Mylopoulos, J., Chung, L., Yu, E.: “From Object-Oriented to Goal-Oriented Requirements 

Analysis”, Communications of the ACM, Vol. 42, No. 1, January 1999. 

6. Yu, E.: “Strategic Actor Relationships Modelling with i*, Part 1, Part 2, Part3, A tutorial 

given at IRST / University of Trento, Italy, December 2001; 

http://www.cs.toronto.edu/~eric/#istar-tut-ppt; last access 25th of February 2010. 

7. Open Models Initiative, http://cms.dke.univie.ac.at/uploads/media/Open_Models_ 

Feasibility_Study_SEPT_2008.pdf; last access 25th of February 2010. 

8. Open Models Initiative; http://www.openmodels.at/web/istar/1-5; last access 25th of 

February 2010. 

9. Harel, D., Rumpe, B.: “Meaningful Modeling: What's the Semantics of 'Semantics'?”. In: 

IEEE Computer, Vol. 37 No. 10, 2004, 64-72. 

10. Strahringer, S.: Metamodellierung als Instrument des Methodenvergleichs. Shaker, Aachen, 

1996. 

11. Kühn, H.: “Methodenintegration im Business Engineering”; Dissertation, Universität Wien, 

April 2004. 

12. Braun, C., Wortmann, F., Hafner, M., Winter, R.: “Method Construction – A Core Approach 

to Organizational Engineering”, in Applied Computing 2005, Proc. of the 2005 ACM 

Symposion on Applied Computing, Santa Fe, New Mexico, USA, 13.03.2005, ACM Press, 

New York, NY, USA, 2, 2005, pp. 1295-1299. 

13. Tan Jun: “Software Develop Method Construction A Kernel Approach to Organizational 

Engineering”. In Software Engineering WCSE '09, WRI World Congress on Software 

Engineering, Volume 4, May 2009. 

14. Becker, J.; Holten, R.; Knackstedt, R.; Neumann, S.: Konstruktion von Methodiken – 

Vorschläge für eine begriffliche Grundlegung und domänenspezifische 

Anwendungsbeispiele, Institut für Wirtschaftsinformatik, Universität Münster, 2001. 

15. Software Engineering Institute, SEI, “Introduction to the Architecture of the CMMI® 

Framework”,  http://www.sei.cmu.edu/reports/07tn009.pdf, last access 5th of March 2010. 

16. Fazel-Zarandi, M., Yu, E.: “Ontology-Based Expertise Finding”, In Proceedings of the 7th 

International Conference of Practical Aspects of Knowledge Management, Yokohama, 

Japan, 2008. Springer-Verlag, Berlin Heidelberg (2008), pp. 232-243 

17. Samavi, R., Yu, E. Topaloglou, Th.: “Strategic Reasoning about Business Models: A 

Conceptual Modeling Approach”, Information Systems and E-Business Management, 

Springer , Berlin / Heidelberg, Vol. 7, No. 2, March 2009. 

18. Mylopoulos, J., Chung L., and Nixon, B., "Representing and using Non-functional 

Requirements: A Process-oriented Approach", IEEE Transactions on Software Engineering, 

June 1992. 

19. Yu, E. S.: “Social Modeling and i*”, in “Conceptual Modeling: Foundations and 

Applications”, Borgida, A. T., Chaudhri, V. K., Giorgini, P., Yu, E. S. (Eds.): Mylopoulos 

Festschrift, LNCS 5600, Springer Verlag, Berlin Heidelberg, June 2009, p 99. 

i* on ADOxx®: A Case Study

97

http://cms.dke.univie.ac.at/uploads/media/Open_Models_
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5318889
http://www.sei.cmu.edu/reports/07tn009.pdf



