
Definition and Uses of the i* Metamodel1

Carlos Cares
1,2

, Xavier Franch
1
, Lidia López

1
, Jordi Marco

1

1Universitat Politècnica de Catalunya, Omega-122, 08034 Barcelona, Spain

{ccares, franch}@essi.upc.edu, {llopez, jmarco}@lsi.upc.edu
2Universidad de La Frontera, Av. Francisco Salazar, 01145 Temuco, Chile

Abstract. The clear definition of a metamodel can be considered helpful for

any conceptual modeling approach, and the i* framework is not an exception.

Agreeing on a metamodel for i* can be considered even more convenient than

ever when we are aware of the different dialects and variations that the commu-

nity proposed, and keep proposing, over the seminal i* definition. In this paper

we present the revised version of the i* metamodel proposed by the GESSI re-

search group at 2005 and we report some current contexts of use: 1) definition

of a data interchange format; 2) definition of the inheritance construct; 3) defi-

nition of a modularity construct; and 4) definition of a metrics framework.

Keywords: Goal-Oriented Requirements Engineering, i*, Metamodel, iStarML.

1 Introduction

Since it was first released, the i* framework has been adapted to the needs of specific

research groups that wanted to represent concepts specific of their software engineer-

ing problem, like security, law compliance, trust modelling, architectural design,

model-driven development and agent-orientation, among others. Even, the i* frame-

work itself has experienced a natural evolution that has led to a slightly modified

version available in the i* wiki. This set of main i* variations have been object of our

study which we have described and genealogically analysed in [1].

This diversity, although not necessarily pernicious, has some consequences. When

reading a work around the i* framework, it is necessary first to understand what con-

crete version of i* is being used. If the contribution is based on the original frame-

work, sometimes the authors declare which version are using (lately, it is happening

to be the wiki version), but sometimes there is no explicit mention, which often makes

the reader a bit hesitant about details of the proposal being presented. On the other

hand, if the work is proposing some new variation, the semantics is sometimes given

informally or by using a formalism which is not easy to align with the available de-

scriptions of i*. In order to deal with this problem we proposed at 2005 a reference

metamodel for i* [2] where particular metamodels of i* variations can be obtained by

applying UML refactoring operations. Since then, we have revised this metamodel

upon which we have based our research work on: i* inheritance, requirements inter-

operability, and metrics frameworks among others.

1 This work has been partially supported by the Spanish project TIN2007-64753.

20

2 Objectives of the Research

In this report-of-progress paper, we review our proposal of metamodel for the i*

framework, we show our updated version and outline several contexts in which it has

been used to formalize our i*-related proposals. In particular, our main objective has

been to define a metamodel able to express most of the current variations and exten-

sions of the i* framework and to use this metamodel as a reference model for our

lines of research. More precisely, we have worked with four specific objectives in

mind: (i) To define a metamodel for the i* framework not bound to any particular

technology, (ii) To use this metamodel as the underlying baseline for defining a i*

diagram interchange format, iStarML, (iii) To use this metamodel as a reference

framework over which formulating our own extensions and variations of i*, namely a

full definition of inheritance and the concept of module, and (iv) To use this meta-

model as the syntactic baseline over which formulating a framework for the definition

of metrics on i*.

3 Scientific Contributions

As a first tangible contribution, we are proposing an i* metamodel compliant with the

objectives stated in Section 2 (generality, flexibility, technological independence; see

Figure 1). It has been built by consolidating several main versions of the framework,

as thoroughly described in [1]. It presents some superclasses of interest (Node as the

most general one, and also DependableNode and IntentionalElement) and then the

most relevant i* concepts: Actor, SR-Element and SD-Dependum as classes, and Rela-

tionship and Link as association classes, all of them with the appropriate subclasses.

The iStarML interchange format [3, 4] has being designed starting from the meta-

model. The format implements the metamodel as an XML grammar and also supports

the possibility of extension with new constructs. The ccistarml v0.6 Java package

(http://www.essi.upc.edu/~ccares/ccsoftware/ccistarml_v0.6.1.zip) allows creating,

importing and handling iStarML-compliant files. Several tools have been and are

being customized to support importing and exporting iStarML. Remarkably, the

HiME tool (http://www.lsi.upc.edu/~llopez/hime/) supports both export and import,

whilst we have developed an online translator from OME .tel files into iStarML

(http://www.essi.upc.edu/~ccares/index.php?section=ometranslator). It is planned for

adoption in a next release of TAOM4E (http://sra.itc.it/tools/taom4e/).

The inheritance proposal presented in [5, 6] and the module construct as defined in

[7] have been related to the metamodel. This makes the definition of both concepts

easy to integrate into the i* framework. In the case of inheritance, the integration is

very tight since inheritance appears in the metamodel itself, therefore we are just

providing a more detailed definition of a core concept. The concept of inheritance has

been implemented in the HiME tool presented above, supporting the three operations

identified in [5]: extension, refinement and redefinition. As for modules, the option

has been to integrate in a loosely coupled way, meaning that modules are linked to the

metamodel but the metamodel is not modified.

Definition and Uses of the i* Metamodel

21

http://www.essi.upc.edu/~ccares/ccsoftware/ccistarml_v0.6.1.zip
http://www.lsi.upc.edu/~llopez/hime/
http://www.essi.upc.edu/~ccares/index.php?section=ometranslator
http://sra.itc.it/tools/taom4e/

Fig. 1. The i* metamodel.

Figure 2 provides an excerpt of both modifications. We may observe that in addition

to actor inheritance, we are allowing the refinement of dependencies and intentional

elements in general, and extension and redefinition only for SR-elements. Concerning

modules, in addition to the general concept of module, we identify SD-modules and

SR-modules. SR-modules may be of different types too, e.g. for storing means-end

decompositions. New classes are introduced for these concepts, coupled to their coun-

terpart elements in the metamodel.

Fig. 2. Extending the i* metamodel, excerpts: inheritance (left) and modules (right).

Proceedings of the 4th International i* Workshop - iStar10

22

As a last remarkable use of the i* metamodel, we have used it as the baseline for

formulating an i* metrics definition framework. In [8], we have provided a catalogue

of metric definition patterns in which their form is expressed as an OCL template

involving metamodel elements (see Figure 3 for an example). In [9], we have illu-

strated a particular case of application, the definition of a metric suite for business

process modeling. In this exemplar we may observe the general procedure in which

an extension of the i* metamodel for capturing the essential concepts of the domain of

interest (business processes in this case) is needed. Then, the metric suites that exist in

this domain are mapped into their counterparts using a metamodel mapping.

Name Dependency-Based (Metrics Definition -> Quantitative -> Structural)

Context Some metrics have sense when applied to dependency links

Problem
The metrics will depend not just on the characteristics of the dependency link itself, but

also on the two actors that act as depender and dependee

Solution

Identify three different factors that influence the metrics: one bound to the dependency

link itself (probably related with the type of its dependum), and the others to the two
actors, depender and dependee

Required

knowledge

The effect of the depender, the dependee and the dependum in the metric, represented

by three functions:

 filter: Dependum Float

 correctionFactorDepender: Actor Float, correctionFactorDependee: Actor Float

Form

context Dependency::metric(): Type

 let ownerActor(x: DependableNode): Actor =
 if x.oclIsTypeOf(Actor) then x else x.owner in:

 post: result = self. dependum.filter() *

 ownerActor(self. depender).correctionFactorDepender() *
 ownerActor(self.dependee).correctionFactorDependee()

Fig. 3. Defining metric patterns by means of OCL templates over the i* metamodel.

Fig. 4. Extending the i* metamodel for defining metrics over business process models.

4 Conclusions

This main purpose of this paper has been twofold. On the one hand, illustrating the

form that the i* reference metamodel takes by including a particular proposal. On the

second hand, providing an overview of the different uses of such a metamodel in

different contexts that may be of general interest for the i* community: for model

interchange, for definition of new concepts and for definition of metrics.

Definition and Uses of the i* Metamodel

23

Several authors agree on our belief that the existence of an i* metamodel could

bring some benefits (shared understanding, tool interoperability, etc.) to the i* com-

munity [10, 11], although the statement could in fact be a matter of discussion, and in

fact some other researchers advocate for more focused metamodels like the Tropos

metamodel [12] and the GRL metamodel [13]. Our view is that the differences among

the several existing approaches concerning the core concepts of i* are not so severe as

to prevent the proposed agreement, whilst the potential benefits seem attractive

enough.

5 Ongoing and Future Work

We think that the most important future work is a community work: agreeing on a

metamodel as the “official” i* framework metamodel (being the one presented here or

other), making it available in the i* wiki for reference. Its existence shall provide a

shared context to i* researchers and practitioners, and shall serve as reference for:

new extensions and variations, semantic and pragmatic agreements, tool support, etc.

Concerning our particular future work, we plan to advance in the following re-

search lines: (1) using iStarML as the technological infrastructure to connect as many

available tools as possible. This also means coping with the mapping problem where a

construct that is used in some source tool is not supported in some destination tool.

An example of how to deal with this case has been presented in [4]; (2) completing

the definition of inheritance, providing the necessary restrictions on the use of the

identified operations (extension, refinement and redefinition [5]) in the form of OCL

constraints over the metamodel elements; (3) creating a comprehensive catalogue of

metrics suite based on the use of the patterns identified in our previous work; (4)

implementing the concepts presented here (inheritance, modularity and metrics) using

our HiME tool, and (5) providing semantics to the metamodel (i.e., how the different

concepts proposed in the metamodel should be interpreted).

References

1. Cares, C., Franch, X., Mayol, E., Quer, C. “A Reference Model for i*”. In: Social Model-

ling for Requirements Engineering, The MIT Press, 2010 (in press).

2. Ayala, C.P., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol,

E., and Quer, C. “A Comparative Analisys of i*-Based Goal-Oriented Modelling Languag-

es”. AOSDM 2005.

3. Cares, C., Franch, X., Perini, A., Susi, A. “iStarML: An XML-based Model Interchange

Format for i*”. In: Procs. of the 3rd International i* Workshop, CEUR-WS 322, 2008.

4. Cares, C., Franch, X., Perini, A., Susi, A. “Towards Interoperability of i* Models using

iStarML”. Computer Standards & Interfaces, Elsevier (in press).

5. Clotet, R., Franch, X., López, L., Marco, J., Seyff, N., Grünbacher, P. “The Meaning of

Inheritance in i*”. AOIS 2007.

6. López, L., Franch, X., Marco, J. “Defining Inheritance in i* at the Level of SR Intentional

Elements”. In: Procs. of the 3rd International i* Workshop, CEUR-WS 322, 2008.

7. Franch, X. “Incorporating Modules into the i* Framework”. CAiSE 2010.

Proceedings of the 4th International i* Workshop - iStar10

24

8. Franch, X., Grau, G. “Towards a Catalogue of Patterns for Defining Metrics over i* Mod-

els”. CAiSE 2008.

9. Franch, X. “A Method for the Definition of Metrics over i* Models”. CAiSE 2009.

10. Cabot, J., Yu, E. “Improving Requirements Specifications in Model-Driven Development

Process”. ChaMDE 2008.

11. Moody, D.L., Heymans, P., Matulevicius, R. “Improving the Effectiveness of Visual Rep-

resentations in Requirements Engineering: An Evaluation of i* Visual Syntax”. RE 2009.

12. Susi, A., Perini, A., Mylopoulos, J., Giorgini, P. “The Tropos Metamodel and its Use”.

Informatica, 2005.

13. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G. “A Lightweight GRL Profile for i*

Modeling”. RIGiM 2009.

Definition and Uses of the i* Metamodel

25

