
Query Processing and Optimization using Compiler Tools

Caetano Sauer
University of Kaiserslautern

Germany
csauer@cs.uni-kl.de

Karsten Schmidt
University of Kaiserslautern

Germany
kschmidt@cs.uni-kl.de

Theo Härder
University of Kaiserslautern

Germany
haerder@cs.uni-kl.de

ABSTRACT
We propose a rule-based approach for (X)Query compila-
tion that operates on a single query representation—called
abstract syntax tree (AST)—throughout the whole trans-
lation and transformation process. For this purpose, we
exploit some new features of the ANTLR compiler gener-
ator such as tree pattern matching. This approach avoids
error-prone transformations into different internal query rep-
resentations and allows to specify grammar rules instead of
writing code tailor-made for the specific DBMS. This ap-
proach may further help to develop new query optimizer
rules, to prove correctness of rules, and to evaluate rule sets
in a declarative manner.

1. INTRODUCTION
A query processor is part of a DBMS responsible for trans-
lating declarative statements written in a given query lan-
guage into a sequence of physical operations to be executed
by the lower levels of the system. This complex task in-
cludes parsing, modifying, and optimizing the initial repre-
sentation of the query. Typically, this task is divided into
smaller and more specific steps thereby introducing differ-
ent query representations facilitating the translation step at
hand. Reaching the final executable code for a given query,
the query representation usually undergoes a metamorpho-
sis from a string, via a syntax tree, to multiple equivalent
logical and physical plans.

Despite the different representations, which also introduce
new formalisms, data structures, and significant amounts of
source code, the overall task nevertheless is (from a more
abstract perspective) the translation of a declarative state-
ment into executable code—and this problem is tackled by
classical tools known to all computer scientists, namely com-
pilers.

Technically speaking, all stages of query processing are per-
forming essentially the same processing steps, that is, repre-
senting the query as a tree of operations and manipulating it

GvD Workshop’10, 25.-28.05.2010, Bad Helmstedt, Germany
Copyright is held by the author/owner(s).

in some specific way, which includes pattern matching, rule
evaluation, and translation. To avoid writing huge amounts
of sophisticated code by hand, effective language processing
tools called compiler generators (or compiler-compilers) are
used. In this way, programmers are enabled to create power-
ful and complex compilers using just a formal description of
the language: grammars. The goal of this paper is to intro-
duce this compiler approach in all stages of query processing,
thereby achieving complexity reduction, improved maintain-
ability, and a formal specification through grammars, which
in turn provides safety.

2. QUERY PROCESSING PIPELINE
The work in [4] describes all stages of XQuery[1] processing
in XTC, a native XML database system [3]. XTC follows
classical conventions of query processor design and will be
used in this work—without loss of generality and indepen-
dent of the data model—as a base reference and an example.
All nine stages illustrated in Figure 1 correspond to opera-
tions over a distinct representation of a query, and the over-
all sequence of stages is here referred to as the pipeline of
query processing. Three subtasks can be identified, namely
translation, optimization, and execution, each embracing
one or more stages. For this reason, three different inter-
nal query representations are used: AST (abstract syntax
tree), XQGM (XML query graph model, i.e., logical plan),
and QEP (query execution plan, i.e., physical plan). Note
that the input XQuery string is considered as an external
representation.

The subtask translation parses XQuery statements and
produces ASTs, which contain the syntax elements of the
query. Throughout the subsequent steps of normalization,
static typing, and simplification, this syntax is checked and
reduced to a canonical AST, which is finally translated into
a logical plan described in XQGM, i.e., an XML extension
of the classical query graph model (QGM)[2]. The logical
plan serves as input to the optimizer, which reorganizes
or replaces the algebraic operations. Besides reducing the
number of operations and the intermediate result size, it also
identifies join options and generates alternatives for logically
equivalent XQGMs. The logical plan identified as optimal
(i.e., cheapest) one is then converted into a physical plan,
i.e., algebraic operations are replaced by physical operations
on data storage objects. This physical plan, referred to as
QEP, is processed by the query engine and delivers a se-
quence of XML nodes. Eventually, these nodes are materi-
alized to a given result format, such as string or XML nodes.

XQuery

Parser

Abstract Syntax Tree (AST)

Normalization

Static Typing

Simplification

QGM Translation

XML Query Graph Model (XQGM)

Algebraic Rewriting

Plan Generation

Query Execution Plan (QEP)

Execution

Materialization

Result

Translator

Optimizer

Executor

Figure 1: Query processing pipeline used in XTC

Although working at different levels of abstraction and ma-
nipulating different representations of a query, all stages of
the pipeline perform essentially similar tasks, such as scan-
ning trees (note, plans are realized as trees), identifying pat-
terns, and performing rewrites. In the following section,
we present a query processing approach that performs these
general tasks based on a high-level descriptive language on
a single internal representation, which is used in all stages
of the pipeline.

3. ASTS AND GRAMMARS
Most of the complexity behind the implementation or main-
tenance of a query processor results from the use of different
levels of abstraction, which are expressed by the three dif-
ferent internal representations in Figure 1. Implementing
extensions of the query language, adding new functionali-
ties, or even maintaining the code due to API modifications
become cumbersome tasks for the programmer, particularly
in research prototypes, where changes frequently happen.

3.1 Representing Queries and Plans as ASTs
A first step towards complexity reduction can certainly be
achieved by replacing the three internal data structures (AST,
XQGM and QEP) with only the AST. The reason for choos-
ing a plain syntax tree for a unified query representation
comes from the fact that such trees are the basic unit of work
in language compilers. This chapter demonstrates tech-
niques to execute all stages of the pipeline with ASTs while
maintaining the semantics of the query language. Note that
the logical abstraction of the query pipeline model is re-
tained, while only the implementation technique is unified.

An AST is a labeled, ordered tree structure, where each node
is a token. By definition, a token is the minimal syntactic

unit of a language, such as a variable name or keywords like
for, where, and return. Every token is associated to an
optional string, which carries the exact sequence of char-
acters that were matched in the input query. To illustrate
the structure and the creation of the first AST, we use the
sample query in Figure 2a. For this query, the parsing stage
builds the AST shown in Figure 2b. Tokens are described
by their type (always starting with an upper case charac-
ter), e.g. FunctionCall, and the applicable text, which
serves here as a payload and is described between brackets.
In the function call token, for example, the text payload
is [“count“]. The relationship between tokens is expressed
by the tree hierarchy. The argument of the function count,
for instance, is a variable reference represented as a child of
FunctionCall.

3.2 Creating AST Structures from Grammars
The core engine of a query processor based on ASTs and
grammars is a compiler generator. The input string is tok-
enized and processed by a compiler. This compiler produc-
ing the AST was generated for a specific language described
by a given grammar. Such a grammar consists of a set of
rules used to describe the elements of the language. An
XQuery parser, for example, would make use of four rules
to match the input of Figure 2a. At the topmost level, the
query contains a FLOWR expression consisting of an assign-
ment of a variable to a path expression and a function call
with a variable reference as the return expression. These
rules are described by Figure 2c, using the syntax of the
ANTLR compiler generator1.

In addition to parsing the input, the generated compiler
must also execute actions embedded in the rules. One ex-
ample is the maintenance of variable references in a sym-
bol table when a variable assignment is parsed. This ac-
tion appears between curly braces, like the pseudo-function
insertV ariableReference() in the rule flowrExpr of Fig-
ure 2c. Later on, when a variable is referenced, the compiler
looks up its value in the symbol table and replaces the ref-
erence by its value.

A special kind of actions are the so-called rewrite rules,
which appear after the -> symbol in the grammar. They
specify how the input matched is translated to an AST,
as occurring in the rule functionCall. Here, the tokens
matched are mapped to a tree where the root node is the
FunctionCall token and the arguments of the function are
the children. The syntax used for rewrite rules is, for ex-
ample, ^(a b c), where a is the root node and b and c are
its children. Note, the difference between the token and the
rule having apparently the same name. The token is a real
object living in memory and starting with an upper-case let-
ter. Rules, on the other hand, serve as logical units of the
compiler execution, like methods in a Java class, and are
written using a lower-case letter in the first position. Figure
2b shows the resulting AST when parsing the sample query.

3.3 AST Manipulation
After the generated parser has processed the input query,
the first AST instance is constructed using the rules given
above. Several ASTs are generated and parsed in different

1http://www.antlr.org/

(a)

1 for $b in doc("dblp.xml")//article
2 return count($b)

(b)

FlowrExpr

ForClause

VariableName[”b”]
PathExpr

(omitted)

ReturnClause

FunctionCall[“count“]

VariableReference[”b”]

(c)

1 expr:
2 flowrExpr | functionCall | varRef ;
3 flowrExpr:
4 "for" $ qname "in" expr
5 { insertVariableReference(); }
6 "return" expr
7 -> ^(FlowrExpr
8 ^(ForClause VariableName[qname] expr)
9 ^(ReturnClause expr)

10);
11 functionCall:
12 qname "(" expr ("," expr)* ")"
13 -> ^(FunctionCall[qname] expr+);
14 qname:
15 ("a".."z")+ ;

Figure 2: (a) A sample XQuery expression, (b) the
AST generated for it, and (c) the grammar rules to
transform the query into an AST

stages throughout the pipeline. ANTLR provides powerful
extensions to the grammar rules, enabling AST-based query
processing and optimization. For instance, the insertion of
actions in arbitrary places of a rule (syntax: {}) and the
specification of rewrite rules (syntax: ->). In the follow-
ing, additional extensions will be described, and Section 3.4
shows how to apply these techniques in a grammar-based
query processor.

Parsing an AST is obviously an essential functionality for
further manipulations. Therefore, the AST is serialized into
a sequence of tokens. The serialization method implemented
by ANTLR adds two special tokens to signalize descending
and ascending movements—DOWN and UP—and scans
the tree in pre-order. Figure 3a illustrates a sample tree
and 3b its serialized token sequence. Note that the serial-
ization is equivalent to the tree syntax in grammar rules,
but using the UP/DOWN tokens instead of parenthesis:
^(A ^(B C D) E)

Because tree parsing allows to manipulate an AST by re-
organizing or replacing entire subtrees, we also use it for
the application of rewriting rules. A crucial task in query

(a)

A

B

C D

E

(b)

A DOWN B DOWN C D UP E UP

Figure 3: (a) A sample AST and (b) the serialized
list of tokens

processing, however, is to apply rewrite rules under distinct
conditions, which are independent of the AST structure. As
an example, the compiler may rewrite a node access to an
index scan when generating a QEP, given the condition that
an index for that access exists. Such conditions can be in-
corporated into the grammar using semantic predicates, as
will be shown later.

Sometimes, it is cumbersome to write full grammars in or-
der to perform simple AST manipulation tasks, because only
a particular subset of the rules is relevant. Since a parser
always recognizes all valid expressions of a language, all nec-
essary rules must be specified when generating it. To over-
come this problem, ANTLR implements the concept of a
Tree Pattern Matcher. These are special kinds of parsers
that recognize any token sequence and trigger embedded ac-
tions when a certain pattern contained in the grammar rules
is found. Making use of this feature, a grammar, having only
the patterns that require rewrite, is sufficient to generate a
tree scanner that performs the desired manipulation.

3.4 Applying ASTs in the Pipeline
Table 1 sketches four examples for the application of gram-
mar rules on ASTs. Each rule and the related ASTs are
reduced to the bare minimum required for showing the AST
rewrite effects.

1. Normalization for a FLOWR expression is applied
to replace multiple for clauses by nesting single fors.
Here, the rule’s forClause and returnClause were
omitted for simplicity.

2. Index Matching for a Path Step generates alterna-
tive plans, when suitable indexes are available. The ex-
ample addresses child nodes of the context item named
’author’. After the transformation, this logical data ac-
cess is represented by a physical operator, either a doc-
ument index scan (ElementDocumentScan) or an
element index scan (ElementIndexScan)—physical
operators available in our XDBMS. This rule is using
a semantic predicate—isIndexAvailable().

3. Join Reordering rules help to generate alternative
plans having different join orders. Thus, cost-based

plan evaluation may aim for the cheapest join order
when applying cost estimations to all the alternatives.
In the example, the nested for clauses of expression 1
and 2 are swapped because their context is indepen-
dent (the semantic predicate (condition) isForClau-
seIndependent() has to be checked first).

4. Predicate Pushdown moves the whereClause of a
FLOWR expression into a nested FLOWR expression.
However, again a check isWhereIndependent() is
required to verify that the where predicate can be ea-
gerly used as a filter. Normally a nested FLOWR ex-
pression is correlated to the outer one and, thus, a non-
blocking whereClause (e.g., blocking clauses contain
a grouping or ordering expression) is usually specified
for the correlated input visible for the nested one.

4. OPPORTUNITIES AND CHALLENGES
Integrating the AST-only query manipulation approach into
the XTC system became possible due to the extension of tree
pattern matching in ANTLR. However, the existing query
compilation process, sketched in Section 2, is not only com-
plex but also well-studied, optimized, and supported by a
huge amount of test cases. To replace the entire compila-
tion process, a step-by-step approach seems to be feasible.
As a consequence, the new AST-only version may start with
a rudimentary set of rules that can be manually handled. In
this way, the correctness of the rule’s impact can be proved
and a suboptimal QEP can be built and executed. In the
next steps, existing optimization rules (i.e., Java code work-
ing on the QGM) can be transformed into declarative rules
for the AST. Eventually, we hope to obtain at least the same
set of powerful rewrite rules and integrate them into our new
query processing approach. A major challenge is to express
the flexibility of rules written in Java with the concepts and
features of a language tool while retaining the same seman-
tics.

The AST representation entails certain limitations to the se-
mantic rewriting power, when only tree syntax is exploited
within the rules. For instance, nested bindings and depen-
dencies cannot always be decoupled, although decoupled
processing may be semantically correct. For instance, for
the join reorder example of Section 3.4 which depends on
the evaluation of the forClauseIndependent() condition,
a semantically reordering may also be possible in case of an
existing dependency by simply exchanging axis relationships
(e.g., from child axis to parent axis). However, XQuery se-
mantics for empty sequences has to be observed2. Although
all necessary conditions are represented within the AST, it
seems to be extremely challenging to describe generic rules
covering all the (hidden) corner cases.

Another aspect of rule-based optimization is to control the
set of applicable and meaningful rules. Because not all rules
do always improve a given query but only increase the op-
timization budget, the selection and usage of rules may be-
come an important aspect. Moreover, we hope to exploit
the easy way of expressing (new) rules to figure out which
rules maybe applied independently and which not. However,
not only the “fastest” rule chain is interesting but also the

2When child nodes do not contribute to the evaluation, an
empty sequence is required.

impact of enabling or disabling certain rules and, thereby,
disabling dependent rules automatically. Furthermore, clas-
sical problems will reappear such as cycle detection and pre-
vention, search space pruning, and various search strategies
(e.g., bottom-up, top-down, etc.).

Eventually an AST-represented plan needs to be translated
into a QEP that is often tailored to a specific (X)DBMS.
Here again, rule-based translation allows to easily translate
AST expressions into DMBS-dependent operators or code
(see Table 1: example 2). In a perfect solution, it is suf-
ficient to specify the set of available DBMS operators to
automatically select the set of rules that produce a tailored
QEP. Thus, a generic query optimization may be used for
different DBMSs without losing expressiveness while reduc-
ing the efforts of optimizer development to a single instance.

Because XQuery is a Turing-complete language, its not pos-
sible to cover all language aspects within the AST grammar
rules. For this reason, we want to explore the limitations
and opportunities for a smooth integration.

Once the essential parts of the query processing pipeline
are specified based on the AST concept, we can start with
other aspects of optimization. For instance, the nice way
of specifying query rewrite rules may help to easily identify
opportunities for (intra) query parallelization.

5. SUMMARY & OUTLOOK
Based on the current state of XTC query processing—the
classical approach sketched in Section 2—, we presented our
first experience using only language tools. This lightweight
description style of query translation and transformation
seems to provide equal expressiveness as hand-written pro-
gram code. However, up to now, neither all limitations are
identified nor all opportunities disclosed.

We hope to reduce the complexity of writing query compil-
ers and query optimizers while not affecting the quality of
optimization. Furthermore, we focus on proving rule cor-
rectness, finding optimal rule sets, and identifying DBMS-
independent approaches.

The next steps will deal with XQuery language aspects and
physical operator mapping capabilities in XTC, before we
want to compare the performance (i.e., overhead) of tailored
program code with our new AST rule-based approach.

6. REFERENCES
[1] D. Chamberlin et al., XQuery 1.1: An XML Query

Language. W3C Working Draft, (2008).
[2] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh,

Extensible query processing in starburst, SIGMOD Rec. 18
(1989), no. 2, 377–388.

[3] Michael P. Haustein and Theo Härder, An Efficient
Infrastructure for Native Transactional XML Processing,
DATAK 61 (2007), no. 3, 500–523.

[4] Christian Mathis, Storing, Indexing, and Querying XML
Documents in Native Database Management Systems, Ph.D.
thesis, University of Kaiserslautern, München, 7 2009.

Rule AST before AST after

duplicatedForClause:
^(Flowr

forClause
forClause
returnClause

)
-> ^(Flowr

^(For
forClause{1}

)
^(Return

^(Flowr
^(For

forClause{2}
)
^(Return

returnClause
)

)
)

)
;

Flowr

For

expr 1

For

expr 2

Return

expr 3

Flowr

For

expr 1

Return

Flowr

For

expr 2

Return

expr 3

elementAccess:
^(Step

contextItem
Axis
nodeTest

)
-> { isIndexAvailable }?

^(ElementIndexScan[
Axis,
nodeTest

]
contextItem

)
-> ^(ElementDocumentScan[

Axis,
nodeTest

]
contextItem

)
;

PathStep

correlated
Input Axis

’child’

NodeTest

NameTest
’author’

ElementIndexScan
(’child’,’author’)

correlated
Input

ElementDocumentScan
(’child’,’author’)

correlated
Input

joinReorder:
^(Flowr

forClause // 1
^(ReturnClause

^(Flowr
forClause // 2

)
)

)
-> { isForClauseIndependent }?
^(Flowr

forClause{2}
^(ReturnClause

^(Flowr
forClause{1}

)
)

);

Flowr

For

expr 1

Return

Flowr

For

expr 2

Return

expr 3

Flowr

For

expr 2

Return

Flowr

For

expr 1

Return

expr 3

Swap

predicatePushDown:
^(Flowr

forClause
whereClause
^(ReturnClause

^(Flowr
forClause
returnClause

)
)

)
-> { isWhereIndependent }?
^(Flowr

forClause
^(ReturnClause

^(Flowr
forClause
whereClause
returnClause

)
)

);

Flowr

For

expr 1

Where

expr 2

Return

Flowr

For

expr 3

Return

expr 4

Flowr

For

expr 1

Return

Flowr

For

expr 3

Where

expr 2

Return

expr 4

Table 1: Examples of AST manipulation for XQuery processing

