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Abstract. Social applications are one of the fastest growing areas in the Web.
However, privacy issues ensue if all information of all users of these applica-
tions is stored on a single computer system. With small extensions to Semantic
Web technologies and Linked Data concepts, a distributed approach to the social
web is possible, where users retain fine-grained control over their data and are
still able to combine their data with users on different systems. We describe our
concept of a Policy-enabled Linked Data Server (PeLDS) obeying user-defined
access policies for the stored information. PeLDS also supports configuration-
free distributed authentication. Access policies are expressed in a newly devel-
oped compact notation for the Semantic Web Rule Language. Authentication is
performed using SSL certificates and the FOAF+SSL verification approach. We
evaluate our concept using a prototype implementation and a distributed address
book application.

1 Introduction

The Semantic Web as a new generation of the World Wide Web allows its users to
share content over the boundaries of applications and web sites. To achieve this goal,
the resources of the WWW are annotated using machine-readable meta data. The prin-
ciples of Linked Data [2] describe a set of conventions how this meta data should be
structured and published. So far, no access control mechanism supporting fine-grained
access policies is available for Linked Data, although a number of fitting scenarios are
conceivable.

Previous web-based systems for the controlled distribution of sensitive information
require the presence of information on centralized systems. In order to control the access
to the managed information, these systems usually support secured data storage, access
policies for the stored data and user authentication. Examples for such systems include
various social networks: all users sign in on a central website to store their information
there. Users configure their privacy settings on that website, for instance to set their
telephone number only to be visible to a particular group of users. However, system
operators always have access to all of the stored information. This is an unsatisfactory
situation, as the operator’s behavior cannot be foreseen. Moreover, if a malicious user
manages to circumvent the access restrictions, the information stored by all users is
exposed and each user’s privacy is endangered.

We will outline an alternative approach, where users store their information on a
system under their control. Integration with users on other systems is supported, and the
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access to the stored information can be controlled by the users themselves. To imple-
ment our approach, we use and combine Semantic Web technologies. We also slightly
extended some technologies to enable users publishing Linked Data content to specify
who is allowed to retrieve their information. This way, distributed social web applica-
tions with support for sophisticated access policies can be developed.

The rest of this paper is structured as follows: in Section 2 we describe the related
work in the field of access policies for Semantic Web data, Section 3 describes the
requirements to formulate access policies for RDF data. Section 4 describes our con-
cept design of the Policy-enabled Linked Data Server (PeLDS). Section 5 shows our
results in evaluating a PeLDS prototype and our demonstration application, called the
“Distributed Address Book”. Finally, Section 6 concludes this paper.

2 Related Work

Tootoonchian et al. describe a privacy management system named “Lockr” especially
designed for social networks [18], thus their policy format is limited to describe re-
quired social relationships for data access. However, by using a general-purpose for-
mat such as W3C’s Resource Description Format (RDF) as data format, this domain-
specific problem can be handled by a more general approach. Hollenbach, Presbrey
and Berners-Lee present an approach where RDF metadata is used to describe general-
purpose access policies to RDF files stored on a web server [9]. While their approach
mentions the possibility of extending access control to the data model level, they devel-
oped and evaluated access policies only for atomic RDF files. Research in the area of
access policy languages for RDF data is exhaustively described in an article by Duma,
Herzog and Shahmehri [6]. They especially conclude on the need for fine-grained ac-
cess policy languages for RDF graphs and their elements. Reddivari, Finin and Joshi
developed such a language in [16] as well as an implementation of a system evaluating
these access policies based on the Jena inferencing engine. Jain and Farkas follow a
similar approach [11]. They also show why access policies developed for XML data
representations are not applicable to RDF data. Once access policies are defined, their
enforcement presents another challenging task. Abel et al. developed such a mechanism
[1] using access policies and query expansion. Neither of the mentioned solutions were
available as an implementation ready for usage or evaluation at the time of this writing.
Additionally, Web Ontology Language (OWL) reasoning and the handling of the in-
ferred information is not supported by these approaches. OWL and its evaluation make
powerful access policies possible, as we will show later.

The language Rei [12] was considered most suitable for the task of enabling users
to express their access policies for semantic web data, but focuses more on developing
an ontology for policy expression than to their actual application. We therefore chose to
work on a more abstract level, that is, create a policy language and evaluation methods
suitable for any RDF-based access policy expression language such as Rei. At the same
time, we stress compatibility to the Linked Data principles, and are thus unable to build
upon concepts that require a special form of protocol or trust negotiation, for example
Protune [5].
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The challenge of authenticating users in the Semantic Web environment is not as

straightforward as in the conventional WWW, as browsing activities can require re-

quests to multiple systems. Story et al. [17] have presented the FOAF+SSL concept for

distributed authentication designed to make a distributed social web feasible.

3 Access Policies
The enforcement of explicit access policies can be used to limit access to data. In simple

cases, these access policies consist of lists of users with access privileges. This elimi-

nates the need for complex access policy evaluation, but only enables very crude access

control. A more thorough approach allows users to specify custom access policies on

various levels of expressiveness. These access policies are then used to determine which

data the current user is allowed to retrieve or manipulate. Most users have an intuitive

notion which information should be made publicly available, and which information

should only be released to a limited group of people. Expressing intuitive access poli-

cies in a formal way rises the challenge of bridging the gap between human intuition

and machine-readable definition. We begin our discussion of access policies with the

definition of the term “access policy”:

Definition 1. An Access Policy is a set of rules. These rules are evaluated in order to
decide whether a user is allowed to access a data object [13].

3.1 Types of Access Policies
Whereas one could always write a custom program to decide which information should

be communicated, a declarative expression of access policies is commonly preferred

to keep policy expression and policy evaluation apart. In general, we distinguish three

different types of access policy patterns:

Discretionary Access Control (DAC) distinguishes between named users and named

objects such as files. A mechanism allows users with access rights to a specific object

to award their access rights to other users or groups of users. There is a way to limit

the propagation of access rights to sub-objects. The granularity of access rights can be

refined to the level of individual users and objects [13]. A well-known example for DAC

is the UNIX file systems file permissions model.

Mandatory Access Control (MAC) requires all objects and users to be described

by a global access policy. Every object and every user is annotated with a security

classification level. These classification levels are organized in a hierarchical way and

provide the basis to decide whether an object can be accessed. Users may only access an

object, if they possess a security classification equal or higher in the security hierarchy.

Users cannot award their access rights to other users [13]. Systems supporting MAC

are frequently used by public authorities, for example, to control access to confidential

(“classified”) information.

Role-based Access Control (RbAC) does not distinguish between single users re-

garding access rights. Users are simply given a “role” according to their assignments,

all access rights are bound to that role. A user can possess multiple roles. RbAC is a

simplified form of MAC lacking security classification hierarchies, but derivation and

composition of roles are still possible [7].
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3.2 Data Classification

In order to express access policies for an RDF graph, the user has to describe those parts
of the graph to be affected by a particular rule. This process is referred to as “classi-
fication” here. Data classifications can be defined on multiple abstraction levels of an
RDF graph. We distinguish three different levels with increasing abstraction: syntacti-
cal level, data model level and semantic level. An RDF graph in its serialized form can
be assigned to the syntactical level. Graphs can be decomposed into triples containing
a subject, a predicate and an object element. These triples belong to the data model
level. Resource descriptions, their affiliation with concepts and relationships to other
resources are on the semantic level.

Data classification for RDF graphs on the syntactical level has been shown to be
ineffective [11], mainly because serialization formats permit multiple ways of repre-
senting an identical graph. This classification level is therefore not pursued further.

Reasonable data classification for RDF graphs can be performed on the data model
level. Triples are the smallest units to be classified. They are logically independent of
any syntactical representation and can be classified easily through the usage of triple
patterns. Triple patterns describe matching conditions for each triple element and can
be used to select graph elements. On each request a system is able to classify (and
hence control access to) every triple by evaluating all triple patterns currently present,
an approach also followed in [11]. Wildcards can be used to classify a set of triples or
triples with unknown values. An example for this classification is contained in Listing
1.1 within the following section.

Finally, the semantic level allows classification of data based on concepts defined
with schema languages such as RDF Schema or OWL. This classification allows for
a set of related triples to be classified by a single pattern. As the classification refer-
ences the concept definition, updates to the concepts are automatically considered for
classification. Resources can be classified indirectly by assigning them to a classified
concept with OWL statements. One approach allowing data classification on the basis
of RDFS concepts is described in [16]. However, OWL support is desirable due to its
more powerful expressions for concept and property relationships, for instance transi-
tive properties.

3.3 Semantic Web Rule Language

The Semantic Web Rule Language (SWRL) is a generic rule language for Semantic
Web data. SWRL rules can be evaluated by a reasoning program such as Pellet [4],
KAON2 or RacerPro. SWRL rules can be represented using an RDF graph, and thus
allow easy rule handling along with the RDF graphs containing the information to be
protected.

SWRL rules describe implications and consist of two lists of predicates, the an-
tecedent and the consequent part. If all predicates of the antecedent take the Boolean
value true, all predicates in the consequent part are evaluated. The usable predicates
are given by SWRL’s language specification. The predicates are listed below with their
conditions under which they will be evaluated to true:

– C(x) - A resource x is an instance of the concept C.
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– D(z) - The value z is of data type D.
– P (x, y) - The resource x has a property P with a reference to the object y.
– Q(x, z) - The resource x has a property Q with the literal value z.
– sameAs(x, y) - x and y identify identical resources.
– differentFrom(x, y) - x and y identify distinct resources.
– builtin(r, z1, . . . , zn) - The built-in function r with the parameters z∗ returns true.

A number of functions providing standard comparisons are defined by the language
specification. Additional functions can be added by the user if required.

The RDF or XML representation of SWRL rules is not designed to be human-
readable, thus it is usually displayed in a Prolog-like notation [10]. However, this no-
tation is not intended to be interpreted by a computer, thus SWRL rules are usually
written using specialized programs. Our PeLDS concept uses SWRL for the expression
of access policies, see Section 4.

4 PeLDS System Concept

The main feature for our concept of a Policy-enabled Linked Data Server is to provide
a semantic storage system which allows its users to specify which elements of their
RDF graphs are published to which user. This is achieved by creating a temporary
view on the stored graphs that contain only those elements the querying user has been
authorized to retrieve by the publishing user. The access policy is expressed in a custom
policy language. This language can be used to implement all types of access policies
described in Section 3. The concept can be compared to views on relations in relational
databases.

The entire data stored is partitioned into datasets using named graphs to support
multiple users. To achieve this, every triple stored is assigned to a graph identifier. This
way, all triples belonging to a specific graph can be retrieved from the storage compo-
nent. This mechanism is used here to achieve multi-user capabilities: storage operations
require a graph identifier to be specified, and access policies as well as ownership in-
formation are bound to each single named graph.

As access policies contain rules, we have decided to use a general-purpose rule lan-
guage to express our access policies. We start by introducing our descriptive access
policy language PsSF based on SWRL, then we describe the algorithms for policy eval-
uation, and we finish with a description of the various operations provided by PeLDS.

4.1 Policy Language PsSF

Access policies are described as a set of rules defining access conditions for each dataset
stored on the server. Users publishing data on the system can define an access policy for
each dataset they have created. The system guarantees the enforcement of a valid policy
during each operation involving this dataset. To facilitate the easy description of access
policies, we have developed a short notation for policies and rules we call “Prolog-
style SWRL Format (PsSF)”. Each rule consists of a label, a rule antecedent describing
the condition under which the rule is satisfied and a consequent. Both the antecedent
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and the consequent contain a collection of predicates joined by the logical AND con-
dition. In addition to all of SWRL’s predicates described in Section 3.3, PsSF supports
three predicates enabling data classification on the identified levels. These classification
predicates can only be used in rule consequents.

– permit triple(subject,predicate,object) - Access to all triples matching the parame-
ters subject, predicate and object is permitted. All parameters may be replaced with
the wildcard character ∗.

– permit resource(resourceUri) - Access to the resource with the identifier resource-
Uri is permitted. The wildcard ∗ can be used to enable access to arbitrary resources
(e.g. the complete dataset). This predicate is merely a special case of the first one.

– permit instance(conceptUri) - Access to all instances of the concept identified by
conceptUri as well as all instances of derived concepts is permitted.

Each access rule can be defined according to different types of access. Currently,
we only distinguish query and update actions. Conditions have to be expressed in a
positive fashion, negation is currently not supported for decidability reasons [14]. The
rule syntax is described in detail with examples in [15]. Using this syntax, users can
specify their access policies.

Listing 1.1 gives an example of a PsSF rule. The rule expresses the following no-
tion: the user Horst is permitted to access Anna’s phone number. The rule is labeled
phoneRule and contains two antecedent predicates. The first predicate specifies the
?action resource to be an instance of the concept QueryAction, the second predicate
requires the actor resource to have http://example.com/horst as the value for
its actor property. The consequent consists of a data classification predicate covering
all triples with resource http://example.com/anna, property ex:phone, and
arbitrary values.

phoneRule :
QueryAct ion ( ? a c t i o n ) && a c t o r ( ? a c t i o n , h t t p : / / example . com / h o r s t )
=> p e r m i t t r i p l e ( h t t p : / / example . com / anna , ex : phone , ∗ ) ;

Listing 1.1. Example PsSF rule

4.2 Policy Schema and Evaluation

We have developed a simple OWL schema to describe the actions performed on the
stored datasets and make query meta data accessible for PsSF rules. Three main con-
cepts are defined: Action for query-related meta data, Rule to model single rules as a
part of access policies, and TriplePattern for defined data classifications. The concepts
UpdateAction and QueryAction are derived concepts to model the different interaction
types. Each action holds a user identifier and a one-to-many relationship to the rules
defined by the access policy. Each rule contains a reference to its data classifications
within the TriplePattern instances.
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Fig. 1. Query data flow for PeLDS

An RDF graph containing the appropriate instances of the described schema is cre-
ated for every request and merged with the affected dataset according to the defined
access policy. Each rule from the access policy is attributed with an additional conse-
quence to add the rule identifier to a global list of matched rules. If such a rule matches
due to sufficient access rights for the current user, it will be added to this list. A reasoner
performs rule evaluation by reasoning on the defined OWL and SWRL rules. PeLDS is
then able to determine the data classifications defining the graph elements the current
user is authorized to retrieve.

Based on an empty result graph, the requested dataset is loaded into memory and
the access policy is translated into instances of the policy schema and is added to the
dataset. The list of rules is evaluated for the information present in the dataset together
with the user identity given in the Action instance. If a rule matches, every triple match-
ing the data classifications contained in the rules consequence predicate list is copied
from the dataset to the result graph. The user’s query is now executed on the result
graph, and the query results are sent back to the user. This process is depicted in Figure
1: a secured graph containing various resources is queried. The specified access policy
allows access to all triples with resource R1 and property P1 and all triples with the
property P4. Hence, the triples (R1,P1,R3) and (R1,P4,"StringA") form the tempo-
rary graph view authorized for the current user. The user’s query for the value of the
property P4 on the resource R1 can then be answered with the corresponding element
of the graph view.

4.3 Encrypted Communication and Authentication

The Linked Data principles include the principle of dereferencing: resolving a URL
found as an identifier within an RDF graph yields another RDF graph describing the
resource identified by this URL. To implement arbitrary dereferencing, authentication
cannot be based on shared secrets, as any URL may appear within an RDF graph. As
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a consequence, user name/password or local trust settings for certificates are neither an
elegant nor a scalable solution.

We use the HTTP Secure Protocol (HTTPS) for communication as well as certifi-
cate exchange and the approach presented by Story et al. [17] to validate SSL client
certificates: The URL describing the user making a request is included within the SSL
client certificate used to sign the HTTP request to an HTTPS server. Dereferencing this
URL yields an RDF graph containing RDF triples defined by the Friend-of-a-Friend
(FOAF) vocabulary. This graph also contains meta information about the cryptographic
key used to sign the request, which is only available to the owner of the specific key. For
RSA keys, this is the modulus and exponent of the private key. The server receiving the
request is now able to verify whether this request was issued by the person controlling
the URL included in the certificate, which is sufficient to identify the requesting user.
This authentication mechanism does not rely on a global trust system or local settings.
The concept can be used to authenticate Linked Data clients in a safe manner. Even
though we have chosen FOAF+SSL due to its use of Linked Data, other authentication
solutions such as OpenID could also be used and integrated.

4.4 Interface and Operations

To maximize compatibility to existing software components, the PeLDS API was de-
signed to be as consistent as possible regarding existing standards for handling RDF
graphs. Additional API operations were added to enable policy management. In total,
four main operations were identified: policy update, data update, data query, and deref-
erencing. Users are assumed to be authenticated and identified through their URLs.
Datasets are generally created if the update operation is given an unknown graph identi-
fier, they are then annotated with the URL identifying the user issuing the corresponding
operation and thus “owned” by this user.

Policy Update - reponseCode = updatePolicy(datasetUri, policy)
Only the dataset owner may specify the access policy. The dataset URI has to be speci-
fied along with an access policy detailing which parts of the dataset should be disclosed.
The new access policy is stored if it is syntactically correct according to the PsSF lan-
guage specification [15], and the corresponding response code is returned to the user.
Any existing access policy is overwritten.

Data Update - reponseCode = updateData(datasetUri, update)
RDF graphs can be uploaded, changed and deleted. This is facilitated using an update
statement describing which graph elements to change. This is preferable to sending the
entire graph for each update operation, as less graph elements have to be communicated.
If the dataset owner issues an update, it is approved without further action. If another
user tries to update the dataset, all changed graph elements have to be approved by the
corresponding access policy. An update is only stored to persistent storage if no error
has occurred.

Data Query - result = queryData(datasetUri, query)
An RDF graph (or parts of it) stored on a PeLDS instance are retrieved using a query
language. The user has to specify a dataset identifier and a query. The query is exe-
cuted on the elements the authenticated user is authorized to see by the access policy
present for the requested dataset. This process was described in Section 4.2. The query
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is expressed in a query language suitable for querying RDF graphs. The result value
contains authorized graph elements from the specified dataset matching the query. If
the specified dataset does not exist, no error is returned, because the awareness of the
existence of a dataset can already be sensitive information. If no access policy is set
for the dataset, only the dataset owner may issue queries to it. To achieve compatibility
with existing software packages, authentication is optional for this operation.

Dereferencing - result = dereference(resourceUrl)
In order to fulfill the Linked Data requirements, PeLDS must be able to deliver an RDF
graph further describing a resource with only a given URL which may be described
in any dataset. This operation takes a resource identifier in URL form as argument.
The operation looks up all datasets containing graph elements describing the resource
and evaluates their access policies. It then delivers a result containing graph elements
describing this resource, if a) elements describing this resource are stored and b) the
authenticated user is authorized to view a subset of these elements. Similar to the query
operation, authentication is optional here.

5 Evaluation

We have implemented a prototype of the PeLDS system described in Section 4 as a Java
application. All operations are performed using the HTTP protocol. This prototype sup-
ports all specified API operations and is able to evaluate the PsSF access policy format
for each stored dataset, thus satisfying the identified functional requirements. Policy
evaluation and OWL reasoning is performed by the Pellet reasoning program [4]. W3C
standards are obeyed and supported where applicable, for example the SPARQL query
language, the SPARQL results format, the various RDF serializations like RDF/XML
and N3, the SPARQL HTTP protocol, and the SPARQL/Update update language. In this
section, we evaluate system security, system performance, and describe the distributed
address book we have implemented as a demonstration application on the basis of the
PeLDS prototype.

5.1 System Performance

Determining the system performance for our prototype is not an obvious task, as the
only comparable system mentioned in [16] is not available for testing. However, sys-
tems supporting a subset of PeLDS’ features are available, hence we were able to test
such a system for comparison. The SPARQL server Joseki [8] supports querying and
modification of RDF storage systems over an HTTP interface and data separation in
multiple datasets, but not evaluation of access policies. Joseki was backed by the triple
store Jena TDB and - optionally - the reasoning program Pellet [4] for OWL inference.
The test was intended to show the additional effort required for the evaluation of our
access policies.

To make query results comparable for all test runs, a special access policy was in-
stalled in the PeLDS prototype allowing read and write access to the stored data without
any authentication. The test data generator included in the Berlin SPARQL Benchmark
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[3] was used to generate a sufficient amount of triples for testing in datasets of differ-
ent sizes. Each dataset was imported into the respective system and a simple SPARQL
query returning all stored and inferred triples was executed at least three times for each
dataset. The shortest time required to complete the query was taken as a test result,
in order to acknowledge caching strategies. Test results are given as a scatter plot in
Figure 2 with the x-axis describing the amount of triples and the y-axis the time re-
quired to complete the test query. As the result of the R2 least squares fitting test, an
approximation to a polynom of second degree is also plotted.

The difference in results of the Joseki instance with and without reasoning support
illustrates the amount of time required for reasoning in general. The PeLDS prototype
requires additional time for access policy evaluation, however, this effort only increases
in a linear fashion as the dataset grows. The approximation tests yielded polynomial
complexity for both Joseki and PeLDS which is mainly attributed to reasoning activi-
ties.

5.2 Security Considerations

PeLDS’s security directly depends on secure authentication. If an attacker is able to
circumvent the FOAF+SSL authentication scheme, unauthorized access is possible.
FOAF+SSL relies on dereferencing the URL identifying a user, if an attacker gains
control over that URL, for example by manipulating DNS entries, he is able to take that
identity. However, recent improvements to the Internet architecture such as DNSSEC
aim at impeding such attacks. Another attack vector are the queries specified. They
do not pose a security threat by themselves, as they are not evaluated over the global
database. Queries can only “see” a temporary graph containing only the elements of the
specified datasets authorized for the current user.
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5.3 Demo Application: Distributed Address Book

In order to demonstrate the capabilities of the PeLDS system, we have implemented a

demo application with a storage layer solely based on PeLDS. This application imple-

ments a distributed address book as a web application. Users can manage their contact

profiles and contacts within this address book. Users are identified by a URL and all in-

formation about the contacts is retrieved in real-time from the server their corresponding

profile is stored on. Users can organize their contacts in groups and assign visibilities

to each data item stored in their profile. For example, a user may define her telephone

number to be private and only visible to her family.

All user data is stored within a PeLDS instance. Storage communication is handled

via SPARQL and SPARQL/Update, respectively. The privacy settings the users define

are translated into PeLDS access policies and activated for their personal data. Access to

user data is controlled by PeLDS, thus only clients properly identifying themselves and

authorized can retrieve protected information. Data integration and user identification

is performed using Linked Data principles, all a user has to know to add another user to

his address book is the URL describing her.

In contrast to popular systems, our Distributed Address Book leaves all personal

data under the control of each user, a central instance is not required. Also, an arbitrary

client program capable of displaying RDF information can be used to view and manage

address book entries, given that this client supports the usage of SSL certificates.

6 Conclusion and Outlook

Following a survey of existing work in the area of access control for Semantic Web

storage systems, we commenced on detailing the different types of access policies and

the methods for data classification within the contexts of RDF graphs used to repre-

sent Semantic Web content. We then explained the Semantic Web Rule Language as a

possible candidate for a rule format in access policies. Our concept of a Policy-enabled

Linked Data server was described. PeLDS consists of our access policy language PsSF,

which extends SWRL by adding custom predicates for data classification, an OWL pol-

icy schema, the FOAF+SSL authentication mechanism and a high-level API definition

of the different operations provided. This concept was implemented as a prototype and

evaluated for system performance in comparison with an established solution, Joseki.

Our Distributed Address Book based on PeLDS was introduced to show the kind of

both distributed and privacy aware applications now possible. The PeLDS prototype

and the Address Book are available as open source software and can be downloaded at

http://www.pelds.org.

We would like to extend both the PeLDS concept and prototype with more features

such as negation support within our policy language. Performance optimizations are

another area of future work, as scalability was not the main goal for the implementation

of the prototype. API operations for detailed modifications of single rules instead of

whole access policies may also be desirable.
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