
3D Registration
based on Normalized Mutual Information

Performance of CPU vs. GPU Implementation

Florian Jung, Stefan Wesarg

Interactive Graphics Systems Group (GRIS), TU Darmstadt, Germany

stefan.wesarg@gris.tu-darmstadt.de

Abstract. Medical image registration is time-consuming but can be
sped up employing parallel processing on the GPU. Normalized mutual
information (NMI) is a well performing similarity measure for performing
multi-modal registration. We present CUDA based solutions for comput-
ing NMI on the GPU and compare the results obtained by rigidly reg-
istering multi-modal data sets with a CPU based implementation. Our
tests with RIRE data sets show a speed-up of factor 5 to 7 for our best
GPU implementation.

1 Introduction

The registration of medical image data plays an increasing role in diagnosis as
well as image-guided interventions. A widely used similarity measure for multi-
modal registration is the normalized mutual information (NMI) metric [1]. In
this work, we investigate to which extent the execution of an NMI based rigid
registration can be sped up if parts of the algorithm are executed in parallel on
graphics cards. A CUDA-based implementation on the GPU is compared to a
CPU based solution for 3D rigid registration of medical image data.

By studying recent publications, attempts for employing GPU hardware and
partially CUDA for solving image registration problems can be found. Köhn
et al. [2] investigated the performance gain for rigid registration using a sum
of squared differences metric, that performs well for intra-modality registration
but has limitations for inter-modality registration [3]. Programming was entirely
done on the GPU employing GLSL. An approach for 2D/3D registration based
on automatic differentiation has been introduced by Grabner et al. [4]. It uses
Cg for the GPU part of the algorithm, and a performance gain of factor 6 is
reported. Muyan-Özcelik et al. [5] describe a CUDA implementation of Thirion’s
deformable registration algorithm [6] with a speed-up of 55 times compared to
a CPU implementation. The problem of MI based registration using CUDA has
been investigated by Shams et al. [7]. Their solution consists in an approximation
of the probability density function, which is part of the MI based similarity
measure calculation, employing a down-sampled joint histogram. In contrast to
their work, we compute NMI based on histograms with a much higher number
of bins for assuring a registration accuracy for the GPU approach that is equal
to a CPU implementation.



326 Jung & Wesarg

2 Materials and Methods

The registration of two data sets requires their initial resampling in order to have
isotropic voxels of equal resolution. This has to be done only once thus repre-
senting a negligible portion of the overall computation time. The other steps
involved in our implementation are the interpolation of voxel data, the compu-
tation of NMI as similarity measure, an optimization step, and the application
of a transformation to one of the data sets. They are executed iteratively until
the optimization does not further improve the value of the similarity measure.
The optimization step is done using a downhill simplex algorithm taken from
the Numerical Recipes [8]. An initial test of the CPU reference implementation
focused on the execution time of the remaining three steps. Obviously, the great-
est speed-up can be achieved if steps which are computationally demanding are
shifted to the GPU. Figure 1 shows the result of such an examination for the
registration of a CT and an MRI data set of the head. It can be seen that NMI
computation consumes most of the time. Thus, we decided to develop a CUDA
implementation for this step.

Employing an NMI metric requires the computation of two 1D histograms
and one 2D joint histogram. For that, each voxel can be processed independently
from its neighbors. In order to avoid that different threads concurrently increase
the value of the same histogram bin, this requires mutual exclusion, a technique
that is realized in CUDA with the AtomicAdd() function.

A straight-forward solution would be a direct port of the CPU implementa-
tion to CUDA. There, the number of threads would be equal to the number of
voxels. It is obvious, that this will not result in fast code, since in case of 1D
histograms with 256 bins which are stored in global memory only a maximum
of 256 threads can write simultaneously, and this only if each of them accesses
a different bin – which is rather unlikely in reality. In the following, we present
two solutions with an increasing efficiency for the computation of 1D and 2D
histograms as well as the calculation of the NMI metric. In our case, the 1D
histograms have 256 bins and the 2D histogram is made up of 256× 256 bins.

2.1 Independent Computation of 1D and 2D Histograms

We initialize each block with 256 threads – each of them computing the cor-
responding bins for one voxel position in both data sets. Each block holds

Fig. 1. The relative execution times for
the steps being candidates for a CUDA
implementation. It can be seen that NMI
computation takes most of the time dur-
ing a single iteration.



3D Registration: CPU vs. GPU 327

two 1D histogram copies in its corresponding shared memory, thus we benefit
from the fast access to this type of memory. After initialization and filling of
the 1D histograms in each block, each thread writes back the value of one bin
from shared memory to the two resulting 1D histograms in global memory using
AtomicAdd().

Due to its limited size, it is not possible to store also the 2D histogram in
shared memory. Therefore, we hold 256 additional copies of the 2D histogram in
global memory, and each thread per block writes into a different 2D histogram.
This approach requires an additional but very small ‘wrap-up’ kernel which
consists of 256 blocks each with 256 kernels. Thus, each thread accumulates all
values of the same 2D bin over the 256 2D histograms and writes the sum to the
final 2D histogram – without any read/write conflicts.

2.2 Computation of 1D Histograms from the 2D Histogram

In fact, there is no need for the computation of the two 1D histograms if the 2D
histogram is available: a simple projection of the 2D bin values to the two axes
provides the information for the 1D histograms. In this second implementation,
we compute in a first kernel the 2D histogram as described above. Afterwards,
a second kernel is launched, where each thread computes the sum over all bins
of one row and one column of the 2D histogram, respectively. For an optimal
load balancing this second kernel contains 16 blocks each with 16 threads.

2.3 Interpolation and NMI Computation

The CPU reference implementation uses a nearest neighbor interpolation scheme
due to its faster execution compared to a trilinear interpolation. In the case of
GPU usage we could get a trilinear interpolation virtually for free. If texture
memory is used instead of global memory for storing the image data on the
graphics card, a fetch to the 3D texture memory delivers the trilinearly inter-
polated value. However, for the sake of comparability between CPU and GPU
implementation, we use nearest neighbor interpolation also in the CUDA code.

The computation of NMI can be done efficiently using a reduction scheme.
We employ code from the CUDA SDK (http://www.nvidia.com/object/cuda)
vector reduction example that has been adapted to compute first the probability
density functions (see [1]) followed by the reduction itself.

3 Results

The tests of our implementation have been two-fold. Firstly, we used two 8 bit
head data sets from our own data base – one CT and one MRI data set – of the
same patient for testing the behavior over different hardware generations. The
CT data set contained 512×512×49 voxels, the MRI data set 256×256×50 voxels.
On the CPU (Fig. 2) an increasing speed which each new processor version could



328 Jung & Wesarg

be noticed. It mainly scaled with the CPU’s frequency, since we used a single-
threaded implementation. Surprisingly, we could realize a lower performance of
the CUDA implementation on graphics cards which are considered to be the
fastest compared to the ones just below in the NVIDIA lineup (Fig. 2).

Secondly, we tested and compared the execution times on current hardware.
CPU performance was measured on an Intel Quad Core Q6600 processor with
2.4GHz (single-threaded code). As GPU an NVIDIA GeForce GTX 260 was
chosen. For these tests, we used data sets from the open RIRE data base
(http://www.insight-journal.org/rire). The results are shown in tab. 1. There,
only the times for the most efficient (second) CUDA implementation are given
revealing a speed-up of factor 5 to 7.

4 Discussion

We have presented new approaches for performing an NMI based 3D registration
employing the GPU. With efficient CUDA implementations, a significant speed-
up compared to a CPU implementation could be achieved. But, we compared
our approach only to a single-threaded CPU solution. Employing multi-threaded
programming on multi-core CPUs would reduce the performance gain of the
GPU solution. Current limitation for a better performance on the GPU is the
available hardware. Our best approach holds 256 copies of the 2D histogram
in global memory due to the limited size of shared memory. If the latter one
increases – as expected for one of the next generations of NVIDIA GPUs – each
block could have its one 2D histogram for much faster read/write access.

Compared to an existing MI based registration approach [7], we use the
full histograms – instead of a down-sampled version – for avoiding potential
problems with registration accuracy. Here, our implementation is performing

(a) CPU (b) GPU

Fig. 2. The execution time for the registration of the CT and MRI head data set for
different CPUs (a) as well as different GPUs (b). Note the different scaling of both
diagrams!.



3D Registration: CPU vs. GPU 329

Table 1. The execution times needed for the registration of image data sets from the
RIRE data base (http://www.insight-journal.org/rire/).

RIRE patient Time CPU Time GPU Speed-up

001: CT – MR T1 46.64 s 8.99 s 5.2

001: CT – PD 86.80 s 14.34 s 6.0

001: MR T1 – PET 64.18 s 9.45 s 6.8

001: CT – PET 42.17 s 7.43 s 5.7

003: CT – MR T1 65.14 s 9.37 s 7.0

006: CT – PET 79.26 s 11.06 s 7.2

007: CT – MR T1 68.38 s 10.41 s 6.6

008: PET – PD 47.23 s 7.46 s 6.3

better – Shams et al. note that using an exact histogram makes their GPU
solution slower than the CPU – which is, to be fair, also due to the fact that we
can use the AtomicAdd() function, which had to be simulated in software in the
aforementioned work.

Finally, we could perceive the strange behavior of the GTX 285 (240 cores,
1.4GHz) compared to the GTX 260 (216 cores, 1.2GHz) – being more than 3
times slower. Discussions with other people in the CUDA community indicated
that the reason for that are different memory partitions for both GPUs. Future
work will focus on taking this into account for getting the best out of the latest
GPU generations.

References

1. Pluim JPW, et al. Mutual-information-based registration of medical images: a
survey. IEEE Trans Med Imaging. 2003;22(8):986–1004.

2. Köhn A, et al. GPU accelerated image registration in two and three dimensions.
In: Proc BVM; 2006. p. 261–5.

3. Hill DLG, et al. Medical image registration. Phys Med Biol. 2001;46(3):R1–R45.
4. Grabner M, et al. Automatic differentiation for GPU-accelerated 2D/3D registra-

tion. Lect Notes Computer Sci Eng. 2008;64:259–69.
5. Muyan-Özcelik P, et al. Fast deformable registration on the GPU: a CUDA imple-

mentation of demons. In: Proc ICCSA; 2008. p. 223–33.
6. Thirion JP. Image matching as a diffusion process: an analogy with Maxwell’s

demons. Med Image Anal. 1998;2(3):243–60.
7. Shams R, et al. Speeding up mutual information computation using NVIDIA CUDA

hardware. In: Proc DICTA; 2007. p. 555–60.
8. Press WH, et al. Numerical recipes in C: the art of scientific computing. 2nd ed.

Cambridge University Press; 1992.


