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Abstract. Abductive reasoning has been recognized as a valuable com-
plement to deductive inference for tasks such as diagnosis and integration
of incomplete information despite its inherent computational complex-
ity. This paper presents a novel, tractable abduction procedure for the
lightweight description logic EL. The proposed approach extends recent
research on automata-based axiom pinpointing (which is in some sense
dual to our problem) by assuming information from a predefined ab-
ducible part of the domain model if necessary, while the remainder of the
domain is considered to be fixed. Our research is motivated by the need
for efficient diagnostic reasoning for large-scale industrial systems where
observations are partially incomplete and often sparse, but nevertheless
the largest part of the domain such as physical structures is known. Tech-
nically, we introduce a novel pattern-based definition of abducibles and
show how to construct a weighted automaton that commonly encodes
the definite and abducible part of the domain model. We prove that its
behavior provides a compact representation of all possible hypotheses
explaining an observation, and is in fact computable in PTime.

1 Introduction

Abductive reasoning is a method for generating hypotheses that explain an obser-
vation based on a model of the domain, typically in the presence of incomplete
data. Its non-monotonicity and explorative nature make abduction a promis-
ing candidate for the interpretation of potentially incomplete information – a
task which is much harder to accomplish using established monotonic inference
methods such as deduction or the more elaborate axiom pinpointing. The appli-
cations of abductive inference are diverse, ranging from text interpretation [1] to
plan generation and analysis [2], and interpretation of sensor [3] or multimedia
data [4]. Our research on abductive inference is motivated by industrial applica-
tions in Ambient Assisted Living and assistive diagnosis for complex technical
devices. In these scenarios we found the underlying models being typically large,
though not overly complex in their structure. The main consideration is therefore
scalability with respect to the size of the domain model; to effectively support
humans or to avoid consequential damage to machinery, information processing
is subject to soft realtime constraints.
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Our proposed solution to this challenge is based upon logic-based abduc-
tion which is not the only, but probably the best-studied notion of this type
of inference (see [5] for a survey). In logic-based reasoning, model, observations
and hypotheses are represented and manipulated using formal logics; description
logics were chosen here as a representation language due to their decidability.
Since logic-based abduction is known to be at least as hard as deduction [6],
the underlying description logic obviously has to be polynomial for subsumption
checking. As we found existential quantification to be of greater importance than
universal quantification in both scenarios considered so far, we decided to base
our approach on the lightweight description logic EL. Choosing a lightweight de-
scription logic, however, does not necessarily guarantee tractability of abduction
since the so-called support selection task common to all forms of goal-directed
reasoning renders hypotheses generation NP-hard even for Horn-theories [7]. It
was shown in [8] that this hardness result can only be alleviated if the number
of hypotheses is bounded polynomially, allowing (under certain conditions) to
generate a single preferred hypothesis in PTime for EL and EL+ knowledge
bases [9].

The remainder of this paper is structured as follows: We first recall some
basics on description logics and abduction, relating the proposed approach to
existing work in this field. Sect. 3 introduces the formalism and justifies its
tractability, followed by Sect. 4 where we show how it can be applied to elegantly
solve a diagnosis problem. We conclude by summing up the results and giving
an outlook on ongoing work.

2 Preliminaries

Description logics are a family of logic-based knowledge representation formalisms
designed to ensure decidability of standard reasoning tasks. A concrete descrip-
tion logic is characterized by its admissible concept constructors and axiom
types, typically constituting a tradeoff between expressivity and computational
complexity. The EL family of lightweight description logics [10] was tailored
specifically to tractability, resulting in a language combining PTime decidabil-
ity of standard reasoning tasks with adequate expressivity for modeling e. g. the
biomedical ontology SNOMED CT. Table 1 summarizes the constructs avail-
able in EL for defining concepts and axioms based on the sets NC and NR of
concept names and role names, respectively. To simplify presentation we will
assume for the remainder of this paper that the knowledge base T is in normal
form, containing only general concept inclusion axioms of the form A1⊓A2 ⊑ B,
A1 ⊑ ∃r.B and ∃r.A1 ⊑ B, where r ∈ NR, A1, A2, B ∈ NC ∪ {⊤}. For the com-
plete EL family, normalization of an axiom set is linear in the number of axioms
both concerning the time required and the number of new axioms generated [11].

Axiom pinpointing, which provides a basis for the approach presented in
this paper, can be seen to extend subsumption checking by determining sets
S ⊑ T of axioms from such that the axioms in each set provide a justification
for a given subsumption C ⊑ D (i. e. S |= C ⊑ D). While this non-standard
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Table 1. EL syntax & semantics

Syntax Semantics

⊤ ∆I

C ⊓ D CI ∩ DI

∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

C ⊑ D CI ⊆ DI

C ≡ D CI = DI

inference task provides useful information in case T |= C ⊑ D, it necessarily fails
if T 6|= C ⊑ D. In this latter situation, abductive inference offers a solution by
determining sets of hypotheses H compatible with T that justify the observation
if added to the knowledge base (formally, T ∪H 6|= ⊥ and T ∪H |= C ⊑ D). Due
to the restriction of EL to terminological information we focus our attention on
TBox abduction, where both observations and hypotheses are represented by
concept inclusion axioms.

In this respect, our work is closely related to the framework of concept abduc-
tion [12] which determines, given a knowledge base T and two concepts C and D,
a concept H such that T 6|= C ⊓H ≡ ⊥ and T |= C ⊓H ⊑ D. This approach as
well as the more elaborate notion of structural abduction [13] employ a tableaux-
based calculus for finding a single, ⊑-optimal explanation. The authors do not
address computational complexity; due to the underlying description logic and
the tableau-based approach, we presume that their approach is at least Exp-

Time-hard. Regarding ABox abduction, [4] presents an approach for SHIQ
knowledge bases extended with non-recursive DL-safe rules. Abduction is im-
plemented as an iterative query answering process that returns a single optimal
solution subject to a quality criterion which rewards using asserted information
while penalizing assumptions. The approach was successfully implemented in a
media interpretation framework, its ExpTime worst-case complexity however
is prohibitive in the scenario under consideration. Various aspects of abductive
inference have also been studied in the context of logic programming, where
resolution is most commonly employed for hypotheses generation. This inte-
grates abductive reasoning tightly with the general setting of logic programming
but also poses new questions, for example regarding the interaction of abduction
with negation as failure used in most logic programming systems. The interested
reader is referred to [14] for a thorough introduction to the field of abductive
logic programming. [15] examines the relationships between abductive inference
and filtering, a process of model selection similar to conditioning in Bayesian
networks. Filtering has successfully been applied in performance-critical appli-
cations, proving that it can be implemented efficiently. Under certain conditions
abduction can indeed be implemented as a process of filtering, yet in in the gen-
eral case (and especially for unrestricted propositional and first-order theories)
filtering is equivalent only to so-called weak abduction.
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In order to obtain a tractable algorithm for abductive reasoning within de-
scription logics, we resort to recent work on automata-based axiom pinpointing
for EL [16, 17]. The proposed method is based on encoding the model into a
weighted Büchi automaton whose accepting runs (called behavior) represent all
derivations of the observation from domain knowledge and abducible informa-
tion, the latter of which is defined compactly using patterns. A hypothesis for-
mula encoding this set of explanations can be determined in PTime with respect
to the size of the knowledge base. The upcoming section presents the details of
our approach.

3 Automata-Based Abduction for EL

We start by introducing the abductive framework this paper builds on. It differs
from other approaches presented above in that both the observation we want
to explain and the abducibles are general concept inclusion axioms, which is
actually the only way to express relationships between domain elements in EL
due to the absence of individuals. As mentioned before, we assume that the
knowledge base T is in normal form.

Definition 1 (Axiom pattern; instantiation). Let T be an EL TBox over
concept names NC and role names NR, VC a set of concept variables V C

i , and
rng : VC → P(NC ∪ {⊤}) a complete function mapping each concept variable
to a set of concept names (possibly including ⊤), called its range. The range
extends by subsumption to rng∗(V C

i ) = {C ∈ NC ∪ {⊤} | ∃D ∈ rng(V C
i ) :

T |= C ⊑ D)} (with rng(V C
i ) ⊆ rng∗(V C

i ) since T |= C ⊑ C trivially holds).
An axiom pattern is an axiom as defined in Table 1 (not necessarily in normal
form), where concept descriptions may contain concept variables from VC. An
instantiation of a pattern is an axiom derived from the pattern by replacing each
of its concept variables V C

i with an element of rng∗(V C
i ).

Definition 2 (Abduction problem). Let T be an EL TBox over concept
names NC and role names NR, A0 ⊑ B0 a general concept inclusion in normal
form such that A0, B0 ∈ NC (called the observation), and Pat a set of axiom pat-
terns over VC whose size is bounded polynomially by the number of concept names
in NC, and rng a range function. The tuple AP = (T , A0 ⊑ B0, Pat,VC, rng)
is called an abduction problem.

Concept patterns and range function allow for a very fine-grained definition
of the parts of the domain which may be assumed. This proves valuable in
large-scale applications where typically most of the domain is considered to be
fixed (and assumptions most presumably contradict reality), while only certain
types of axioms are likely to represent missing information. As an example,
compositional (partOf) hierarchies of technical systems are completely known
to the constructor, whereas the set of observations about such a system is much
more likely to be incomplete. Furthermore, explanations are typically required to
be non-trivial [5], in particular a piece of information must not be explained by
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itself. This can be achieved easily here by selecting appropriate axiom patterns
and concept variable ranges. As a side-effect, restricting the set of abducibles
cuts the search space and the number of hypotheses generated and may therefore
increase efficiency. Note that the limitation of the size of Pat in Definition 2 is
required to ensure a polynomial worst-case complexity of the algorithm, yet it
never posed a severe limitation for domain experts in practice.

Definition 3 (Abducible). Given AP = (T , A0 ⊑ B0, Pat,VC, rng), the set
of abducibles AbdAP contains all axioms generated by normalizing the elements
of Pat and instantiating them with concept names from rng, omitting axioms
already contained in T . Let NC′ denote the set of concept names NC extended
with the new concept names introduced during normalization.

Definition 4 (Labeling function). Let AP = (T , A0 ⊑ B0, Pat,VC, rng) be
an abduction problem. Assume that each axiom ax in T and each abducible abd

in AbdAP is labeled with a unique propositional variable lax and labd , respec-
tively, such that the sets of axiom labels and abducible labels are disjoint. The
labeling function lab then assigns a label to each general concept inclusion gci

as follows: If gci is an axiom (abducible), then lab(gci) is the predefined proposi-
tional variable lax (labd). Otherwise, if gci is a tautology of the form A⊓A ⊑ A

or A ⊓ A ⊑ ⊤, we set lab(gci) = ⊤; in all other cases lab(gci) = ⊥. We finally
denote by lab(AP) the set of all labels occurring in the abduction problem.

To simplify notation we identify a propositional valuation V with the set of
variables it assigns to be true, and let A|V = {ax ∈ A | lab(ax) ∈ V} denote
the restriction of an axiom set A to the axioms made true by V. We extend this
definition to axiom problems by letting AP |V = (T ∪ AbdAP)|V .

Definition 5 (Hypotheses formula). A hypotheses formula for an abduc-
tion problem AP = (T , A0 ⊑ B0, Pat,VC, rng) is a monotone Boolean for-
mula ηAP over lab(AP) such that for all valuations V ⊆ lab(AP) it holds that
V |= ηAP iff AP |V |= A0 ⊑ B0.

Abductive inference on the original knowledge base T can now be expressed
as a pinpointing problem in the extended problem space T ∪AbdAP . To this end,
we define an abductive automaton employing the approach proposed in [17].

Definition 6 (Abductive automaton; behavior). An abductive automaton
for an abduction problem AP = (T , A0 ⊑ B0, Pat,VC, rng) is a weighted Büchi
automaton AAP = {Q, wt, in, F} over binary trees with

– Q = {(A, B), (A, r, B) | A, B ∈ NC′ ∪ {⊤}, r ∈ NR} ,
– ∀A, B,B1, B2 ∈ NC′ ∪ {⊤},∀r ∈ NR

• wt((A, B), (A, B1), (A, B2)) = lab(B1 ⊓ B2 ⊑ B) ,
• wt((A, r,B), (A, B1), (A, A)) = lab(B1 ⊑ ∃r.B) ,
• wt((A, B), (A, r,B1), (B1, B2)) = lab(∃r.B2 ⊑ B) ,
• wt(q1, q2, q3) = ⊥ for all other q1, q2, q3 ∈ Q ,

– in(q) = ⊤ iff q = (A0, B0), otherwise in(q) = ⊥ , and
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– F = {(A, A) | A ∈ NC′ ∪ {⊤}} ,

where Q denotes the set of states, F ⊆ Q the set of terminal states, in the initial
distribution, and wt the transition weights of AAP .

We extend the definition of wt to a complete run −→r = q1 · · · qn as wt(−→r ) =
wt(q1)∧· · ·∧wt(qn), and let succ(q) be the set of all successful runs of AAP start-
ing in q. The behavior of AAP is defined by

∧

q∈Q(in(q) ∧
∨

−→r ∈succ(q)
wt(−→r )).

As there is exactly one state q having in(q) 6= ⊥, namely (A0, B0), the be-
havior of AAP is the disjunction of the weights of all its successful runs starting
in (A0, B0). Due to the specification of the transition weights, each run corre-
sponds to a derivation of A0 ⊑ B0. Intuitively, wt attributes triples (q1, q2, q3) of
states with provenance information regarding the derivation of q1 from q2 and
q3: Trivial derivation steps (such as q1 = (A,⊤) or q1 = q2 = q3) are labeled
with the symbol ⊤ due to Definition 4; the weight of a non-trivial step is the
label of an axiom / abducible such that q1 can be deduced from q2 and q3

using this axiom / abducible (or ⊥ if none exists). As an example, the definition
wt((A, B), (A, B1), (A, B2)) = lab(B1 ⊓ B2 ⊑ B) expresses that, given A ⊑ B1

and A ⊑ B2, we can derive A ⊑ B if we know B1 ⊓ B2 ⊑ B.

Theorem 1. Given an abduction problem AP = (T , A0 ⊑ B0, Pat,VC, rng),
the behavior of the abductive automaton AAP is a hypotheses formula for the
observation A0 ⊑ B0.

This result carries over from [17]. In fact, if we set Pat = ∅, the abductive
automaton and hypotheses formula defined before coincide with the notions
of pinpointing automaton and pinpointing formula due to the empty space of
abducibles. If AbdAP is nonempty, the automaton AAP can be interpreted as a
pinpointing automaton for TBox T ′ = T ∪AbdAP as noted before. Due to space
limitations the reader is referred to [16, 18] for details on how to compute the
behavior of such an automaton effectively. In the setting introduced above this
can even be done efficiently, as the following theorem claims.

Theorem 2. Given an abduction problem AP = (T , A0 ⊑ B0, Pat,VC, rng),
computing the hypotheses formula ηAP takes polynomial time in the size of T .

Proof. Given AP = (T , A0 ⊑ B0, Pat,VC, rng), we denote by NC and NR the
sets of concept and role names in T , and by NC′ the extended set of concept
names including the new names generated during normalization of the axiom
patterns in Pat. As motivated before we can regard AAP as a pinpointing au-
tomaton for the extended problem space T ∪ AbdAP , whose behavior can be
computed with an algorithm that is polynomial in the number of states of the
automaton as shown in [17]. Following the construction given in Definition 6,

AAP has
(

|N
C
′|+1
2

)

states of type (A, B) plus
(

|N
C
′|+1
2

)

∗
(

|N
R
|

1

)

states of type
(A, r, B), which is polynomial in NC′ and NR. To complete the proof, we there-
fore have to show that NC does not grow too fast during normalization of Pat,
more concretely we require that |NC′| = poly(|NC|) (normalization of EL axiom
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patterns introduces no new role names at all). To this end, observe that the num-
ber of new concept names introduced by normalizing a set of axioms is linear in
the number of axioms in the set [11]. Therefore, |NC′| ≤ |NC|+c∗|Pat| for some
constant c which can be chosen independently of NC. Since the number of axiom
patters is bounded polynomially by the size of NC in Definition 2, this proves
the polynomial bound on the size of NC′ and therefore also on the size of AAP .
Also note that the size of the abductive automaton and thus the complexity of
the proposed approach are independent of the number of concept variables used
since variables cannot induce new states in AAP . ⊓⊔

In assistive diagnosis, it is often convenient to be able to compare explana-
tions of different, competing diagnoses (called a differential diagnosis in medicine).
The abduction method proposed here naturally meets this demand, as the only
part of the automaton that depends on the observation A0 ⊑ B0 is the ini-
tial distribution in. To derive the hypotheses formula for a different observation
A1 ⊑ B1, the complete automaton AAP can be re-used without any modification
to determine the successful runs starting in (A1, B1).

To conclude this section, we give an intuition of how the hypotheses for-
mula generated by AAP can be interpreted. ηAP compactly encodes all possible
derivations of A0 ⊑ B0 w. r. t. T and AbdAP . An explicit representation of the
set of hypotheses can be derived in a straightforward manner by transforming
it ηAP into disjunctive normal form, each clause representing a single hypothe-
sis. This approach is obviously not optimal since it may lead to an exponential
blowup [16], a real-world system should therefore directly present, interpret and
manipulate the compact representation ηAP whenever possible. Note that the
hypotheses formula carries information on both necessary assumptions and ax-
ioms required to justify A0 ⊑ B0. The proposed approach can therefore be seen
to integrate and complement axiom pinpointing by allowing to infer reasons
for unwanted entailments to hold as well as for expected subsumptions not to
hold. This provides additional capabilities which may be useful among others
for ontology debugging and refactoring. If one is only interested in determining
necessary assumptions but not in their interactions with the axioms from the
domain model, the approach can easily be adapted by adding only labels for
abducibles to the hypotheses formula, leading to a much more compact ηAP .

4 Industrial Scenario

This section illustrates the proposed approach by applying it to a use case in
industrial diagnosis. Real-world models in this scenario typically consist of thou-
sands of components and subcomponents, for most of which one can observe cer-
tain symptoms indicating possible failure states of the system. More often than
not, the causal structure of the domain is at least partially unknown, models
for diagnosis therefore have to be built on experience, relating sets of symp-
toms to diagnoses determined by a technician checking the system. We focus on
assistive diagnosis, where sensor data and observations made by maintenance
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personnel are used to interactively diagnose the system by actively requesting
missing observations.

For our necessarily simplified scenario, we consider a CNC lathe with two
components surveyed by sensors: the axle motor, and the oil pump of the motor
cooling system. Sensors mounted at the axle motor can recognize vibrations and
increased temperature, the monotored parameters for the oil pump include the
current voltage. We assume that the measurements of these sensors are enough
to recognize two different failure states, namely an untrue axle (characterized
by vibrations and high axle motor temperature) and a power failure in the axle
cooling system (defined by an overheating motor and low oil pump voltage). A
system having an axle cooling failure, for example, can be represented by the
following EL axiom:

∃hasComp.(AxleMotor ⊓ ∃hasSymp.HiTemp) ⊓

∃hasComp.(OilPump ⊓ ∃hasSymp.LowV oltage) ⊑

∃hasDiag.AxleCoolFail

Normalizing the axiom results in the normal form axioms

Has
Comp
HotAM ⊓ Has

Comp
DeadOP ⊑ SystemACF (1)

∃hasComp.HotAM ⊑ Has
Comp
HotAM (2)

AxleMotor ⊓ Has
Symp
HiTemp ⊑ HotAM (3)

∃hasSymp.HiTemp ⊑ Has
Symp
HiTemp (4)

∃hasComp.DeadOP ⊑ Has
Comp
DeadOP (5)

OilPump ⊓ Has
Symp
LowVoltage ⊑ DeadOP (6)

∃hasSymp.LowV oltage ⊑ Has
Symp
LowVoltage (7)

where SystemACF is a new concept name defined by

SystemACF ≡ ∃hasDiag.AxleCoolFail

An untrue axle, the second diagnosis considered in this example, can defined
and normalized analogously, leading to the following additional EL axioms in
normal form:

Has
Comp
HotAM ⊓ Has

Comp
VibratAM ⊑ SystemUA (8)

∃hasComp.V ibratAM ⊑ Has
Comp
VibratAM (9)

AxleMotor ⊓ Has
Symp
Vibrations ⊑ V ibratAM (10)

∃hasSymp.V ibrations ⊑ Has
Symp
Vibrations (11)

Having specified general (terminological) knowledge about the dependencies
of certain symptoms and diagnoses, we now formalize the concrete system un-
der consideration denoted by SystemObs, for which we have measured both an
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increased axle temperature and low voltage in the system for pumping the oil
used to cool the axle motor:

SystemObs ⊑ ∃hasComp.AxleMotorObs (12)

SystemObs ⊑ ∃hasComp.OilPumpObs (13)

AxleMotorObs ⊑ AxleMotor (14)

AxleMotorObs ⊑ ∃hasSymp.HiTemp (15)

OilPumpObs ⊑ OilPump (16)

OilPumpObs ⊑ ∃hasSymp.LowV oltage (17)

Assume that the maintenance personnel wants to compare explanations for
the diagnoses untrue axle and axle cooling failure to decide on further diagnostic
or corrective steps. We then have two target states q0 = (SystemObs, SystemACF)
and q1 = (SystemObs, SystemUA) for which the hypotheses formula may be
determined independently using the same abductive automaton AAP (with a
modified definition of in). Regarding the space of abducibles, we regard the
physical structure of the system as fixed and only allow for symptoms to be
assumed. This can be done by defining Pat = {VComp ⊑ ∃hasSymp.VSymp},
where rng(VComp) = Component and rng(VSymp) = Symptom. The number of
concept inclusions in AbdAP is too large for an extensive listing even in this
simple case, so we limit our presentation to one axiom in AbdAP required to
form a hypothesis for the diagnosis of an untrue axle:

AxleMotorObs ⊑ ∃hasSymp.V ibrations (18)

For the same reason, we cannot present the complete automaton AAP here.
Figure 1 depicts an excerpt containing one successful run for each diagnosis
under consideration. These two runs actually correspond to the most natural
hypotheses in terms of requiring the least number of assumptions to be made.
Regular/ input/ terminal states are drawn as light/ medium/ dark rectangles,
and light/ medium/ dark circles represent axiom labels, the tautology label ⊤,
or the labels of abducibles, respectively. To keep the representation compact, we
merge identical subtrees.

The weights of the runs from the two input nodes (SystemObs, SystemACF)
and (SystemObs, SystemUA) to the terminal (leaf) nodes represent two partial
hypotheses formulas for the diagnoses AxleCoolingFailure and UntrueAxle:

η
part
ACF = 1 ∧ (5 ∧ 13 ∧ (6 ∧ (16 ∧ ⊤) ∧ (7 ∧ 17)))

∧ (2 ∧ 12 ∧ (3 ∧ (14 ∧ ⊤) ∧ (4 ∧ 15)))

η
part
UA = 8 ∧ (2 ∧ 12 ∧ (3 ∧ (14 ∧ ⊤) ∧ (4 ∧ 15)))

∧ (9 ∧ 12 ∧ (10 ∧ (14 ∧ ⊤) ∧ (11 ∧ 18)))

Comparing the two hypotheses, it shows that neither of them is clearly better
than the other: On the one hand, an axle cooling failure is justified by the
observations alone (requiring no assumptions to be made), yet it postulates faults
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Fig. 1. Automaton for the diagnosis example (compacted excerpt)
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in two distinct components. On the other hand, an untrue axle can be diagnosed
locally for one component, it however requires the assumption of general concept
inclusion axiom 18.

5 Conclusions and Future Work

We have presented a PTime procedure for TBox abduction in the lightweight de-
scription logic EL based on a novel reduction to axiom pinpointing, and demon-
strated its applicability in an industrial diagnosis scenario. Given a knowledge
base and a concept inclusion representing the observation to be explained, the
procedure determines a hypotheses formula that compactly encodes all explana-
tions with respect to a pattern-based representation of the abducible part of the
domain model; the remainder of the model is considered to be fixed in accor-
dance with our scenario. The proposed reduction of abductive inference to axiom
pinpointing exploits the duality of the two tasks: whereas the latter addresses
the problem of explaining why a certain unwanted subsumption is entailed by
the ontology, our method determines the reason for an expected subsumption
not to hold, expressed in terms of additions to the domain model necessary to
actually make it hold.

We are currently working on extending the approach presented in this paper
in several ways: Since role inclusion axioms and nominals are frequently used
in diagnostic models, it is favorable to extend the logical expressivity as much
as possible without sacrificing tractability. Additionally, including quantitative
information into the model allows for weighting hypotheses and can eventually
be used as a criterion for guiding hypothesis generation. Finally, extending mini-
mality criteria for single hypotheses to sets of hypotheses compactly represented
by a hypothesis formula will allow us to efficiently infer common effects (as
proposed e. g. in [15]).
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