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Abstract. The task of similarity search in multimedia databases is usu-
ally accomplished by range or k nearest neighbor queries. However, the
expressing power of these “single-example” queries fails when the user’s
delicate query intent is not available as a single example. Recently, the
well-known skyline operator was reused in metric similarity search as
a “multi-example” query type. When applied on a multi-dimensional
database (i.e., on a multi-attribute table), the traditional skyline opera-
tor selects all database objects that are not dominated by other objects.
The metric skyline query adopts the skyline operator such that the mul-
tiple attributes are represented by distances (similarities) to multiple
query examples. The metric skyline is supposed to constitute a set of
representative database objects which are as similar to all the examples
as possible and, simultaneously, are semantically distinct. In this paper
we propose a technique of processing the metric skyline query by use of
PM-tree, while we show that our technique significantly outperforms the
original M-tree based implementation in both time and space costs.

1 Introduction

As the volumes of complex unstructured data collections grow almost exponen-
tially in time, the attention to content-based similarity search steadily increases.
The concept of numeric similarity between two data entities is one of the ap-
proaches used for querying unstructured data, where a similarity function serves
as a multi-valued relevance of data objects to a query (example) object. The
content-based similarity search paradigm has been successfully employed in ar-
eas like multimedia databases, time series retrieval, bioinformatic and medical
databases, data mining, and others. At the same time, the “similarity-centric”
view on such data demands specific alternative techniques for modeling, index-
ing and retrieval, which dramatically differ from the traditional approaches to
management of structured data (e.g., B-trees in relational databases).

In the rest of the section we introduce into the fundamentals of similarity
search and briefly summarize the paper contributions.

1.1 Similarity search

Given a collection C of unstructured data entities (e.g., multimedia objects, like
images), to query the collection we need to establish a model consisting of the
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object universe U, a transformation function (a feature extraction method, resp.)
t : C → U, and a similarity function δ : U×U→ R. The transformation t turns
the collection C of original data entities into a database of descriptors S ⊂ U. In
most cases the similarity function δ is expected to be a metric distance, because
metric properties can be effectively used to index the database S for efficient
(fast) query processing, as discussed later in Section 1.2.

Single-example queries. The portfolio of available similarity query types con-
sists of mostly single-example queries. The range query and the k nearest neigh-
bor (kNN) query represent the two most popular similarity query types. Using
a range query (Q, rQ) we ask for all objects Oi ∈ S the distances of which to a
single query object Q are at most rQ. On the other hand, a kNN query (Q, k)
selects the k database objects closest to Q.

Besides range and kNN queries, there exist some less frequently used query
types, like reverse (k)NN queries [15], returning those database objects having
the query object Q within their (k) nearest neighbor(s).

Multi-example queries. Although the single-example queries are frequently
used nowadays, their expressive power may become unsatisfactory in the future
due to increasing complexity and quantity of available data. The acquirement of
a query (example) object is the user’s “ad-hoc” responsibility. However, when
just a single example should represent the user’s delicate intent on the subject
of retrieval, finding such an example could be a hard task. Hence, instead of
querying by a single example, an easier way for the user could be a specification
of several query examples which jointly describe the query intent. Such a multi-
example approach allows the user to set the number of query examples and
to weigh the contribution of individual examples. Moreover, obtaining multiple
examples, where each example corresponds to a partial query intent, is much
easier task than finding a single “holy-grail” example.

In this paper we deal with metric skyline query (detailed in the Section 2),
which represents a “native” multi-example query type.

1.2 Metric access methods

When the similarity function δ is a distance metric, the metric access methods
(MAMs) can be used for efficient (fast) similarity query processing [16, 11, 2].
The principle behind all MAMs is the utilization of metric postulates (positive-
ness, symmetry and triangle inequality), which allow to partition the data space
into equivalence classes of close (similar) data objects. The classes are embedded
within a data structure which is stored in an index file, while the index is later
used to quickly answer range, kNN, or other similarity queries. In particular,
when issued a similarity query, the MAMs exclude many non-relevant equiva-
lence classes from the search (based on metric properties of δ), so only several
candidate classes of objects have to be exhaustively (sequentially) searched. In
consequence, searching a small number of candidate classes turns out in reduced
cost of the query. The number of distance computations δ(·, ·) is considered as
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the major component of the overall costs when indexing or querying a database.
Some other cost components (like I/O costs, internal CPU costs) could be taken
into consideration when the computational complexity of δ is low.

In the following we briefly describe the M-tree and the PM-tree, two MAMs
used further in the paper for implementation of metric skyline queries.

M-tree. The M-tree [5] is a dynamic metric access method that provides good
performance in database environments. The M-tree index is a hierarchical struc-
ture, where some of the data objects are selected as centers (references or local
pivots) of ball-shaped regions, and the remaining objects are partitioned among
the regions in order to build up a balanced and compact hierarchy, see Figure 1.

Fig. 1. (a) M-tree (b) Basic filtering (c) Parent filtering.

Each region (subtree) is indexed recursively in a B-tree-like (bottom-up) way
of construction. The inner nodes of M-tree store routing entries

routM (R) = [R, rR, δ(R,Par(R)), ptr(T (R))]

where R is a data object representing the center of the respective ball region,
rR is a covering radius of the ball, δ(R,Par(R)) is so-called to-parent distance
(the distance from R to the object P of the parent routing entry), and finally
ptr(T (R)) is a pointer to the entry’s subtree T (R). In order to correctly bound
the data in T (R)’s leaves, the routing entry must satisfy the nesting condition:
∀Oi ∈ T (R), rR ≥ δ(R,Oi). The data is stored in the leaves of M-tree. Each leaf
contains ground entries

grndM (D) = [D, id(D), δ(D,Par(D))]

whereD is the data object itself (externally identified by id(D)), and δ(D,Par(D))
is, again, the to-parent distance. See an example of entries in Figure 1a.

The queries are implemented by traversing the tree, starting from the root.
Those nodes are accessed, the parent regions of which are overlapped by the
query region, e.g., by a range query ball (Q, rQ). The check for region-and-query
overlap requires an explicit distance computation δ(R,Q) (called basic filter-
ing). In particular, if δ(R,Q) ≤ rQ + rR, the data ball (R, rR) overlaps the query
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(Q, rQ), thus the child node has to be accessed, see Figure 1b. If not, the respec-
tive subtree is filtered from further processing. Moreover, each node in the tree
contains the distances from the routing/ground entries to the center of its parent
routing entry (the to-parent distances). Hence, some of the M-tree branches can
be filtered without the need of a distance computation, thus avoiding the “more
expensive” basic overlap check. In particular, if |δ(P,Q)− δ(P,R)| > rQ + rR,
the data ball R cannot overlap the query ball (called parent filtering), thus the
child node has not to be re-checked by basic filtering, see Figure 1c. Note δ(P,Q)
was already computed at the unsuccessful parent’s basic filtering.

PM-tree. The idea of PM-tree [12, 14] is to enhance the hierarchy of M-tree
by an information related to a static set of p global pivots Pi ∈ P ⊂ U. In
a PM-tree’s routing entry, the original M-tree-inherited ball region is further
cut off by a set of rings (centered in the global pivots), so the region volume
becomes more compact – see Figure 2a. Similarly, the PM-tree ground entries are
enhanced by distances to the pivots, which are interpreted as rings as well. Each
ring stored in a routing/ground entry represents a distance range (bounding the
underlying data) with respect to a particular pivot. A routing entry in PM-tree
inner node is defined as:

routPM (R) = [R, rR, δ(R,Par(R)), ptr(T (R)),HR],

where the new HR attribute is an array of phr intervals (phr ≤ p), where the t-th
interval HRPt is the smallest interval covering distances between the pivot Pt

and each of the objects stored in leaves of T (R), i.e. HRPt = 〈HRmin
Pt

, HRmax
Pt
〉,

HRmin
Pt

= min{δ(Oj , Pt)}, HRmax
Pt

= max{δ(Oj , Pt)}, ∀Oj ∈ T (R). The inter-
val HRPt together with pivot Pt define a ring region (Pt,HRPt); a ball region
(Pt,HRmax

Pt
) reduced by a ”hole” (Pt,HRmin

Pt
). A ground entry in PM-tree leaf is

defined as:
grndPM (D) = [D, id(D), δ(D,Par(D)),PD],

where the new PD attribute stands for an array of ppd pivot distances (ppd ≤ p)
where the t-th distance PDPt

= δ(R,Pt).

The combination of all the p entry’s ranges produces a p-dimensional min-
imum bounding rectangle (MBR), hence, the global pivots actually map the
metric regions/data into a “pivot space” of dimensionality p (see Figure 2b).

When issuing a range or kNN query, the query object is mapped into the
pivot space – this requires p extra distance computations δ(Q,Pi),∀Pi ∈ P. The
mapped query ball (Q, rQ) forms a hyper-cube 〈δ(Q,P1)− rQ, δ(Q,P1) + rQ〉 ×
· · · × 〈δ(Q,Pp)− rQ, δ(Q,Pp) + rQ〉 in the pivot space that is repeatedly utilized
to check for an overlap with routing/ground entry’s MBRs (see Figures 2a,b). If
they do not overlap, the entry is filtered out without any distance computation,
otherwise, the M-tree’s filtering steps (parent & basic filtering) are applied.

Note the MBRs overlap check does not require an explicit distance com-
putation, so the PM-tree usually achieves significantly lower query costs when
compared with M-tree – up to an order of magnitude (see [12–14]).
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Fig. 2. (a) PM-tree employing 2 pivots (P1, P2). (b) Projection of PM-tree into the
“pivot space”.

1.3 Paper contributions

In this paper we introduce metric skyline processing by use of PM-tree. We follow
the pioneer work [3] where the concept of metric skyline query was introduced,
and its implementation utilizing M-tree was proposed. In Section 2 the metric
skyline query and its original implementation is discussed, while in Section 3
we propose our original PM-tree implementation of metric skyline processing.
In experimental results (Section 4) we show that PM-tree based metric skyline
processing outperforms the original M-tree implementation not only in terms of
distance computation costs, but also in terms of I/O costs, internal CPU costs
and internal space costs.

2 Metric skyline queries

In relational databases, the multi-criterial retrieval is popular in situations where
a query exactly specifying the desired attribute ranges cannot be effectively
issued. Instead, there is a need for a simplified query concept which selects
the desired database objects by some aggregation technique. Besides the top-k
queries [6], a popular multi-criterial technique is the skyline operator [1].

2.1 The Skyline Operator

The traditional skyline operator is an advanced retrieval technique that selects
objects from a multidimensional database that are “the best” from the global
point of view. The only assumption on the database is that the attribute domains
(dimensions) are linearly ordered, such that the lower (or higher) value of an
attribute is, the better the object is (in that attribute). In the rest of the paper
we use the convention that a lower value in an attribute is better.

The skyline operator selects all objects from the database (the skyline set),
that are not dominated by any other object. An object O1 dominates another
object O2 if at least one of O1’s attribute values is lower than the same attribute
inO2, and the other attribute values inO1 are lower or equal to the corresponding
attribute values in O2. Hence, O1 is the dominating object, while O2 is the
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dominated object. In Figure 3a see an example of skyline set consisting of 5
objects, dominating the remaining 6 objects.

Fig. 3. (a) Skyline set and the dominated objects. A dominating-dominated (a) object
and (b) rectangle (MDDR).

Skyline Processing. There exist many approaches to the efficient implemen-
tation of the skyline operator, while we outline two of them – the Sort-First
Skyline algorithm [1] and the branch-and-bound algorithm which will be useful
further in the paper.

In the Sort-First Skyline algorithm, the database objects Oi are just or-
dered ascendentally based on the L1 norm on attributes (coordinates) of Oi, i.e.,
||Oi||L1 = O1

i +O2
i + · · ·+On

i . Then, following the L1 order, the sorted database
is passed such that each visited object Oi is checked whether it is dominated
by the already determined skyline objects. If Oi is not dominated, it is added
to the skyline set (empty at the beginning), otherwise, Oi is ignored. After the
one-pass database traversal is finished, the skyline set is complete. The algorithm
is correct because of the L1-norm ordering. Suppose an object Oi is being pro-
cessed (see Figure 3b). Because every object possibly dominating Oi lies in the
dominating area, its L1 norm must be lower than that of Oi. However, such an
object has already been visited (and possibly added to the skyline set) because
of the ordered database traversal. Thus, Oi can be either safely added to the
skyline set or filtered out.

The branch-and-bound approach employs a spatial access method (SAM),
e.g. the R-tree [8]. The database is indexed by the SAM, while for the skyline
processing a memory-resident priority heap is additionally utilized. The heap
priority is defined, again, as the L1 norm, however, besides the database objects
themselves, the heap may contain also minimum bounding rectangles (MBRs,
natively maintained by, e.g., R-tree). For future use outside the scope of SAM,
we call MBRs as minimum dominating-dominated rectangles (MDDRs). The
MDDRs serve as spatial rectangular approximations of the underlying database
objects (or nested MDDRs), while they can be effectively used for filtering. The
order of an MDDR within the heap is defined by the L1 norm of its minimal
corner (the point of MDDR with minimal values in all dimensions), which is the
maximal lower bound to L1 norm of any object inside the MDDR.
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2.2 Metric Skyline Queries

The spatial skyline queries were generalized recently to support an arbitrary
metric distance δ (i.e., not just Euclidean), constituting thus the metric skyline
queries (MSQ) [3, 4].

Generally speaking, the metric skyline model just adds an abstract transfor-
mation step before the usual skyline processing. The step consists of transfor-
mation of a database in a metric space into database in m-dimensional vector
space through a set Q of m = |Q| query examples. In the second step, the
traditional skyline operator is performed on the transformed database. In par-
ticular, a database object Oi in the metric space is transformed into a vector Vi,
where its j-th coordinate is defined as the distance from j-th query to Oi, i.e.,
Vi = 〈δ(Q1, Oi), δ(Q2, Oi), . . . , δ(Qm, Oi)〉, Qj ∈ Q.

Motivation. The motivation for MSQ can be seen in the insufficient expressive
power of range and kNN queries, as mentioned in Section 1.1. Besides the pos-
sibility of employing multiple query examples, the metric skyline query has also
another unique property, the absence of query extent, i.e., the query is defined
just by the set Q. This property could be seen as both advantage and disad-
vantage. The advantage is that metric skyline query returns all distinct objects
from the database that are as similar to the query examples as possible. Hence,
we obtain all such objects; we are freed from tuning the precision and recall pro-
portion. Unfortunately, the disadvantage of MSQ is the skyline set (answer set)
size. If m = |Q| = 1 we obtain a regular 1-NN query. However, with increasing
m the skyline size usually grows substantially, while a skyline set size exceeding
several percent of the database is usually useless for an end-user. Thus, to be
discriminative enough, the metric skyline query should employ only a few query
examples (say, 2–5).

M-tree Based Implementation. The above described straightforward two-
step abstraction is not suitable for implementation of MSQ. An explicit trans-
formation of the original database S into a metric space would require expensive
static preprocessing of the database, consisting of |Q|·|S| distance computations,
extra storage costs, etc. Remember, the main cost component in similarity search
by MAMs is the number of distance computations, so any MSQ algorithm should
be designed to avoid computing as many distances as possible.

The authors of metric skyline queries proposed a native MSQ processing by
M-tree [3, 4], where the transformation step was applied only on a part of the
database that cannot be skipped during the processing. Basically, the M-tree
based metric skyline algorithm was inspired by the traditional skyline processing
by R-tree and the priority heap H under L1 norm (as described in Section 2.1).

In the following we have re-formulated the original description in [3, 4] to the
more abstract MDDR formalism, due to its easier extensibility to our original
contribution in Section 3. The modification of R-tree based skyline processing to
the metric case resides in an “on-the-fly” derivation of MDDRs, which cover the
transformed data objects. Instead of “native” R-tree MDDRs (MBRs, resp.), we
distinguish two types of derived MDDRs in M-tree, as follows:
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(1) The Par-MDDR (parent MDDR) of a routing/ground entry entry(R, rR, · · · ),
constructed by use of the parent routing entry rout(P, · · · ) as MDDRPar =
〈LBQ1

Par, UB
Q1
Par〉×· · ·×〈LBQm

Par, UB
Qm

Par〉, where LBQi

Par is a lower-bound distance
from Qi to the region (R, rR) (through its parent P ), while UBQi

Par is an upper-
bound distance from Qi to (R, rR). Thus, LBQi

Par = max(δ(Qi, P )− (δ(P,R) +
rR), (δ(P,R)− rR)− δ(Qi, P ), 0), and UBQi

Par = δ(Qi, P ) + δ(P,R) + rR.

(2) The B-MDDR (basic MDDR), constructed directly from a routing/ground
entry as MDDRB = 〈δ(Q1, R) − rR, δ(Q1, R) + rR〉 × · · · × 〈δ(Qm, R) −
rR, δ(Qm, R) + rR〉. In consequence, B-MDDR of ground entry is a single point.

Obviously, we have chosen the terms “Par-MDDR” and “B-MDDR” due to
the analogy with parent- and basic filtering used when processing a range or
kNN query in M-tree. The Par-MDDR of a routing/ground entry can be derived
without an explicit distance computation; the δ(Qi, P ) distances were already
computed during the top-down M-tree traversal. The derivation of B-MDDR is
more expensive, it requires m computations of δ(R,Qi),∀Qi ∈ Q.

An MDDR M1 dominates all objects inside an MDDR M2 if the L1 norm of
M1’s maximal corner is lower than the L1 norm of M2’s minimal corner, where
a max/min corner is the point with max/min values in all dimensions of an
MDDR. For an example of Par-MDDR and B-MDDR, see Figure 4.

Fig. 4. (a) Metric space with M-tree regions (b) Transformed vector space with MDDRs

The MSQ algorithm starts by inserting routing entries from the M-tree root
into the heap H. The heap keeps order given by L1 norm applied on the entries’
B-MDDRs’ minimal corners. Then a loop follows until the heap gets empty:

(1) An entry entry(R, . . . ) with the lowest L1 value of its B-MDDR is popped
from the heap.
(2) If the entry is a ground entry, it is added to the set of skyline objects. All
entries on the heap which are dominated by this new skyline object are removed.
Jump to Step 1.
(3) If the entry is a routing entry, the entry’s child node is fetched. The Par-
MDDRs of the child node’s entries are checked for dominance by the set of
already determined skyline objects, while the dominated ones (and the respective
subtrees, in case of routing entries) are filtered from further processing.
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(4) The B-MDDRs of the non-filtered child entries are derived. Those entries
not dominated by the already retrieved skyline set are inserted into the heap.
Jump to Step 1.

Discussion. Unfortunately, in the original contribution [3, 4] the cost analysis
and also the experiments were focused solely on measuring the number of dom-
inance checks, i.e., how many times B-MDDRs and Par-MDDRs were checked
for dominance by a skyline object. The authors completely ignored the number
of distance computations (the crucial performance factor for any MAM), but
also the heap size and the number of operations on heap, spent by running the
metric skyline algorithm on M-tree.

As we present later in experimental evaluation, the M-tree based algorithm,
as proposed in [3, 4], is extremely inefficient in terms of the heap size and the
number of operations on the heap. In fact, the maximal heap size could reach the
size of the database, making such an implementation inapplicable in database
environments. In the following section we introduce our PM-tree based method,
which not only decreases the number of distance computations spent for metric
skyline processing, but also drastically decreases the maximal heap size and the
number of operations on the heap.

3 PM-tree based metric skyline

The M-tree based approach to metric skyline processing can be extended to a
PM-tree based implementation. In the following we introduce an algorithm that
makes use of the PM-tree’s extensions over the M-tree – the pivot set P and the
respective ring regions maintained by routing/ground entries in PM-tree nodes
(for PM-tree details see Section 1.2).

First of all, when a metric skyline query is started, a query-to-pivot matrix
of pair-wise distances between the PM-tree pivots Pi ∈ P and query examples
Qi ∈ Q is computed. The PM-tree based algorithm (see Section 3.4) then utilizes
the following three filtering concepts (Sections 3.1–3.3).

3.1 Deriving Piv-MDDRs

Besides the M-tree’s B-MDDRs and Par-MDDRs derived from a routing/ground
entry(R, · · · ,HR/PD), an additional MDDR can be derived from the set of rings
HR/PD maintained by the entry, called Piv-MDDR (pivot MDDR). The Piv-
MDDR can be derived using the query-to-pivot matrix, as
MDDRPiv = 〈LBQ1

Piv, UB
Q1
Piv〉 × · · · × 〈LBQm

Piv , UB
Qm

Piv〉, where
LBQi

Piv = maxPj∈P{δ(Pj , Qi)−HRmax
Pj

,HRmin
Pj
− δ(Pj , Qi), 0}, and

UBQi

Piv = minPj∈P{δ(Pj , Qi) + HRmax
Pj
}.

Similarly as the M-tree’s Par-MDDR, the derivation of Piv-MDDR requires
no extra distance computation, however, Piv-MDDRs are much more compact
than Par-MDDRs. This results in more effective filtering of routing/ground en-
tries by skyline objects or some dominating MDDRs. Moreover, the Piv-MDDR
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is often even more compact than the direct B-MDDR, because the PM-tree’s
rings reduce the volume of the original M-tree’s sphere. In Figure 5 see an ex-
ample of Piv-MDDR, Par-MDDR and B-MDDR, when 2-pivot PM-tree and 2
query examples are used.

Fig. 5. A PM-tree routing entry in (a) metric space and (b) mapped to Piv-, Par-, and
B-MDDR. (c) A pivot skyline.

3.2 Pivot-Skyline filtering

If the pivots Pi come from the database (i.e., Pi ∈ P ⊂ S), the MDDRs that are
about to be inserted into the heap can be checked for a dominance by the pivots.
Since the query-to-pivot matrix is computed at the beginning of every metric
skyline query processing, the transformation of the pivots into the “query space”
requires no additional distance computations. Moreover, to reduce the number of
pivots used for dominance checking, we can determine the so-called pivot skyline
– those pivot objects, which constitute a metric skyline within the pivot set P
itself, see an example in Figure 5c.

The filtering by use of pivot skyline is beneficial in the early phase of the
metric skyline processing, when the set of determined skyline objects is still
empty. In the experiments we show that such an early phase is the dominant
phase of the entire skyline processing – 80-90% of the total distance computations
is performed before the first skyline object is found. Hence, pruning the heap by
use of the pivot skyline greatly helps to reduce the heap size and, consequently,
the number of operations on the heap. Note: As the number of determined
skyline objects grows, the objects in the pivot skyline become dominated by
the “regular” skyline objects. Hence, in order to effectively use the pivots for
dominance checking, we keep just those pivots in the pivot skyline, that are
not dominated by the already determined skyline objects. Thus, at the moment
when all skyline objects are known, the pivot skyline becomes empty.

3.3 Deferred heap processing

In the original M-tree algorithm, the priority heap contains just L1-ordered B-
MDDRs (together with the associated routing/ground entries). When an entry
is to be inserted into the heap, its B-MDDR must be determined, see Steps
3,4 of the algorithm in Section 2.2. We call this approach a non-deferred heap
processing.
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However, the non-deferred heap processing is not optimal in terms of the
number of distance computations. In order to save some distance computations,
we propose the deferred heap processing for the metric skyline, inspired by the
Hjaltason’s & Samet’s incremental nearest neighbor algorithm, which is optimal
in the number of distance computations [9]. The modified heap is generalized
such that it may contain not only B-MDDRs of routing/ground entries, but also
the intersections of their Piv-MDDR and Par-MDDR (denoted as Piv-MDDR ∩
Par-MDDR). The deferred heap processing then deals with two situations:
(1) An entry equipped by B-MDDR is popped from the heap. Then,
(a) If the entry is a ground entry, it becomes a skyline object.
(b) If the entry is a routing entry, its child node is fetched, while for every entry
in the child node the Piv-MDDR ∩ Par-MDDR is checked for a dominance by
the skyline set. Every not-dominated child entry is equipped by its Piv-MDDR
∩ Par-MDDR and inserted into the heap.
(2) An entry equipped by Piv-MDDR ∩ Par-MDDR is popped from the heap
and checked for a dominance by the skyline set. If not dominated, the entry’s
B-MDDR is determined and, if still not dominated, inserted back into the heap.

Listing 1 (Algorithm of PM-tree based metric skyline query)

MSQuery()
{
Input: PM-tree PM, query points Q, type (’M-tree’, ’PM-tree’,

’PM-tree+PSF’, ’PM-tree+PSF+DEF’)
Output: Result MSS containing skyline points

if (type is not ’M-tree’)
P2Q DM = evaluate the query-to-pivot matrix
// pivots must be DB objects
PSL = evaluate pivot skyline (using P2Q DM)

Insert all routing entries + their Piv-MDDR ∩ B-MDDR from the
PM-tree root into the heap H

while (H is not empty)
currentEntry = pop entry from the heap H
if (currentEntry is not equipped by ’B-MDDR’)

FilterAndInsert(currentEntry, currentEntry, type, true)
else if (currentEntry is of type ’ground entry’ and is equipped by

’B-MDDR’)
Insert currentEntry into MSS
H.FilterDominatedObjectsBy(currentEntry.MDDR)
PSL.FilterDominatedObjectsBy(currentEntry.MDDR)

else
N = fetch child node of currentEntry
for each childEntry in N

FilterAndInsert(childEntry, currentEntry, type, false)
}

FilterAndInsert(newEntry, parentEntry, type, deferred)
{

if (not deferred)
Equip newEntry by its Par-MDDR
if (type is not ’M-tree’)

Update newEntry.MDDR by intersection with newEntry’s Piv-MDDR
if (Filter(newEntry, type))

return
if (type = ’PM-tree+PSF+DEF’ and not deferred)

Insert newEntry into H
return

Equip newEntry by its B-MDDR
if (Filter(newEntry, type))

return
Insert newEntry into H

}

Filter(newEntry, type)
{

for each Oi in MSS
if (newEntry.MDDR is dominated by Oi)

return true
if (type is ’M-tree’ or ’PM-tree’)

return false
for each Oi in PSL

if (newEntry.MDDR is dominated by Oi)
return true

return false
}

3.4 The algorithm

In Listing 1 the algorithm for metric skyline query is presented, including the
original M-tree variant as well as the proposed PM-tree extensions.

The input attribute type allows to set the MSQ variant as follows: type =
’M-tree’ is the original M-tree based algorithm, type = ’PM-tree’ is the basic PM-
tree based algorithm using the Piv-MDDR filtering (as described in Section 3.1),
type = ’PM-tree+PSF’ additionally uses the pivot-skyline filtering (as described
in Section 3.2), and type = ’PM-tree+PSF+DEF’ additionally uses the deferred
heap processing (as described in Section 3.3).
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4 Experimental evaluation

We performed an extensive experimentation with the three new variants of the
PM-tree based metric skyline processing, comparing them against the original
M-tree based method. Instead of the number of dominance checks (as included in
the original contribution [3, 4]), we have observed other 4 measures of costs spent
by the MSQ processing – the number of distance computations, the number of
operations on the heap, the maximal allocated size of the heap, and finally the
I/O costs.

In addition to the absolute numbers presented in the figures below, we also
relate the number of distance computations spent by (P)M-tree MSQ processing
to the costs of MSQ processed by simple sequential search, which takes |Q| · |S|
distance computations for every query.

4.1 The testbed

We have used two databases, a subset of the CoPhIR database [7] of MPEG7
image features extracted from images downloaded from flickr.com, and a syn-
thetic database of polygons. The CoPhIR database, consisting of one million fea-
ture vectors, was projected into two subdatabases, the CoPhIR 12 database, con-
sisting of 12-dimensional color layout descriptors, and the CoPhIR 76 database,
consisting of 76-dimensional descriptors (12-dimensional color layout and 64-
dimensional color structure). As a distance function the Euclidean (L2) distance
was employed.

The Polygons database was a synthetic randomly generated set of 250,000 2D
polygons, each polygon consisting of 5–15 vertices. The Polygons should serve
as a non-vectorial analogy to clustered points. The first vertex of a polygon was
generated at random. The next one was generated randomly, but the distance
from the preceding vertex was limited to 10% of max. distance in the space.
We used the Hausdorff distance [10] for measuring the distance between two
polygons, so here a polygon could be interpreted as a cloud of points.

4.2 Experiment settings

The query costs were always averaged for 200 metric skyline queries, while the
query examples followed the distribution of database objects. As the parameters
we observed various database sizes, the (P)M-tree node capacities, the number
of query examples, and the number of PM-tree leaf pivots. The (P)M-tree node
capacities ranged from 20 to 40 routing/ground entries, the index sizes took
200MB–2GB, the P(M)-tree heights were 3–5 (4–6 levels). The minimal (P)M-
tree node utilization was set to 20% of node capacity. The number of PM-tree
leaf pivots ranged from 30 to 1000, while the number of inner pivots ranged from
15 to 500. Unless otherwise stated, the number of MSQ query examples was 2,
the (P)M-tree node size was 20, the number of leaf pivots was 1000 for CoPhIR
and 300 for Polygons (the number of inner pivots was half the number of leaf
pivots).
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4.3 The results

In the first set of experiments, the number of PM-tree leaf pivots was increasing,
see Figure 6. When considering Polygons database, the M-tree’s MSQ got to 17%
of distance computations needed by simple sequential search on the Polygons
database. However, for the highest number of pivots the PM-tree’s MSQ reduced
the M-tree costs by another 35%. The heap size required by PM-tree reached
only up to one third of the heap size required by the M-tree. The impact of
pivot-skyline filtering (the +PSF(+DEF) variants) on the maximal heap size
was significant.
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Fig. 6. Increasing number of pivots: distance computations, maximal heap size

The same situation is presented for the Cophir 12 database. The results are
even better as for Polygons – the number of distance computations for PM-
tree+PSF+DEF variant was reduced to 60% of M-tree costs, while the maximal
heap size was reduced down to 8% of the heap size required by M-tree (note the
log.scale in the figure).

Finally, the same situation is presented for the high-dimensional Cophir 76
database. Because of the high dimensionality, the M-tree performance was poor
– it got to 91% distance computations required by simple sequential search. The
PM-tree performed better, achieving 75% of the sequential search’s distance
computations. The PM-tree+PSF+DEF variant performs poorly when looking
at the number of heap operations, due to the deferred heap processing, i.e.,
repeated insertions of MDDRs into the heap (see Section 3.3). On the other
hand, the +DEF variant steadily achieves the lowest distance computation costs
(as expected). The PM-tree+PSF variant performs the best, achieving 25% of
the heap operations spent by M-tree.
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The second set of experiments focused on the increasing database size. In
Figure 7 the results for Cophir 76 database are presented. The trend of increasing
distance computations is obvious for all MSQ processing methods. However, the
situation is dramatically different for the number of heap operations and the
maximal heap size, where the PM-tree+PSF beats the M-tree by a factor of 17
in heap operations, and by a factor of 7 in the maximal heap size. On the other
hand, PM-tree+PSF+DEF suffers from a high number of heap operations.
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Fig. 7. Increasing size of Cophir 76 database: (a) Distance computations (b) Maximal
heap size (c) Heap operations

In the third set of experiments, the results for increasing number of query ex-
amples used in metric skyline queries are presented on the Cophir 12 database,
see Figure 8. Because the number of skyline objects grows substantially with
the increasing number of query examples (retrieving 50, 400, 1750, 4570 skyline
objects for 2-, 3-, 4-, and 5-example MSQs), the overall MSQ costs grow substan-
tially as well. Nevertheless, the PM-tree MSQ processing is still much cheaper
than the M-tree in the heap size and operations, even for 5 query examples.
However, note that for 5 query examples the distance computations of all the
methods come close to the costs of simple sequential search.

Fig. 8. Increasing number of query examples: (a) Distance computations (b) Maximal
heap size (c) Heap operations
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Although the I/O costs do not represent a dominant performance compo-
nent in similarity search1, in the last experiment we present the I/O costs as a
supplementary result (CoPhIR 12, 2 query examples). In particular, in Figure
9a we give the numbers of logical seeks2 spent by skyline processing (the seek
operation is the most expensive one when fetching a page/PM-tree node from
the disk). The PM-tree based MSQ processing spent just 64% of seek operations
required by the M-tree. As for the distance computation costs, also the I/O costs
were decreasing with increasing number of pivots.

Fig. 9. Increasing number of pivots: (a) I/O costs (b) I/O costs vs. distance computa-
tions. (c) Increasing size of (P)M-tree nodes.

In Figure 9b the I/O costs vs. computation costs are shown. As in the first
chart, the pairs 〈I/O costs, distance computations〉 were obtained for different
numbers of pivots employed by PM-tree. Since the (P)M-tree indices consisted of
79,584 nodes, note that the I/O costs correspond to fetching 55% of all the index
nodes for M-tree and 35% for PM-tree (1000 pivots). Also note there is linear
correlation between the distance computations and I/O costs. 55%. Finally, the
Figure 9c shows the performance of (P)M-tree depending on the node size.

4.4 Summary

The experimentation with M-tree and PM-tree based metric skyline processing
has shown that the PM-tree outperforms the M-tree implementation up to 2
times in the number of distance computations, almost 20 times in the number
of heap operations and the maximal heap size, and almost 2 times in the I/O
costs. The results for maximal heap size are exceptionally important, because a
large size of the heap (which is a main-memory structure) would prevent from
processing of metric skyline queries on very large databases.

5 Conclusions

In this paper we have proposed a PM-tree based implementation of metric skyline
query, a recently proposed multi-example query concept suitable for advanced
1 A single distance computation is generally supposed to be much more expensive than

a single I/O operation.
2 We did not consider any node caching in this experiment.
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similarity search in multimedia databases. We have shown that the PM-tree
based implementation of metric skylines significantly outperforms the existing
M-tree based implementation in all observed costs – the time, space, and I/O
costs.
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1. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceed-
ings of the 17th International Conference on Data Engineering, pages 421–430,
Washington, DC, USA, 2001. IEEE Computer Society.
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