
Structural Abstraction of Process Specifications

Artem Polyvyanyy

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam

Prof.-Dr.-Helmert-Str. 2–3, D-14482 Potsdam, Germany
Artem.Polyvyanyy@hpi.uni-potsdam.de

Abstract. Software engineers constantly deal with problems of designing,
analyzing, and improving process specifications, e.g., source code, service
compositions, or process models. Process specifications are abstractions of
behavior observed or intended to be implemented in reality which result
from creative engineering practice. Usually, process specifications are
formalized as directed graphs in which edges capture temporal relations
between decisions, synchronization points, and work activities. Every
process specification is a compromise between two points: On the one hand
engineers strive to operate with less modeling constructs which conceal
irrelevant details, while on the other hand the details are required to
achieve the desired level of customization for envisioned process scenarios.
In our research, we approach the problem of varying abstraction levels
of process specifications. Formally, developed abstraction mechanisms
exploit the structure of a process specification and allow the generalization
of low-level details into concepts of a higher abstraction level. The reverse
procedure can be addressed as process specialization.

Keywords: Process abstraction, process structure, process connectivity,
process modeling

1 Introduction

Process specifications represent exponential amounts of process execution scenar-
ios with linear numbers of modeling constructs, e.g., service compositions and
business process models. Nevertheless, real world process specifications cannot
be grasped quickly by software engineers due to their size and sophisticated
structures, leading to a demand for techniques to deal with this complexity. The
research topic of process abstraction emerged from a joint research project with a
health insurance company. Operational processes of the company are captured in
about 4 000 EPCs. The company faced the problem of information overload in the
process specifications when employing the models in use cases other than process
execution, e.g., process analysis by management. To reduce the modeling effort,
the company requested to develop automated mechanisms to derive abstract,
i.e., simplified, process specifications from the existing ones. The research results
derived during the project are summarized in [1].

Abstraction is the result of the generalization or elimination of properties in
an entity or a phenomenon in order to reduce it to a set of essential characteristics.

mailto:Artem.Polyvyanyy@hpi.uni-potsdam.de


Information loss is the fundamental property of abstraction and is its intended
outcome. When working with process specifications, engineers operate with
abstractions of real world concepts. Process specifications are special types of
entities that describe principles of observed or intended behavior. In our research,
we develop mechanisms to perform abstractions of formal process specifications.
The challenge lies in identifying what the units of process logic suitable for
abstraction are, and then performing the abstraction afterwards. Once abstraction
artifacts are identified, they can be eliminated or replaced by concepts of higher
abstraction levels which conceal, but also represent, abstracted detailed process
behavior. Finally, individual abstractions must be controlled in order to achieve
an abstraction goal—a process specification that suits the needs of a use case.

Analyze

order

Check

stock

Purchase

raw

material

Make 

production 

plan

Manufacture

products

Ship

products

Send

bill

Receive 

payment

Order

Not in stock

In stock

Ship

products

Send

bill

Receive 

payment

Not in stock

In stock

Receive

order

Make

products

Abstraction

Fig. 1. Process abstraction

Fig. 1 shows an example
of two process specifications,
given as BPMN process mod-
els, which are in the abstrac-
tion relation. The example is
adapted from [2]. The model
at the top of the figure is the
abstract version of the model
at the bottom. Abstract tasks
are highlighted with a grey
background; the correspond-
ing concealed fragments are
enclosed within the regions
with a dashed borderline. The
fragments have structures that result in an abstract process which captures the
core process behavior of the detailed one. The abstract process has dedicated
routing and work activity modeling constructs and conceals detailed behavior
descriptions, i.e., each abstracted fragment is composed of several work activities.
The research challenge lies in proposing mechanisms which allow examining every
process fragment prior to performing abstraction and suggesting mechanisms
which coordinate individual abstractions, i.e., assign higher priority to abstracting
certain fragments rather than the others.

The rest of the paper is organized as follows: The next section presents the
connectivity-based framework designed to approach the discovery of process
fragments suitable for abstraction. Sect. 3 discusses issues relevant to the control
of process abstraction. The paper closes with conclusions which summarize our
findings and ideas on further research steps.

2 Discovery of Process Fragments

A necessary part of a solution for process abstraction is a mechanism for the
discovery of process fragments, i.e., parts of process logic suitable for abstraction.
The chances of making a correct decision on which part of a process specification
to abstract from can only be maximized if all the potential fragment candidates



for conducting an abstraction are considered. To achieve this completeness, we
employ the connectivity property of process graphs—directed graphs used to
capture process specifications.

Connectivity is a property of a graph. A graph is k-connected if there exists
no set of k−1 elements, each a vertex or an edge, whose removal makes the graph
disconnected, i.e., there is no path between some pair of elements in a graph. Such
a set is called a separating (k− 1)-set. 1-, 2-, and 3-connected graphs are referred
to as connected, biconnected, and triconnected, respectively. Each separating set
of a process graph can be addressed as a set of boundary elements of a process
fragment, where a boundary element is incident with elements inside and outside
the fragment and connects the fragment to the main flow of the process. Let m be
a parameter, the discovery of all separating m-sets (graph decomposition) of the
process graph leads to the discovery of all process fragments with m boundary
elements—potential abstraction candidates.

The vertex (edge) connectivity of a graph is the size of the smallest separating
set of the graph that is composed only of vertices (edges). For an arbitrary graph it
holds that its vertex connectivity is less than or equal to its edge connectivity [3].
Intuitively, removal of an edge, when testing the edge connectivity, can be
substituted with removal of an incident vertex, which implies removal of all
incident edges. In general, one can speak about (n, e)-connectivity of a graph.
A graph is (n, e)-connected if there exists no set of n nodes and there exists no
set of e edges whose removal makes the graph disconnected. Observe, an (n, e)-
connected graph is (n+ e+1)-connected. A lot of research was carried out by the
compiler theory community to gain value from the triconnected decomposition
of process specifications, i.e., the discovery of triconnected fragments in process
graphs. The decompositions which proved useful were (2, 0)-decomposition, or
the tree of the triconnected components, cf., [4], and (0, 2)-decomposition, cf., [5].
Triconnected process graph fragments form hierarchies of single-entry-single-exit
(SESE) fragments and are used for process analysis, process comparison, process
comprehension, etc. For these decompositions, linear-time complexity algorithms
exist [6,7]. Recently, these techniques were introduced to the business process
management community [8,9]. We employed triconnected process graph fragments
to propose mechanisms of process abstraction [10,11]; we discover and generalize
the triconnected process fragments to tasks of a higher abstraction level.

B

O

F

Q

G

SA

D

C

E L P

K

J N

I

H M

R T

Fig. 2. Process graph, its SESE fragments

Fig. 2 shows an example
of a process graph. Routing
decisions and synchronization
points can be distinguished by
the degree of the correspond-
ing vertex, i.e., the number of
incident edges, and orientation
of the incident edges, i.e., in-
coming or outgoing. Process
starts (ends) have no incom-
ing (outgoing) edges. More-



B

F

Q

G

SA

D

C

KO

R T

HIM

JN

ELP

(a)

B

F

G

SA

D

C

JNK

OQR
T

HIM

ELP

(b)
Fig. 3. (a) Abstract process graph, (b) (3, 0)-connected fragment abstraction

over, Fig. 2 visualizes the triconnected fragments of the graph (SESE fragments).
Each triconnected fragment is enclosed in the region and is formed by edges
inside or intersecting the region. Fragments enclosed by regions with dotted
borderlines can be discovered after performing (0, 2)-decomposition of the process
graph, whereas regions with dashed borderlines define fragments additionally
discovered by (2, 0)-decomposition. Observe that trivial fragments, the fragments
that represent sequences composed of a single vertex, are not visualized.

The abstract process graph, obtained from the graph shown in Fig. 2, is given
in Fig. 3(a). The abstraction is performed following the principles from [11], i.e.,
by aggregating the triconnected fragments into concepts of a higher abstraction
level. The graph from Fig. 3(a) has a single separating pair B,S. Next abstractions
of the triconnected fragments of the graph will result in aggregation of either the
unstructured fragment composed of nodes {C, ..., R} \ {E,L, P}, or the fragment
with entry node B and exit node S. To increase the granularity of process
fragments used to perform abstractions, one can start looking for multiple-entries-
multiple-exits (MEME) fragments within the triconnected fragments.

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (0,3)(2,1) (1,2)

... ... ...

Fig. 4. Connectivity-based
process graph decomposition
framework

Fig. 4 visualizes a connectivity-based process
graph decomposition framework, i.e., the scheme
for process fragment discovery. In the figure, each
dot represents a connectivity property of the pro-
cess graph (process fragment) subject to decompo-
sition, e.g., (0, 0) means that the graph is connected
if no nodes and no edges are removed. Edges in
the figure suggest which decompositions can be
performed for a graph with a certain connectivity
level. For example, one can decompose a (0, 0)-
connected graph by looking for a single node or
an edge which renders the graph disconnected. Af-
terwards, obtained fragments can be treated as subjects for (2, 0)-, (1, 1)-, or
(0, 2)-decomposition. By proceeding in this way, highly connected fragments get
gradually decomposed.

A careful reader might notice that Fig. 4 does not suggest all the possibilities
for accomplishing decomposition. For instance, (0, 2)-connected fragments can
be subjects for (2, 0)-decomposition, cf., Fig. 2. As the vertex connectivity of
a graph is less than or equal to its edge connectivity, we propose to give the
preference to the vertex-based decomposition over the edge-based one (refer to



the left-most path in Fig. 4). Such a strategy stimulates the fragments to be
discovered “faster”, i.e., by performing less decomposition steps, and “finer”, i.e.,
by discovering more fragments. However, in the cases when it is important to
achieve the granularity on the level of edges, we suggest to deviate from the
main strategy only once by switching from the vertex-based to the edge-based
decomposition strategy.

An (n, e)-decomposition (n+e ≥ 3) allows to decompose unstructured process
graphs into MEME fragments with n + e entries and exits. A process graph
in Fig. 3(b) is obtained by abstracting a (3, 0)-connected fragment defined by
a separating set {F,G, S} (F and G are the entries and S the exit of the
fragment, highlighted with grey background). For reasonable n+ e combinations,
it is possible to perform decomposition in low polynomial-time complexity. For
example, the (3, 0)-decomposition of a (2, 0)-connected graph can be accomplished
by removing a vertex from the graph and afterwards running the triconnected
decomposition, for which the linear time complexity algorithm exists [7]. Each
discovered separation pair together with the removed vertex form a separating
triple of the original graph. The procedure should be repeated for each vertex of
the graph. Hence, a square-time complexity decomposition procedure is obtained.
Following the described rationale, one can accomplish (k, 0)-decomposition in
O(nk−1) time, where n is proportional to the size of the graph.

When performing the (n + 1, e)- or (n, e + 1)-decomposition of an (n, e)-
connected graph, one can remove a vertex or, respectively, an edge from the graph
and run the same algorithm that was used when obtaining the (n, e)-connected
graph; the procedure should be repeated for each vertex or, respectively, edge.
The (2, 0)-decomposition results in the hierarchy of (2, 0)-connected fragments
organized in a tree structure [4]. In the case of the (3, 0)-decomposition, one
obtains a forest, where each tree is the result of the (2, 0)-decomposition of the
graph after the removal of a single vertex. The amount of trees in the forest is
equal to the number of vertices in the graph. Such a forest can be treated as the
structural characterization of the (2, 0)-connected graph.

By following the principles of the connectivity-based decomposition framework,
we not only discover process fragments used to perform process abstraction, but
also learn their structural characteristics. Structural information is useful at other
stages of abstraction, e.g., when introducing control over abstraction. Initial work
on classifying and checking the correctness of process specifications based on
discovered process fragments was accomplished in [8,12].

3 Abstraction Control

The task of adjusting the abstraction level of process specifications requires
intensive intellectual work and in most cases can only be accomplished by process
analysts manually. However, for certain use cases it is possible to derive automated
or to support semi-automated abstraction control mechanisms. The task of
abstraction control lies in telling significant process elements from insignificant
ones and to abstract the latter. In [1], work activities are classified as insignificant



if they are rarely observed during process execution. We were able to establish the
abstraction control when investigated processes were annotated with information
on the average time required to execute activities. Process fragments which
contain insignificant activities get abstracted. Hence, we actually deal with the
significance of fragments which represent detailed work specifications.

Significant and insignificant process fragments can be distinguished once a
technique for fragment comparison is in place, i.e., a partial order relation is
defined for process fragments. The average time required to execute activities
in the process provides an opportunity to derive a partial order relation, i.e.,
fragments which require less time are considered insignificant. Other examples of
criteria and the corresponding abstraction use cases are discussed in [13].

Once an abstraction criterion, e.g., the average execution time of activities,
is accepted for abstraction, one can identify a minimal and a maximal values
of the criterion for a given process specification. In our example, the minimal
value corresponds to the most rarely observed activity of the process and the
maximal value corresponds to the average execution time of the whole process. By
specifying a criterion value from the interval, one identifies insignificant process
fragments—those that contain activities for which the criterion value is lower than
the specified value. Afterwards, insignificant fragments get abstracted. In [13],
we proposed an abstraction slider as a mechanism to control abstraction. An
abstraction slider is an object that can be described by a slider interval defined
by a minimal and a maximal allowed values for an abstraction criterion, has a
state—a value that defines the desired abstraction level of a process specification,
and exposes behavior—an operation that changes its state.

4 Conclusion

In our research, we develop methods which allow the derivation of high abstraction
level process specifications from detailed ones. In order to discover fragments
suitable for abstraction, we employ the structure of process specifications, which
are usually formalized as directed graphs. As an outcome, developed techniques
can be generalized to any process modeling notation which uses directed graphs
as the underlying formalism.

It is a highly intellectual task to bring a process specification to a level of
abstraction that fulfills emergent engineering needs, and one without a single
perfect solution. By employing the technique for the discovery of abstraction
fragments, one can approach the problem as a manual engineering effort. Besides,
when it is sufficient to fulfill certain use case, cf., [1], one can define principles for
a semi-automated or fully automated composition of individual abstractions.

As future steps aimed at strengthening the achieved results, we plan to
validate the applicability of the connectivity-based process graph decomposition
framework for the purpose of process abstraction with industry partners and to
look for process abstraction use cases for which automated control mechanisms
can be proposed. Finally, studies regarding the methodology of abstractions need
to complement the technical results.



References

1. Polyvyanyy, A., Smirnov, S., Weske, M.: Reducing complexity of large EPCs. In:
Modellierung betrieblicher Informationssysteme. Volume 141 of Lecture Notes in
Informatics., Saarbruecken, Germany (November 2008) 195–207

2. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer Verlag (2007)

3. Diestel, R.: Graph Theory. Springer Verlag (2005)
4. Tarjan, R.E., Valdes, J.: Prime subprogram parsing of a program. In: Proceedings

of the 7th Annual ACM Symposium on Principles of Programming Languages, New
York, NY, USA, ACM Press (1980) 95–105

5. Johnson, R.: Efficient Program Analysis using Dependence Flow Graphs. PhD
thesis, Cornell University, Ithaca, NY, USA (1995)

6. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing con-
trol regions in linear time. In: Proceedings of the ACM Conference on Programming
Language Design and Implementation, ACM Press (1994) 171–185

7. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In:
Proceedings of the 8th International Symposium on Graph Drawing, London, UK,
Springer Verlag (2001) 77–90

8. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow
analysis for business process models through SESE decomposition. In: Proceedings
of the 5th International Conference Service-Oriented Computing. Volume 4749 of
Lecture Notes in Computer Science., Springer Verlag (September 2007) 43–55

9. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In:
Proceedings of the 6th International Conference on Business Process Management.
Volume 5240 of Lecture Notes in Computer Science., Milan, Italy, Springer Verlag
(September 2008) 100–115

10. Polyvyanyy, A., Smirnov, S., Weske, M.: On application of structural decomposition
for process model abstraction. In: Proceedings of the 2nd International Conference
on Business Process and Service Computing. Volume 147 of Lecture Notes in
Informatics., Leipzig, Germany, GI (2009) 110–122

11. Polyvyanyy, A., Smirnov, S., Weske, M.: The triconnected abstraction of process
models. In: Proceedings of the 7th International Conference on Business Process
Management. Volume 5701 of Lecture Notes in Computer Science., Ulm, Germany,
Springer Verlag (September 2009) 229–244

12. Polyvyanyy, A., Garćıa-Bañuelos, L., Weske, M.: Unveiling hidden unstructured
regions in process models. In: Proceedings of the 17th International Conference
on Cooperative Information Systems. Volume 5870 of Lecture Notes in Computer
Science., Vilamoura, Algarve-Portugal, Springer Verlag (November 2009) 340–356

13. Polyvyanyy, A., Smirnov, S., Weske, M.: Process model abstraction: A slider
approach. In: Proceedings of the 12th International IEEE Conference on Enter-
prise Distributed Object Computing, Munich, Germany, IEEE Computer Society
(September 2008) 325–331


	Structural Abstraction of Process Specifications
	Introduction
	Discovery of Process Fragments
	Abstraction Control
	Conclusion

