
Communication models for services

Niels Lohmann1,2

1 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P. O. Box , MB Eindhoven, The Netherlands

2 Universität Rostock, Institut für Informatik, Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. Communication is an essential aspect of services. Services
do not only realize simple request-response scenarios, but increasingly
implement complex and stateful communication protocols. Such a protocol
specifies the order in which messages are sent and received by a service
and is an essential part of a service description. Services are usually not
executed in isolation, but as a collaboration which is composed of several
services. The behavior of such a collaboration is not only determined by
the communication protocol of each participating service, but also by
the way messages are exchanged. A communication model specifies the
properties of the message channels between the services and defines the
way how messages are sent and received. This paper studies and classifies
several dimensions of communication models and describes their impact
to the behavior of service compositions.

1 Introduction

The paradigm of service orientation aims at replacing complex monolithic systems
by a composition of several simpler, yet logically or geographically distributed
components, called services. This distributed nature introduces new problems,
because independent services need to collaborate to reach a common goal. One
way to achieve correct collaboration is to offer standardized service descriptions.
The most prominent example is the language WS-BPEL [3] which emerged as
standard to specify executable Web services as well as to describe communication
protocols on an abstract level. WS-BPEL received much attention from academia,
and there exists a variety of formalizations of the communication protocol of a
WS-BPEL process; van Breugel and Koshkina [7] present a survey of hundreds of
papers. However, these formalizations usually focus on the execution order of the
service’s activities and provides an answer to the question when communication
takes place, but give little details on the way how messages are exchanged.

Although a communication protocol specifies many dependencies between
activities — be it internally or between one service’s send activity and another
service’s receive activity — other details remain unspecified. Is the message ex-
change atomic, or is sending and receiving decoupled? Can the receiver block
the sender? Can messages be buffered, and if yes, how many of them? Each of
these questions is not addressed by the WS-BPEL specification. However, they
still have an impact on the behavior of the overall collaboration.

We observed that — apart from a vague distinction between synchronous and
asynchronous message exchange — there does not exist a common understanding
how communication should be modeled. This in turn makes it hard to compare
existing results on the formalization and analysis of services. To this end, this
paper studies communication models. A communication model specifies the
aspects of the message exchange such as those previously sketched. It may
also include the occurrence of faults. A fault is an undesired and abnormal
scenario (i. e., a buffer overflow) for that the subsequent behavior is unspecified.
A communication model thereby can be seen as the missing piece to completely
describe and reason about the behavior of a service composition. Note that
communication models are not tied to any specific service description language
or formalization.

This paper is not a survey on existing service description languages or service
formalizations; we refer the interested reader to survey [11,16]. Actually, Kazhami-
akin et al. [16] already study a wide spectrum of communication models and
investigate questions related to their expressive power. Compared with that ap-
proach, this paper aims at providing an intuitive classification of communication
models which is not guided by expressive power or a concrete formalization; the
dimensions studied in Sect. 2 are more general than those of Kazhamiakin et al.
Furthermore, this paper does not discuss the suitability of certain communication
models nor tries to compare formalisms or service description languages with
respect to their assumed communication model(s) as it is done by approaches
such as the service interaction patterns [4]. Instead, we want to highlight certain
effects and consequences which arise with the choice of a certain communication
model. We do this by examining in Sect. 3 the service’s behavior from the point of
view of partner services. Section 4 concludes the paper and lists several directions
of future work.

2 Dimensions of communication models

The most apparent impact of the choice of a communication model becomes visible
in the level of abstraction of the message buffer; that is, the infrastructure which
transfers messages between two services. In case of synchronous communication,
message exchange is assumed to be instantaneous: Messages are not buffered and
no intermediate state in which a sent message is pending is modeled. Thereby,
the meaning of the term “synchronous” is closer to “isochronous” rather than
“synchronization”, because the latter can also be realized with two messages
modeling a handshake.

On the other hand, sending of a message can be decoupled from receiving;
that is, sent messages are buffered until they are received and, as a consequence,
communication is asynchronous. Even though considering intermediate states
yields in an increased complexity, asynchronous communication allows for more
efficient communication, because sender and receiver do not need to constantly
synchronize, but can be executed more autonomously. Thereby, asynchronous
communication naturally supports the distributed setting of services.

nonblocking sending

sending strategy

blocking sending

if synchronization fails:
discard message

if synchronization fails:
fault

Fig. 1: Dimensions of synchronous communication models.

2.1 Synchronous message exchange

In the simplest communication model, message exchange is atomic. The sender
waits until the receiver is ready for the message exchange, and then they syn-
chronize by executing the sending and the receiving activity simultaneously. In
this setting, the state in which the message is sent, but not yet received, is not
modeled: the message channel is abstracted from. Consequently, the message
exchange is executed in an all-or-nothing fashion. It is notable that the direction
of the message exchange is irrelevant from a technical point of view, because
there exists no distinguished initiator.

Variants of this synchronous communication loosen this symmetry between
sender and receiver and allow for nonblocking execution of the sending activity.
In case the sending activity can be executed independently from the receiving
activity, the setting in which the receiving activity is not ready for execution
(i. e., the synchronization fails) needs to be specified. Then, the message can be
either discarded or a fault occurs. The former scenario is motivated by signal
nets [17] which introduce one-sided synchronization of modules in the setting of
control engineering. Desel [11] describes an application to services.

Figure 1 provides an overview of the different dimensions of synchronous
communication models. The most prominent service model using synchronous
communication is the “Roman model” [5] in which message transfer is specified
by a synchronous communication model that assumes blocking sending. The
same communication model is also used by earlier formalizations of interaction
such as I/O automata [19] or interface automata [8].

2.2 Asynchronous message exchange

In contrast to synchronous message exchange, asynchronous communication
models refine the message exchange and decouple the sending of a message from
its receiving. This is usually motivated by performance issues, and the fact that
the actual moment a message is received should be modeled independently of the
moment of the sending. Consequently, the state in which the message is in transit
(i. e., already sent but not yet received) is explicitly modeled. Consequently, an
asynchronous communication model not only needs to specify the characteristics of
the sending of a message, but also its transfer and its receipt. These characteristics
can be grouped into properties of the employed message buffer (including how it
can be accessed by the receiving activity) and sending strategies.

unordered

buffer: ordering

ordered unbounded

buffer: capacity

bounded

nonblocking sending

sending strategy

always succeed
(only for unbounded buffer)

if buffer is full:
discard message

blocking sending
(only for bounded buffer)

if buffer is full:
overwrite buffer

if buffer is full:
fault

multiple buffers

buffer: quantity

one buffer

Fig. 2: Dimensions of asynchronous communication models.

Message buffers. An asynchronous communication model needs to specify
three aspects of message buffers: their capacity, their organization, and their
quantity.

The capacity of a message buffer determines the maximal number of messages
which can be simultaneously buffered. In literature, the case in which a message
buffer is unbounded is often considered. This absence of a capacity is typically
motivated as a proper abstraction from a concrete, but unknown upper bound.
Actually, the determination of the maximal capacity is not trivial, because it is
not only influenced by the service under consideration, but also by those services
which are composed to it. Nevertheless, the need of a finite and fixed capacity
is motivated by the middleware which realizes the communication of services in
reality. If the capacity is not known in advance, it may be approximated using
capacity considerations or static analysis techniques, or it is chosen sufficiently
large.

The second aspect specifies how buffered messages are organized. As Kazhami-
akin et al. [16], we distinguish ordered and unordered buffers. In the first case, the
order in which messages are added to the buffer is preserved, and the receiver only
has access to the “oldest” (i. e., earliest sent) element. Ordered buffers are usually
modeled by FIFO queues. In the second case, messages are buffered unordered,
modeling a channel in which messages may overtake one another. Consequently,
the receiver has access to all buffered messages. This scenario over-approximates
any transfer delay an asynchronous medium can introduce.

Finally, communication can be organized using multiple buffers. In the setting
of ordered buffers, this allows the receiver to access more messages and hence
may enable more message-receiving activities compared with the case where
only one message can be accessed. For the unordered case, multiple buffers do
not introduce additional behavior. In addition, by organizing each message in a
separate ordered buffer, unordered buffers can be simulated.

Sending strategies. Similar to synchronous message exchange, different param-
eters influence the way sending activities are executed. For unbounded buffers, a
nonblocking sending is the simplest case. In case a buffer capacity is assumed,

the situation in which the buffer is full needs to be specified. Either, the message
cannot be sent (blocking) or sending is nonblocking and the message is discarded,
a buffered message is overwritten, or an error occurs.

Figure 2 diagrams the four dimensions of asynchronous communication models.
Obviously, the buffer capacity and the buffer quantity need to be explicitly
specified further than “bounded” and “multiple”, respectively.

As an example from literature, open nets (previously called open workflow
nets) use interface places to model a message buffer. Using Petri net places yields
an asynchronous communication model with a single unordered buffer. The model
itself does not pose a capacity of the buffer and hence open nets impose an “always
succeed” sending strategy. Similarly, concurrent automata [2] assume a multiset
as channel model, yielding a single unordered buffer. Communicating FSM [6]
employ unbounded ordered buffers (i. e., FIFO queues) to model communication.
Hence, sending is nonblocking. In case a service communicates with more than
one other service, one FIFO queue is assumed for each pair of services.

3 Impact of communication models

The previous section sketched different dimension of communication models. In
this section, we demonstrate how the choice of a communication model has an
impact on the controllability of a service. A service is controllable [22] if there
exists a partner service such that their composition can always eventually reach
a final state in which the message channels (if modeled) are empty. To visualize
service models, we use BPMN [21] as graphical notation.

As a first example, consider the service in Fig. 3(a). It controllable if we
assume synchronous communication. An asynchronous communication model
would need to specify a buffer capacity of at least 2 in case messages are not
discarded, because a communication partner cannot observe the receipt of the
A message. Figure 3(b) shows compatible partner for bounded channels with a
“discard” strategy.

Figure 3(c) demonstrates the impact of ordering of buffered messages: this
service can only be controlled with synchronous communication or ordered buffers,
because reordering of messages A and B results in a situation in which a partner
needs to “guess” whether to send a C or D message, and any guess could
yield unreceived messages. A similar situation occurs in the interaction with
the service in Fig. 3(d). This service cannot be controlled with an asynchronous
communication model at all, because the result internal choice (modeled by
an XOR gateway) cannot observed by a communication partner. In contrast, a
partner with a synchronous communication model with blocking sending, however,
can control the service.

Figure 3(e) shows an example of the impact of the buffer quantity. If we
assume a single ordered buffer, this service is controllable, for instance by the
service in Fig. 3(f). If we assume the transfer of message E takes very long (e. g.,
in case of a large video file), we cannot speed up the service composition by
sending it concurrently to other messages as it is done in Fig. 3(g) which would

receive A

receive B

send C

(a)

send A

send B

receive C

timeout

(b)

receive A receive B

receive B receive A

receive C receive D

(c)

receive A receive B

(d)

receive A

send B send C

receive D

receive E

(e)

send A

receive B receive C

send D

send E

(f)

send A

receive B receive C

send D

send E

(g)

Fig. 3: Impact of communication models to service behavior.

be a correct partner in case we assume a distinct buffer for message E or an
unordered buffer.

The presented examples show that the communication model has an impact
to the overall behavior of a service. In particular, message buffers may introduce
“new” behavior by enabling message-receiving activities. This additional behavior
may yield in concurrent and more flexible service compositions on the one hand,
but also in undesired problems such as deadlocks or unreceived messages on
the other hand. In the context of unordered asynchronous communication, we
already studied the reasons which may lead to uncontrollable service models [18].
Further impacts of synchronous communication on controllability are reported
by Wolf [23] and Wolf [22].

4 Conclusion

We briefly studied communication models. By sketching different dimensions, we
refined and systematized the vague synchronous/asynchronous distinction which
can be found in the literature. Furthermore, we demonstrated the impact of
different communication models with respect to controllability. We showed that
one and the same service model (given as BPMN diagram) can be controllable or
uncontrollable depending on the chosen communication model.

Future Work

Directions of future work are manifold. First, we plan to extend the dimensions
of the communication models with other aspects related to instantiation seman-
tics [10], lossy channels, or topologies. Second, this more detailed distinction can
be used to classify and categorize further service formalisms from literature with
respect to their assumed communication model. This would not only help to
better compare and transfer results, but also to understand which communication
model is required to study certain properties. We already sketched the impact
to controllability in Sect. 3. Similarly, Kazhamiakin and Pistore [15] study the
impact of communication models to choreography realization [12] and provide an
algorithm which finds the “simplest” communication model under which a given
choreography can be realized.

There already exist several approaches to translate between different communi-
cation models. Fu et al. [13] investigate necessary conditions for synchronizability,
viz. when it possible to safely abstract from channels. This abstraction is moti-
vated by the availability of more efficient verification techniques for synchronously
communicating services. The converse direction from synchronous to asynchronous
communication, called desynchronizability, is studied by Decker et al. [9]. They
report of problems that may arise if a synchronous service choreography is im-
plemented by asynchronously communicating services. Here, the transformation
is motivated by the statement that atomic synchronous communication is an
unrealistic assumption in the area of inter-organizational business processes.

Finally, the classification further needs to be further differentiated against
many approaches to characterize several aspects in the area of business processes
and services in terms ofpatterns. Whereas the control flow of a service can be
investigated using workflow patterns [1], other approaches such as enterprise
integration patterns [14], service interaction patterns [4], or PAIS patterns [20] also
take interaction into account. Consequently, we plan to investigate similarities
between interaction models and these patterns.

References

1. Aalst, W.M.P.v.d., Hofstede, A.H.M.t., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

2. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Trans. Software Eng. 29(7), 623–633 (2003)

3. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
OASIS Standard, OASIS (2007)

4. Barros, A.P., Dumas, M., Hofstede, A.H.M.t.: Service interaction patterns. In: BPM
2005. pp. 302–318. LNCS 3649, Springer (2005)

5. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
composition of e-services that export their behavior. In: ICSOC 2003. pp. 43–58.
LNCS 2910, Springer (2003)

6. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

7. Breugel, F.v., Koshkina, M.: Models and verification of BPEL (2006), unpublished
manuscript, available at http://www.cse.yorku.ca/~franck/research/drafts/

tutorial.pdf

8. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC 2001. pp. 109–120.
ACM (2001)

9. Decker, G., Barros, A., Kraft, F.M., Lohmann, N.: Non-desynchronizable service
choreographies. In: ICSOC 2008. pp. 331–346. LNCS 5364, Springer (2008)

10. Decker, G., Mendling, J.: Instantiation semantics for process models. In: BPM 2008.
pp. 164–179. LNCS 5240 (2008)

11. Desel, J.: Controlling Petri net process models. In: WS-FM 2007. pp. 17–30. LNCS
4937, Springer (2007)

12. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. Theor. Comput. Sci. 328(1-2), 19–37
(2004)

13. Fu, X., Bultan, T., Su, J.: Synchronizability of conversations among Web services.
IEEE Trans. Software Eng. 31(12), 1042–1055 (2005)

14. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional (2003)

15. Kazhamiakin, R., Pistore, M.: Analysis of realizability conditions for Web service
choreographies. In: FORTE 2006. pp. 61–76. LNCS 4229, Springer (2006)

16. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of communication models in
web service compositions. In: WWW 2006. pp. 267–276. ACM (2006)

17. König, R., Quäck, L.: Petri-Netze in der Steuerungstechnik. Verlag Technik, Berlin
(1988)

18. Lohmann, N.: Why does my service have no partners? In: WS-FM 2008. pp. 191–206.
LNCS 5387, Springer (2009)

19. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
20. Mulyar, N.: Patterns for process-aware information systems: an approach based

on colored Petri nets. Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven,
The Netherlands (2008)

21. OMG: Business Process Model and Notation, V1.1. OMG Available Specification,
Object Management Group (2008)

22. Wolf, K.: Does my service have partners? LNCS T. Petri Nets and Other Models
of Concurrency 5460(2), 152–171 (2009)

23. Wolf, M.: Synchrone und asynchrone Kommunikation in offenen Workflownet-
zen. Studienarbeit, Humboldt-Universität zu Berlin, Berlin, Germany (2007), (in
German)

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

