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Abstract

Many of the benefits expected from software product lines are based
on the assumption that the additional investment in setting up a
product line pays off later when products created. However, to
fully exploit this we need to optimize application engineering pro-
cesses and handle SPL artifacts in a systematic and efficient man-
ner. This workshop explores how model-driven approaches can help
to achieve these goals. In particular the workshop revolves around
three themes:

1. Efficient product derivation. The true return on investment
in product line engineering, is achievable when the product lines
can be efficiently used for product derivation. How can applica-
tion engineering benefit from model-driven and aspect-oriented
approaches?

2. Link PLE research and industry practice. We have to
overcome the gap between research and industrial practice so
that both sides can learn from each other. Hence, we are par-
ticularly interested in experience reports that discuss the use
of models in real world PLE projects.

3. SPL models with a meaning. If we want to improve product
derivation, we require models that are more than just vehicles
for documentation and discussions on the whiteboard – mod-
els that are precise and expressive enough to be used in for
automation and in advanced interactive tools. However, if the
existing models are documentary and ambiguous, how do we
come to more precise models?
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Abstract— Software product lines are complex and need to be 
maintained and evolved over many years. New customer 
requirements, new products derived, technology changes, and 
internal enhancements lead to continuous changes of the artifacts 
and models constituting a product line. Managing such changes 
therefore becomes a key issue during a product line’s evolution. 
We propose an approach that supports multi-level monitoring of 
product line artifacts and models and continuous tracking of 
changes. We present tool support for evolution tracking in 
Eclipse workspaces and illustrate our approach with examples 
from DOPLER, an existing Eclipse-based product line 
environment. 

Keywords-product line engineering; evolution; change tracking 

I.  INTRODUCTION 

Product lines are typically used for many years and are 
inevitably subject to continuous evolution. Managing the 
evolution is success-critical for any product line approach as 
engineers need to deal with changes and extensions to the 
product line’s assets and the derived products [1]. Feature 
models [2], decision models [3], extended UML [4], or aspect 
oriented approaches [5] are typically applied to define product 
lines. Managing the evolution of models therefore becomes a 
major concern.  

In particular, our research interest is on (i) monitoring and 
tracking changes to models and product line artifacts, and 
(ii) establishing traceability between diverse product line 
artifacts such as product-specific requirements, change 
requests, or bug reports. Numerous research prototypes and 
commercial tools are available to support the creation and 
utilization of product line models, e.g., [6, 7]. However, they 
provide only limited support for dealing with product line 
evolution.  

A generic approach for tracking the evolution of 
heterogeneous artifacts and models is still not available. For 
instance, existing approaches and tools lack support for 
managing the evolution of product line models at multiple 
levels of granularity and for managing interdependencies 
between different product line artifacts. This becomes 
particularly critical in a multi-team environment if several 
application engineering projects are conducted in parallel. This 

can mean that multiple products are derived concurrently from 
different releases of a product line. 

In this paper we propose an approach for evolution tracking 
which is based on a generic meta-model. The approach is 
supported by our tool EvoKing. We demonstrate the 
capabilities of EvoKing using an example of its integration 
with the DOPLER product line approach and tools [8]. 

II. A META-MODEL FOR TRACKING PRODUCT LINE 

EVOLUTION 

Many software tools support change tracking at the file or 
code level. For instance, version control systems and file 
system journaling mechanisms allow keeping track of changes 
to artifacts at the file level. Development environments make 
use of these tools to support change-tracking at the code level. 
However, tracking changes at this level is tedious. Supporting 
evolution requires change-tracking at a higher level of 
granularity and abstraction. It is also important to understand 
the dependencies between changes. Furthermore, change-
tracking needs to cover various types of artifacts such as 
models, model elements, or structured documents. 

From a bird’s eye view, tracking evolution is about 
understanding the changes that are made to different artifacts of 
interest and establishing traceability between these artifacts 
based on dependencies between changes. The events and 
conditions that lead to a certain change are usually as 
interesting as the change itself. We have devised a generic 
meta-model for tracking evolution, which comprises artifacts, 
events, and relations (cf. Fig. 1). 

An artifact  is an element which needs to be monitored to 
track and manage its evolution. Examples of product line 
artifacts are meta-models, models, model elements, solution 
space elements (e.g., reusable code assets), or change requests 
(e.g., requirements captured during application 
engineering [9]). In a product line environment, these artifacts 
are typically managed in files or parts of files. The nature of the 
artifacts is domain-specific and cannot be generalized. Our 
evolution meta-model (the top layer in Fig. 1) thus does not 
specify concrete artifacts such as feature models, configuration 
files, or component descriptions. Instead we use a layered 
approach: the generic meta-model defines the basic elements 
that are then refined to specific domains and technologies using 
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custom artifacts. Fig. 1 (middle and bottom layer) shows 
examples of artifacts at multiple levels of abstraction, i.e., in 
Eclipse-based tools and in product line engineering. Events and 
relations are created and resolved by implementing the defined 
custom artifacts (cf. Section 3). 

 

 

Figure 1.  Evolution meta-model for tracking evolution and examples of 
custom artifacts for product line engineering artifacts in Eclipse. 

An event causes one or more changes to artifacts. The 
generic evolution meta-model allows defining arbitrary events 
for the specified artifacts. Events relevant in product line 
engineering can typically be derived from existing product line 
process models and workflows. For example, the addition of a 
new variation point to a variability model constitutes an event 
that creates a new version of this model. Events can however 
also be defined at a much higher level of abstraction: e.g., if a 
user decides to derive a product using an existing variability 
model, a new application engineering project will be created, 
that is e.g., stored in a new model that needs to be tracked. 

A relation between artifacts is established by an event 
tracked for specific artifacts. It describes how these artifacts are 
related with each other. Such links can be structural or 
temporal in nature. Structural relations between artifacts 
describe how the artifacts are organized, e.g., a model might be 
part of another model or a component might be described by a 
certain document. Temporal relationships are created at certain 
times during the artifact life-cycle to track their evolution 
history, e.g., a derivation model is created before a product is 
derived based on a variability model. 

When refining our evolution meta-model to a particular 
product line development environment, users define different 
types of trace links as relations. Examples of relations (not 
shown in Fig. 1) between product line elements are: 

• Project to model: A specific model (stored for example 
in a file) becomes part of a project and is marked for 
change tracking after its creation. 

• Model to model: A model is related to another model. 
For instance, a variability model is based on a certain 

product line meta-model. Since multiple variability 
models and meta-models can be stored in a workspace 
it is necessary to establish traceability to ease product 
line evolution. 

• Model to model element: A model consists of an 
arbitrary number of modeling elements. 

• Model element to model: A model element can be 
related to different other models. For example, if a 
requirement is captured in a derivation model [10] or a 
requirements document during application engineering, 
it is useful to also establish a trace link from the 
requirement to the variability model that must be 
evolved to address the new requirement. 

• Model element to model element: Model elements are 
typically related to other model elements. For instance, 
a newly captured requirement can directly refer to 
existing model elements like features, decisions, or 
assets in a product line model. 

III.  EVOK ING: TOOL-SUPPORT FOR TRACKING EVOLUTION 

IN ECLIPSE WORKSPACES 

Our approach for tracking and managing evolution of 
product lines is supported by our Eclipse-based tool EvoKing. 
We intentionally did not use Eclipse libraries to implement the 
evolution meta-model to keep the core of our approach 
independent from Eclipse. We describe the refinement of our 
generic evolution meta-model and the extensions we developed 
to support tracking of artifact changes in Eclipse. 

A. Refining the Meta-model for Eclipse 

The artifacts tracked by EvoKing are Eclipse workspace 
entities like IFile, IProject or IWorkbench. They are 
defined in a refined evolution meta-model as shown in Fig. 1. 
Users configure EvoKing for an Eclipse-based modeling 
environment by specifying the artifacts of interest at a higher 
level of abstraction (the lower level implementation details like 
IProject or IFile are transparent to the user). For example, 
users specify the types of Eclipse projects they want to be 
tracked (e.g., “Java Project” or “Product Line Project”) or the 
file types (e.g., “Java source files” or “XY Models”). 

Low-level events fired by the Eclipse framework (e.g., file 
change notifications) are automatically captured by EvoKing. 
EvoKing complements the existing notification mechanisms of 
Eclipse by adding an explicit meaning to events. For example, 
users can define in the evolution meta-model that whenever a 
new file of type “feature configuration” is added to the 
workspace, this shall be interpreted as the start of product 
derivation and a relation to a feature model should be created 
(see Section 4). This way a relation from a derivation project 
(i.e., stored in a feature configuration file) to a variability 
model (i.e., stored in a feature model file) is established. 

B. Tool Architecture 

EvoKing works as a consumer and recipient of event 
notifications coming from Eclipse or other custom event 
providers (cf. Fig. 3). Based on the incoming events and the 
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Figure 2. EvoKing Evolution View showing the change history of a DOPLER derivation model (.gen file) and a related requirement, variability model (.var 

file) and meta-model (.meta file). 

defined artifacts, new events with more detailed information 
regarding context and semantics can be generated. Such 
evolution events are then stored for each artifact and can be 
browsed using the EvoKing evolution view (cf. Fig. 2). Other 
tools implementing a specific interface can also be registered as 
an observer to retrieve evolution events if they wish to be 
informed about changes and their meaning. 

EvoKing supports the user in further refining the evolution 
meta-model. This includes support for the modeler to add code 
for resolving relations, to interpret events from Eclipse for 
specific models, and to enrich change events with context-
specific, semantic information. Product line engineers can 
thereby customize EvoKing to support evolution in arbitrary 
Eclipse-based product line environments. 

 

 

Figure 3. EvoKing’s event architecture. 

EvoKing recognizes change events based on information 
from two sources:  

Eclipse resource change events such as file added or 
file changed and their sources are analyzed. EvoKing for 
example parses files representing models so that internal 
changes to models can be recognized using existing model 
APIs. Such changes are then mapped to artifacts and events 
defined in a refined evolution meta-model (see Section 4). 

Custom event providers for models can send specific 
events to EvoKing. For example, if listeners have been 
implemented for a certain model type, they can be extended to 
explicitly fire change notifications. EvoKing is then registered 
as a listener for these models and can track changes being made 
to a model internally (e.g., model elements being added, 
deleted, or changed). Notifications are automatically 
transformed to evolution events according to the artifact 
and event definitions found in the evolution meta-model 
refined for a particular environment (cf. Section 4). 

The EvoKing evolution view depicted in Fig. 2 shows all 
tracked artifacts of a project currently opened in Eclipse. The 
hierarchically organized representation of dependencies to 
other artifacts and all corresponding events allows users to 
quickly get an overview of the changes that have been 
occurring. Users can display details of a specific artifact at any 
time by expanding the tree, browsing through event details and 
related artifacts, and open editors for the elements the artifacts 
represent. 

IV.  EXAMPLE APPLICATION OF EVOK ING:  
EVOLUTION MANAGEMENT IN DOPLER 

Our testbed for EvoKing is the DOPLER product line 
engineering approach and tool suite [8]. We have been 
developing DOPLER in ongoing research collaboration with 
industry. The model-based, decision-oriented approach 
supports variability modeling and product derivation and 
provides tool support for creating, using, and managing diverse 
types of product line artifacts and models. 

The product line artifacts (cf. Fig. 4) in DOPLER are 
product line meta-models, variability models, derivation 
models, and diverse model elements (e.g., assets, decisions, and 
product-specific requirements). The relevant dependencies 
between these artifacts are as follows: A variability model 
(.var file in Eclipse) uses a particular meta-model (.meta file); 
a derivation model (.gen file) is based on a specific variability 
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model; a requirement comes from a particular derivation 
model. 

Evolution in DOPLER is for instance triggered by product-
specific requirements captured during application requirements 
engineering. Requirements are captured in the derivation model 
representing a particular product derivation project. 
Implementing a requirement typically causes a change of the 
variability model (and thereby its elements like, i.e., assets and 
decisions). 

Fig. 4 shows a simplified overview of how we customized 
EvoKing for DOPLER. Operations on files defined as model 
containers (.meta, .var, and .gen files) are captured and 
processed in the corresponding artifact implementations. For 
instance, for the creation of a .meta file (1) the artifact for the 
contained product line meta-model (2) is created. This leads to 
an evolution event indicating the start of domain 
engineering (3). This procedure works similar for other files 
and models. Starting variability modeling or starting a new 
derivation project additionally creates trace links between (4) 
the product line meta-model or variability model respectively. 
Independent of file changes, DOPLER-specific notifications 
are processed by the EvoKing artifacts. For instance, the 
DOPLER tool suite notifies EvoKing about model changes 
(5) like new model elements (i.e., assets, decisions, 
requirements) being added. EvoKing stores events containing 
this information (6) or, according to the refined evolution meta-
model, new artifacts, (7) e.g., representing requirements, are 

held with their own evolution history (8) and relations to their 
origin (9). 

EvoKing allows users to track the evolution of DOPLER 
product line meta-models, variability models, derivation 
models, and of the elements these models comprise. The 
customization of EvoKing to a different (Eclipse-based) 
product line environment would be pretty straightforward as 
most Eclipse-based product line environments store models in 
files in Eclipse projects and different model elements such as 
features or requirements are contained in the models. 

V. CONCLUSIONS AND FUTURE WORK 

We presented a tool-supported approach for multi-level 
monitoring and tracking of changes to facilitate evolution in 
model-based product line engineering. Based on a generic 
meta-model for tracking evolution our tool EvoKing supports 
evolution management in Eclipse-based product line 
environments. We illustrated the applicability of our approach 
by customizing EvoKing for the DOPLER product line tool 
suite. 

EvoKing automatically maintains a development history 
showing what and when was done by whom during 
development. There are, however, more advanced usage 
scenarios for the tool which we plan to explore in the future. 
For instance, we will use of the refined evolution meta-model 
and evolution information tracked by EvoKing to assist users 
with their workflow of modeling and creating product line 

 

 
 

Figure 4. EvoKing customized for DOPLER. The left side shows elements and notifications we see within the workspace and editors. The right side shows 
artifacts, relations and events that represent the left side enriched with information taken from the refined evolution meta-model for DOPLER.  
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artifacts. We will also use the relations captured by EvoKing as 
trace links for the purpose of consistency checking in and 
between product line models and artifacts. This will help to 
point out potential update leaks or inconsistencies after changes 
to specified artifacts. We plan to improve support for further 
development of artifacts and relations. This way, for example, 
changes to configuration files, custom service configurations, 
and component interface definition files can be tracked to ease 
maintenance tasks. Finally, the information collected by 
EvoKing allows deriving product and process metrics to 
facilitate benchmarking, to monitor development processes, 
and to track variability shifts in product lines. 
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Abstract—Developing smart home systems that properly fit
end-user needs is not always an easy task due to the lack of
understanding that may exist between end-users and system
developers. In the context of Software Product Lines, several
approaches have been presented to improve the development
of smart home system functionality. However, little support is
provided to improve the interaction with end-users. In this work,
we extend a Software Product Line based on Model-Driven
Development with an interactive design tool that allows end-users
to actively participate in the SPL. This tool allows end-users to
configure the decision model that drives the production process
of the software product line by themselves. In order to develop
this tool we have been inspired by well-known and tested end-
user techniques and interaction patterns that improve the user
interface usability.

I. INTRODUCTION

Smart home systems are in charge of providing different
services to support the daily activities of the inhabitants of a
home. In order to do this, smart home systems automatically
perform actions such as turning the lights on [1], controllling a
thermostat, closing the blinds, etc. However, all these actions
must be performed according to the user’s preferences and
needs.

Adapting smart home systems to end-users needs is not
always an easy task due to the lack of understanding that may
exist between end-users and system developers. End-users are
the owners of the domain of knowledge, the ones with more in-
depth knowledge about both the services that must be provided
by the system and the environment in which the system is
going to be deployed. However, many times they do not have
the ability of transmitting this information properly. We think
that this can be improved by providing mechanisms that allow
end-users to actively participate in the development process.

In the area of Software Product Lines (SPL), many efforts
have already been made to improve the development of smart
home systems [2], [3]. However, these approaches focus
mainly on providing developers with techniques and tools to
develop the system functionality, and they pay little attention
to the interaction with end-users. In this work, we face the
problem of allowing end-users to actively participate in the
development of a smart home within an SPL.

To do this, we have extended a Software Product Line to
develop smart home systems [4], which is based on Model
Driven Development (MDD). The proposed extension consists

of an interactive design tool that allows end-users to create
tailored solutions that directly reflect their needs and expec-
tations. To do this, we have been inspired by well-known
and tested end-user techniques and interaction patterns that
improve the user interface usability [5], [6], [7].

Considering the schema of the MDD-SPL (see Fig. 1),
where a product operation transforms input assets into an
output system according to the configuration specified in a
decision model, the contribution of this work is an end-user
tool that enables end-users to configure the decision model
that drives the production process by themselves.

End-user 
tool

Assets Production 
Operation

Output 
System

Decision 
Model

So
ftw

ar
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Pr
od

uc
t

Li
ne

 C
on

ce
pt

s

Fig. 1. Approach overview

The rest of this paper is structured in the following way:
Section II presents the related work in the field of the end-user
development techniques for smart homes. Section III presents
the MDD-SPL for developing smart home systems. Section IV
introduces the end-user tool and the interaction patterns that
have been applied to improve the interface usability. Section
V presents some aspects of the technology used to implement
this tool. Finally, section VI concludes the paper.

II. RELATED WORK

There are several works that show how to combine MDD
and SPLs [8], [2]. Voelter and Groher [2] describe an
approach where development is combined with model-driven
development. They define aspects at the modelling level, the
transformation level, and the implementation level. They apply
their approach to the Smart Home domain. Anastasopoulos
et al. [8] apply a combination of both MDD and SPL to
the Ambient Assisted Living (AAL) domain. They express
variations in smart home functionality as features, and syn-
thesize AAL specifications by composing features. Compared
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to our work, the above approaches do not involve end-user
expectations in the MDD-SPL, which is essential for the
successful development of Smart Homes [9]. Other works
such as [10] presents a tool to support end-users in working
with large-scale product line variability models in product
derivation. This tool is based on derivation models and it
provides end-users with a textual visualization which allows
end-users to set values on decisions by answering questions.
However, the use of a visual language seems to be the best
option since visual languages have demonstrated to be more
intuitive and easier to be used by users than other options like
textual languages [11], [12].

Many research initiatives seek to allow end-users to pro-
gram or customize their systems using end-user techniques
as Pervasive Interactive Programming (PiP) [13], or CAP-
pella [14]. Furthermore, other research initiatives allow end-
users to interact with their system using metaphors as jigsaw
puzzle pieces [15], or magnetic refrigerator poetry [16]. Some
of these well-accepted end-user techniques are:

• Natural Programming [17]: it is an application of the
standard user-centered design process to the specific do-
main of programming languages and environments. The
premise of this approach is that programmers will have
an easier job if their programming tasks are made more
natural. For example, HANDS [18] is a programming
system for children. HANDS is an event-based system
featuring a concrete model for computation based on
concepts that are familiar with non-programmers. The
computation is represented as an agent named Handy,
sitting at a table handling a set of cards.

• Programming By Example [19]: also called Program-
ming by demonstration (PBD) because the user shows
examples of the desired behaviour to the computer. For
example, Pervasive Interactive Programming (PiP) [13]
provides a platform that uses the physical user space as
the programming environment providing the user with a
natural and more familiar mechanism to “program” the
functionality they require to suit their particular needs.

• Visual Programming [20]: it is the use of visual
expressions in the programming process. For example,
Alice [21] is an innovative 3D programming environment
that allows students to learn fundamental programming
concepts in the context of creating animated movies and
simple video games.

• Jigsaw metaphor [15]: it is based on the familiarity
evoked by the notion and the intuitive suggestion of
assembly by connecting pieces together. Essentially, it
allows end-users to make variability decisions through a
series of left-to-right couplings of pieces. For example,
ACCORD has developed the Tangible Toolbox [22],
based on a shared Data Space, that enables people to
easily administer and re-configure services based on
embedded devices around the home. This toolkit also
enables devices to integrate with each other through
several different editors. One of these editors uses the

jigsaw metaphor to create new services.
Although these techniques encourage end-users to partici-

pate in the creation of software systems, they do not address
a process where end-users can specify the requirements of the
system. Our approach applies end-user techniques within an
MDD-SPL in order to allow end-users to actively participate
in the configuration of the desired software (in this particular
case, a smart home system).

III. MDD-SPL FOR SMART HOMES

In this section, we illustrate the SPL for smart home sys-
tems. Fig. 2 illustrates the models used in the SPL. The input
assets consist of a collection of models describing all smart
homes that can be produced. These models are created by
using the PervML language. A smart home is uniquely defined
by the selections made on the feature model, which plays
the role of decision model. The selected features determine
which elements of the PervML models are used for the initial
configuration of the smart home by means of a Realization
Model. Finally, the output system is obtained through a model
transformation.

PervML
Model
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Fig. 2. MDD-SPL for Smart Homes

The following subsections provide details about the models
involved in the SPL.

A. The PervML model

Pervasive Modeling Language (PevML) [23] is a DSL
for describing pervasive systems using high-level abstraction
concepts. This language focuses on specifying heterogeneous
services in specific physical environments such as the services
of a smart home. These services can be combined to offer
more complex functionality by means of interactions. These
services can also start the interaction as a reaction to changes
in the environment. The main concepts of PervML are: (1)
a Service coordinates the interaction between suppliers to
accomplish specific tasks (these suppliers can be hardware o
software systems); (2) a Binding provider (BP) is a supplier
adapter that embeds the issues of dealing with heterogeneous
technologies; (3) an Interaction is a description of a set of
ordered invocations between Services; and (4) a Trigger is
an ECA rule (Event Condition Action) that describes how
a Service reacts to changes in its environment. This DSL
has been applied to develop solutions in the smart home
domain [24].

This model (see the bottom of Figure 3) describes the
building blocks for the assembly of a pervasive system [23].
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The grey blocks implement the functionality of the selected
features. The white blocks enable an alternative functionality
of the system. The (l), (o), (m) and (p) blocks provide adapters
for the new resources available.

B. The feature model

Feature models are widely used to describe the set of prod-
ucts in a software product line in terms of features. In these
models, features are hierarchically linked in a tree-like struc-
ture and are optionally connected by cross-tree constraints.
There are many proposals for the type of the relationships
and the graphical representation of feature models [25]. We
have chosen the Feature Model [26] as the modeling language
because it is feature reasoning oriented and has a good tool
support [27].

This model (see the top of Fig. 3) determines the initial and
the potential features of the smart home. The grey features are
selected to specify a member of the smart home family. The
white features represent potential variants. Initially, the smart
home provides Automated illumination, Presence simulation
and a Security system. This security system relies on In home
detection (inside the home) and a siren alarm. The system
can potentially be upgraded with volumetric presence detection
and more alarms to enhance home security.

The feature model also determines how the features relate
to each other by cross-tree constraints. As the feature model
of Fig. 3 shows, these relationships are: Optional represented
with a small white circle on top of the feature, Mandatory
represented with a small black circle on top of the feature,
Multiple choice represented with a black triangle, Single
choice represented with a white triangle, Requires which it
is represented with a dashed arrow and Excludes represented
with a dashed double-headed arrow.

C. Realization model

The realization model is an extension that we have incor-
porated to Atlas Model Weaving (AMW) [28] in order to
relate the SPL features to the PervML elements. AMW is
a model for establishing relationships between models. Our
extension augments the AMW relationship with the default
and alternative tags. This augmented relationship is applied
between features and PervML elements (BPs and Services).
In the context of a BP, the default relationship means that
the BP is selected for the initial configuration of the system.
The alternative relationship means that the BP is considered
a quiescent element that should be incorporated to the SPL
product, but does not participate in the initial configuration.
Quiescent BPs provide an alternative BP to replace the default
BP in case of fault. The more quiescent BPs identified, the
more flexible the adaptation will be.

This model (see the middle of Figure 3) establishes the
relationships between the features and the PervML elements.
For instance, the visual alarm feature is related to a BP (p) for
visual alarms, but, alternatively, it can be replaced with a BP
(m) that emulates the visual alarm by using the blink lighting.
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Fig. 3. Models for the SPL

8



D. Model To Text (M2T)

Once the pervasive system is modelled, the transformation
engine can be applied to generate the code. For this task, we
have used the MOFScript language which provides capabilities
navigating models, creating files, etc. MOFScript takes as
input one model and applies over one selected metaelement
a contextual rule. The applied rule can access the element
properties, navigate over the related model elements and
invoke other rules.

At 1 there is more information about the transformation rules
and the tools to support the code generation.

IV. INTRODUCING END-USERS IN THE MDD-SPL

In the presented MDD-SPL, variability engineers set the
smart home configuration by means of the feature model.
Variability engineers make assumptions about the desirable
functionality of end-users. Conversely, end-users are the ones
who best know their activities and their functionality expecta-
tions. End-users and professional developers actually possess
distinct types of knowledge. End-users are the “owners” of the
problem and developers are the “owners” of the technology
to solve the problem. End-users do not understand software
developers’ jargon and developers often do not understand
end-users’ jargon [29]. Although, end-users are not profes-
sional developers they have deep knowledge of their specific
environment and they should be able to develop their own
smart home system according to their needs. Hence, we
involve end-users in the Smart Home configuration in order to
minimize the mismatch between user expectations and system
behaviour.

In order to tackle this, end-users must be supplied with
visual development tools that allow them to describe their
needs [30]. In this work, we have developed a tool that allows
end-users to configure their smart home system using the
MDD-SPL for smart homes described in the previous section.
Fig. 4 shows an overview of the MDD-SPL with end-users.
The end-user tool allows end-users to indicate which services
and devices must be available in each location and configuring
the feature model accordingly. Thus, when end-users have
finished describing their needs, we obtain the decision model
that determines the output system to be obtained by applying
the model transformation.

To design the end-user front-end, we have based on well-
accepted techniques and metaphors in the field of end-user
development such as: Natural Programming, Programming By
Example, Visual Programming and metaphors (see Section II).
We have also applied interaction patterns and design principles
to end-user interface design according to studies [5], [6],
[7] which show how these patterns and principles help end-
users (who may not have any background about computer
applications). According to these studies, the main design
interface decisions that we have applied are:

• Using a wizard: in our process the end-user needs to
achieve a single goal (the description of their needed

1www.pros.upv.es/labs/projects/pervml

PervML
Model

Realization
Model

Pervasive 
System

Feature
Model

M2T

End-user 
front-end

Techniques and 
metaphors in the field of 
end-user development

A. Catalog of available
configurations

B. Saving the 
configuration

Fig. 4. Approach overview

system) but several decisions need to be made before
the goal can be fully achieved (several steps), which may
not be known to the user. Thus, the use of a wizard is
recommended in [5] since the user wants to reach the
overall goal but may not be familiar with or interested in
the steps that need to be performed.

• Offering navigation buttons: we use navigation buttons
to suggest end-users that they are navigating a path with
steps. This is recommended in [5] because the learning
and memorization of the task of each step are improved.
In addition, when users are forced to follow the order of
tasks, they are less likely to miss important things and
therefore will make fewer errors.

• Displaying the elements using a grid layout: this is
recommended in [5] to any circumstance where several
information objects are presented and arranged spatially
within a limited area. This improves the presentation and
it minimizes the time to scan, read and view objects on
screen.

• Offering options: an interesting conclusion is reached
in [6]: what people see is what they select from!. The
study states that people tend to select from the entire
list of options what they are first presented with. Rarely
is an effort made to find additional options through
scrolling. If eleven items are presented, the choice is from
these eleven. When options must be compared among
themselves, controls presenting all the options together
will yield the best results.

• Selection rather than introduce text: the studies pre-
sented in [7] show the advantages and disadvantages
of using either entry fields or selection fields for data
collection. Since information became less familiar or
subject to spelling or typing errors they recommend
choosing a selection technique.

Thus, we have developed a user interface based on the
interface decisions presented above which allows end-users to
specify the services and devices that they need. Fig. 5 shows
a snapshot of this interface as end-users configure devices and
services in their home. Each interface is divided into four
areas: (1) Title and navigation buttons, (2) Catalog of available
configurations, (3) End-user environment and (4) Information
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Fig. 5. Snapshot of the end-user front-end

where our tool can advise to end-users or assist them. In
particular, we show at the left side of the figure how the end-
user has selected some devices for different locations of their
smart home (i.e. a siren alarm and a Volumetric detector for the
corridor). At the right of the figure we show how the end-user
has selected some services for different locations (i.e. Alarm
service for the corridor).

As Fig. 5 shows, we have applied the interaction patterns
described above. The grid layout pattern is applied to divide
the interface into the four areas presented above. The wizard
pattern is used to guide end-users along the process of creating
a pervasive description by progressively asking them for the
required information (services, devices, etc.). In addition,
navigation buttons are also used in the area (1) to allow
end-users to navigate between the different windows that ask
for the required information. The offer options and selection
rather than introduce text patterns are applied in the area (2)
offering the devices/services available as options and allowing
end-users to select these devices/services into the end-user
environment represented in the area (3).

The next two subsections describe how the tool uses the
Feature Model. Subsection A. describes how the end-user
front-end uses the feature model to show the catalog of
available configurations (see Fig. 4) and Subsection B. de-
scribes how the tool saves the configuration in the feature
model activating/inactivating features according to the end-
user’s configurations.

A. Catalog of available configurations

As we described in subsection III-B, we use the feature
model to describe the system configuration and its variants
in terms of features. In the smart home domain, the system
configuration that end-users have to select is made up of
the services and devices required for each location in the
environment.

At the top of Fig. 3 is shown the feature model which
determines the initial and potential features of the smart home.
These features represent services and families of devices.
The families of devices are the leaves of the feature model
and the services are the nodes which are not leaves. We
specify families of devices in the feature model rather than
devices because there is a large diversity of devices which are
continuously changing. For each family of devices we offer
a catalog of compatible devices. For example, the Volumetric
Detection device family has a catalog of compatible devices
which contains a Volumetric 360 degree detector as well as
a 160 degree one. Thus, when a new device is supported all
we have to do is update the catalog of that family of devices
rather than the feature model.

Our tool shows end-users the options from the available
configurations according to the feature model. Fig. 6 shows an
example of service and device options according to the feature
model. Note that these device options match the node leaves
of the feature model presented in the figure (Siren Alarm,
Visual Alarm, Siren Alarm, Infrared Detector and Volumetric
Detector) and the service options match the nodes which are
not leaves of the feature model (Security, Alarm and In Home
Detection).

The available options are displayed in a tree. Studies
described in [5] recommend using a tree when the number
of groups is high. They also recommend that each option
be explained so that users know of the consequences. Thus,
we show in our tool a representative image for each service
or device and a brief description. Fig. 5 shows the list of
available devices and services that is shown to end-users from
the feature model presented at the top of Fig. 3.

B. Saving the configuration in the feature model

Once the catalog of configurations has been shown, end-
users can select services or devices for each location in
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the end-user’s tool. When this happens, the end-user tool
sets activated/inactivated features to the feature model. Thus,
when end-users finish setting their system the feature model
will have activated the features according to the end-user
configuration.

To set a configuration end-users have to select the desired
services and devices from the catalog of configurations and put
them into the proper location. Then, a representative image
of the service/device is displayed in the environment. The
service/device can be displayed in two different colours: (1)
red with a dotted frame if the service configuration has not
fulfilled their constraints (services/devices that the service
need) or (2) green if the service configuration has fulfilled
their constraints. Fig.5 shows the specification of devices (see
at the left side of the figure) and services (see at the right side
of the figure).

In order to define these end-user interfaces we have based on
the following end-user principles and interaction patterns [7],
[5]:

• Using autocompletion: The study showed in [7] states
that aided entry, also known as autocompletion, is pre-
ferred over unaided entry methods, and it is also the
fastest method. Autocompletion reduces errors in com-
parison to unaided entry. In addition, it also minimizes
the user’s effort by reducing input time and keystrokes.

• Using a warning: this is recommended in situations
where the user performs an action that may unintention-
ally lead to a problem [5] and the system cannot or
should not automatically resolve this situation so the user
needs to be consulted. The warning might also include a
more detailed description of the situation to help the user
make the appropriate decision by means of two options
at least.

• Offering all options: this is recommended when the
number of options is not large and they can be displayed
without scrolling [7]. Rarely was an effort made to find
additional options through scrolling.

• Offering some options: this is recommended when the
number of options is high and it needs a scroll to be
displayed. Thus, it is recommended to show some options

of the available list [7]. This improves the speed of
performance and satisfaction

According to the interaction patterns presented above, we
have defined a set of mappings between the feature model
and our end-user front-end and how the interaction patterns
are used depending on the information that is available at the
feature model. Next we present the interaction patterns used
for each relationship of the feature model:

• If there is a Mandatory feature, we use Autocomple-
tion. When a feature A is related to another feature B
with a mandatory relationship, if A is selected B has
to be selected too. In the end-user front-end, features
are represented by services/devices. Thus, when the end-
user selects a service that represents a feature A with
a mandatory relationship to a feature B, the service
representing feature B is automatically added to the same
location of service A. For instance (see Fig. 7) when the
end-user selects the Presence Simulation service for the
living room (1) the TV-Multimedia device is automatically
added to the same location (2) because there is mandatory
relationship between the Presence Simulation feature and
the TV-Multimedia feature. In addition, the feature model
is updated by activating both features (3).

1

FeatureModel

…

2

3

Presence Simulation

TV -
Multimedia

Fig. 7. Applying patterns in a mandatory relationship

• If there is a Requires or Excludes feature, we use
Warning. When a feature A has a requires relationship
with B, if A is selected feature B has to be selected
too. Similarly, if feature A has an excludes relationship
with B, when feature A is selected feature B does not
have to be selected. In the end-user front-end, when the
end-user selects a service that represents a feature with
a requires or excludes relationship, the end-user front-
end warns end-users by showing a warning. Fig. 8 shows
when the end-user selects the Presence Simulation service
for the living room (1). As the feature that represents this
service has a requires relationship with the Illumination
feature, the end-user front-end shows a Warning (2).
Then the end-user adds this required service to the same
location (3) and the feature model is updated activating
the features Illumination and Presence Simulation (4).

• If there is an Optional or single choice feature, we
use Show all options and Autocompletion. When a
feature A has an optional o single choice relationship
with other features, one of them has to be selected. In the
end-user front-end, when the end-user selects a service
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that represents a feature with an optional or single choice
relationship, the end-user front-end shows a dialog with
all the services/devices that represent the related features.
Thus, the end-user can select one of them and the end-
user front-end adds the related service/device to the
same location as the selected service/device. Finally, the
feature model is updated. Fig 9 shows, as a representative
example, how the end-user selects the Alarm service (1).
This service represents a feature that has a Single Choice
relationship. Then, a dialog is shown with all the devices
that represent the related features (2). Then the end-user
selects the Siren device and the feature model is updated
activating the features Alarm and Siren (3).

SirenSilent
Alarm

Visual
Alarm

Alarm

1

FeatureModel

…

2

3

Fig. 9. Applying patterns in an optional or single choice relationship

• If there is a Multiple choice, we use Show some options
and autocompletion. When a feature A has a multiple
relationship with other features, one or more of them
has to be selected. In the end-user front-end, when the
end-user selects that represents a feature with a multiple
relationship, the end-user front-end shows a dialog with
services/devices that represents the related features. Then,
the end-user can select one of more of them and the
end-user front-end adds them to same location where
the previously selected service is located. In addition, the
feature model is updated according to this selection. Fig
10 shows, as representative example, how the end-user
selects the Security service (1). The feature that represents
this service has a Multiple Choice relationship. Then, a
dialog is shown with the devices that represent the related
features (2). Afterwards, the end-user selects the Alarm

Service and the In Home Detection services. Finally, the
Feature Model is updated activating the features Security,
Alarm, and In Home Detection (3).

1

FeatureModel

…

2

3

(2) Security

In Home DetectionAlarm

…

…

Fig. 10. Applying patterns in a multiple choice relationship

V. SUPPORTING TECHNOLOGIES FOR THE END-USER
ORIENTED MDD-SPL

As we described in the previous section, our end-user tool
uses the Feature Model to offer the catalog of available
services/devices. This model is also used to save the end-
user’s configurations by activating/inactivating features. The
feature model is specified using the MOSkitt Feature Modeller
editor [31], which uses the technology provided by the Eclipse
Modelling Platform [32].

Thus, in order to connect the end-user front-end with the
feature model we have used the EMF Model Query frame-
work [33]. EMF Query provides an API to construct and
execute query statements. These query statements can be used
for discovering and modifying model elements. Queries are
first constructed with their query clauses and then they are
ready to be executed.

There are two query statements available: SELECT and
UPDATE. The SELECT statement provides querying without
modification while the UPDATE statement provides query-
ing with modification. The SELECT statement requires two
clauses, a "FROM" and a "WHERE." The FROM clause
describes the source of model elements where SELECT can
iterate in order to derive results. The WHERE clause describes
the criteria for a model element that matches. The condition
provided to the WHERE clause falls under a specialized con-
dition called an EObjectCondition which is specially designed
to evaluate model elements.

We have implemented the interaction patterns described in
the Subsection IV-B by using EMF Model Query. For instance,
when the end-user selects the Alarm service, the tool checks
the feature model for the selected feature. It also checks the
relations with other features. In this case, the Alarm service
is related with a single choice relation with three features
(Silent Alarm, Siren and Visual Alarm). Thus, as the feature
model relation is Single choice, the interaction patterns that
are applied are (see previous section): (1) Show all options
and (2) Autocompletion. Then, we need both to obtain the
features related with the selected one in order to show all of
them, and to update the selected feature and also the selected
related feature.
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Next, we show the query that we have implemented to
obtain the child features of the single choice relationship by
using EMF Model Query:

SELECT s t a t e m e n t =
new SELECT(

new FROM( c u r r e n t F e a t u r e . g e t C o n t e n t s ( ) ) ,
new WHERE( new E O b j e c t R e f e r e n c e V a l u e C o n d i t i o n (
new E O b j e c t T y p e R e l a t i o n C o n d i t i o n (

Fea tu reMode lPackagePackage . eINSTANCE
. g e t F e a t u r e R e l a t i o n s h i p ( ) ) ,

Fea tu reMode lPackagePackage . eINSTANCE .
g e t F e a t u r e R e l a t i o n s h i p _ F r o m ( ) ,

new E O b j e c t I n s t a n c e C o n d i t i o n ( S i n g l e C h o i c e ) )
)

) ;

Given a feature (currentFeature) the select statement
gets all the features related with the currentFeature
with a single choice relationship (EObjectInstanceCondi-
tion(SingleChoice)). Then, these features are shown as service
options on the dialog of Fig. 9.

Once the end-user chooses one of the presented options, the
state of the selected feature and its related one is updated in
the feature model from inactivated to activated. By contrast, if
the end-user drops this kind of device into the trash, its state
is updated to inactive.

VI. CONCLUSIONS AND FUTURE WORK

Taking the advantage of current MDD techniques and an
integrated SPL architecture, we have provided an interactive
design tool that allows end-users (rather than engineers) to
create tailored solutions that directly reflect their needs and
expectations. In order to tackle this, we have presented an
MDD-SPL approach based on Model Driven Development
to develop smart home systems which is complemented with
our end-user tool. We have also presented how the end-user
tool gets and sets information of the feature model according
to the end-user configurations. Furthermore, we have applied
interaction patterns to the end-user tool which improve the user
interface usability. Finally, we have presented the technology
implementation for handling the feature model.

As future work, we plan to validate the end-user config-
urations in the end-user tool and assist end-users during the
configuration process. To do this, we plan to use the feature
model Analyser Framework [27]. Furthermore, we plan to
involve end-users in the domain engineering phase. Our goal is
the participation of end-users in the definition of new service
configurations.
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Abstract—Software product line engineering aims at devel-
oping a set of systems with well-defined commonalities and
variabilities by managed reuse. This requires high up-front
investment for creating reusable artifacts, which should be
balanced by cost reductions for building individual products.
We present a model-based framework for automated product
derivation to facilitate the automatic generation of products.
In this framework, a model-based design layer bridges the
gap between feature models and implementation artifacts.
The design layer captures product line variability by a core
design and ∆-designs specifying modifications to the core for
representing product features. This structure is mapped to
the implementation layer guiding the development of code
artifacts capable of automatic product derivation. We evaluate
the framework for a CoBox-based product line implementation
using extended UML class diagrams for the design and frame
technology for the implementation layer.

Keywords-Software Product Lines; Automated Product
Derivation; Model-based Development; Frame Technology

I. INTRODUCTION

A software product line is a set of software systems with
well-defined commonalities and variabilities [1]. Software
product line engineering aims at developing these systems
by managed reuse in order to reduce time to market and to
increase product quality. The creation of reusable artifacts
requires a high up-front investment which should be bal-
anced by cost reductions for building individual products.
Currently, derivation of single products requires manual
intervention during application engineering, especially for
product implementation, which can be tedious and error-
prone [2]. Hence, it cannot be guaranteed that the overall
development costs are reduced by product line engineering
when compared to other reuse approaches.

Automated product derivation (or software mass cus-
tomization [3]) is an approach to create single products by
removing the need for manual intervention during appli-
cation engineering. Besides, automated product derivation
allows centralized product line maintenance and product
line evolution, because modifications of the artifacts can
automatically be propagated to the products. In order to be
able to create products automatically, product line variability

∗This work has been partially supported by the Rheinland-Pfalz Research
Center for Mathematical and Computational Modelling (CM)2 and by the
European project HATS, funded in the Seventh Framework Program.

is restricted to configurative variability [4]. The different
product configurations are captured in a feature model where
features are designated product characteristics. Automated
product derivation means that a product implementation for
a particular feature configuration is automatically generated
from the reusable product line artifacts. Software product
line engineering processes, such as PuLSE [5] or KobrA [6],
focus on managing product line variability in all software
development phases, but leave product derivation as a man-
ual activity. In [7], only organizational and technical re-
quirements for automated product derivation are considered.
Some approaches [8], [9] aim at automatically deriving
design documents. However, no approach provides guidance
for the design and implementation of product line artifacts
capable of automated product derivation.

To overcome this problem, we propose a model-based
framework for automated product derivation. A design layer
bridges the gap between feature models and product imple-
mentations. During domain engineering, it guides the de-
velopment of implementation artifacts capable of automated
product derivation. On the design layer, a product line is
described by a core design and a set of ∆-designs. The
core design represents a product with a basic set of features.
The ∆-designs define modifications to the core design that
are necessary to incorporate specific product characteristics.
∆-designs can cover combinations of features. This makes
the presented approach very flexible because modifications
caused by several features can be designed differently from
modifications caused by one of these features. In order to
obtain a design for a product with a particular feature con-
figuration during application engineering, the modifications
specified by the respective ∆-designs are applied to the
core. A design can be validated and verified before code
artifacts are developed. Furthermore, designs can be refined
based on the principles of model-driven development [10].
Refinements are orthogonal to product line variability be-
cause they can be performed in both core and ∆-designs
equally. Therefore, the proposed approach serves as a basis
for model-driven development of software product lines with
automated product derivation.

In order to develop reusable code artifacts capable of
automated product derivation, the structure of the design
layer is mapped to the implementation layer. A product
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line implementation consists of a core implementation of
the product described by the core design and a set of
∆-implementations corresponding to the ∆-designs which
specify the modifications to the core implementation to re-
alize the designated product characteristics. The core design
and core implementation refer to a complete product and can
be developed by single application engineering techniques.
The implementation of a product for a particular feature
configuration is obtained automatically during application
engineering by applying the modifications of the respective
∆-implementations to the core implementation. The design
layer is independent of a specific implementation technique.
The only requirement for a concrete implementation tech-
nique is that the modifications of the core can be represented
appropriately and applied automatically. The separation
of design and implementation artifacts into core and ∆-
designs/implementations allows a stepwise development of
the software product line. The approach can easily deal with
evolving software product lines by capturing new features
in additional ∆-designs/implementations.

We have evaluated the proposed model-based framework
at the development of a shopping system product line. In
order to consider variable deployments, the implementation
layer is based on the CoBox component model [11]. We de-
veloped a notation for CoBox-based core and ∆-designs. For
implementing the product line variability, we applied frame
technology [12]. The core implementation is captured by
core frames and the ∆-implementations by sets of ∆-frames
specifying the modifications to the core implementation.

The main advantages of the model-based framework for
automated product derivation are:
• The separation of core and ∆-designs/implementations

allows an evolutionary development of product lines.
• Product variability can be handled very flexibly because

∆-designs/implementations allow representing modifi-
cations caused by combinations of features.

• The design layer facilitates model-based validation and
verification before implementation.

• The framework can be used with different implemen-
tation techniques to exploit their strengths in particular
application domains.

• The framework serves a basis for model-driven de-
velopment of software product lines with automated
product derivation because refinements are orthogonal
to product line variability.

This paper is organized as follows: In Section II, we
review related work. In Section III, we present our model-
based framework for automated product derivation that is
realized in Section IV and evaluated in Section V. Section
VI concludes the paper with an outlook to future work.

II. RELATED WORK

Model-driven development [10] is increasingly used in
software product line engineering. Many approaches focus

on modeling product line variability. In KobrA [6], UML
diagrams are annotated with variant stereotypes to describe
variation points in models. In [13], a UML profile for
representing product line variability is introduced. However,
resolving the modeled variabilities requires additional doc-
uments and manual intervention.

In [14], [15], the general idea to use model-driven de-
velopment for product derivation is advocated. Models in
the problem domain, which correspond to feature models
of product lines, are stepwise transformed to models in a
solution domain, i.e. models of products or product im-
plementations. However, these approaches rely on manual
intervention for configuring and performing model trans-
formations. [4] proposes the integration of model-driven
development and aspect-oriented concepts. The introduced
notion of positive variability refers to a core model to
which selectively certain parts are added. The difference of
this notion to ∆-designs/implementations is that the latter
can also contain modifications and removals of design and
implementation artifacts. Model transformations in [4] are
realized by aspect-oriented composition of artifacts which
also extends to the implementation by means of aspect-
oriented programming concepts. However, the manual im-
plementation of certain product parts is explicitly included
in the approach which is not considered in our framework
for automated product derivation.

Most approaches for automated product derivation con-
sider only the design layer or the implementation layer. For
automated derivation of product designs, [8] proposes an
approach to automatically generate UML class and activity
diagrams via annotations from variability models of the
complete product line. In [9], product architectures are
automatically derived from a common domain architecture
model by means of model transformations. [16] considers an
automated derivation of UML class diagrams by resolving
explicitly specified feature-class dependencies.

There are different technologies for automated code gen-
eration applied in the context of software product lines,
such as conditional compilation, frame technology [12],
[17], generative programming [18] or code annotations [19].
Also, compositional approaches, such as aspect-oriented
programming [20], feature-oriented programming [21] or
mixins [22], are used to automatically generate product
implementations from reusable artifacts. However, in order
to generate products, it is assumed that the necessary code
artifacts already exist. A systematic process how to design
these artifacts is not provided.

The model-based framework for automated product
derivation presented in [23] is structurally similar to the
framework proposed in this paper. It contains a modeling
layer describing the relation between product features and
implementation artifacts. Because the implementation is
based on aspect-oriented programming, the models define
how classes and aspects are composed for feature con-
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figurations. Product derivation is fully automated, but in
contrast to the work presented in this paper, the approach is
conceptually restricted to aspect-oriented techniques. This
limits the means for dealing with product variability to
the expressiveness of aspect-oriented concepts that can, for
instance, not deal appropriately with features removing code.

III. MODEL-BASED AUTOMATED PRODUCT DERIVATION

In order to provide a standardized technique how to
design and implement product line artifacts suitable for
automated product derivation, we propose a model-based
framework. This approach is based on a model-based
design layer that links product line variability declared
in a feature model with the underlying implementation layer.

Overview. The proposed approach is structured into
three layers (see Figure 1). During domain engineering,
the variability of the software product line is captured
by a feature model on the feature layer. Based on the
feature model, reusable design and code artifacts are
developed representing the product line variability on the
underlying design and implementation layers. The design
and the implementation artifacts are separated into a core
design/implementation and ∆-designs/implementations,
respectively, that can be configured automatically for a
specific feature configuration during application engineering.
The design concepts can be chosen such that relevant
system aspects in each design stage can be adequately
expressed. The design layer is independent of a concrete
implementation technique, but provides the structure of the
implementation artifacts. Designs can be refined based on
the principles of model-driven development [10], until they
are detailed enough for implementation. A product line
design can be validated and verified before the development
of code artifacts such that errors can be corrected less costly.

Feature Layer. The products of a software product line
are described by a feature model. Features can represent
functional behavior of products, but can also refer to non-
functional aspects, such as deployment issues. A feature
model declares the configurative variability of the product
line, i.e., the commonalities of all products are captured
by mandatory features, possible variabilities are modeled
by optional features, and constraints between features are
defined. The set of possible products of a product line is
described by the set of valid feature configurations.

Design Layer. The design of a product line is split into
a core design and a set of ∆-designs that are developed
during domain engineering. The core design corresponds to
a product of the product line with a basic set of features.
This core can be developed according to well-established
single application design principles. The variability of the
product line is handled by ∆-designs. The ∆-designs declare

Figure 1. Model-based Automated Product Derivation

modifications to the core design in order to represent specific
product characteristics. The step from the feature model to
the design artifacts is a creative process because product line
variability can be represented in different ways in a design.

In order to find a core design for a product line, a suitable
basic feature configuration has to be identified. Mandatory
features are always contained in the basic configuration,
as they have to be present in all valid configurations. For
optional features, the guideline adopted is that ∆-designs
should add rather than remove functionality. If an optional
feature only adds entities to the design, the feature should not
be a part of the basic configuration. However, if an optional
feature is included in many products, adding it to the core
configuration can be beneficial because it can be tested
thoroughly without considering product line variability. If
selecting an optional feature causes that functionality is
excluded from products, this feature should be contained
in the core configuration to keep the core as small as
possible. Alternative features represent options where at
least one or exactly one feature has to be included in a
valid configuration. Since the core configuration has to be
valid, a choice between these options is necessary. If a
feature selection requires to pick at least one feature, for
the core exactly one feature should be chosen. The decision
which option to include in the core can be based on an
estimation which feature is most likely contained in many
configurations.

∆-designs define modifications of the core design to
incorporate specific product characteristics. The modifica-
tions caused by ∆-designs comprise additions of design
entities, removals of design entities and modifications of the
existing design entities. The ∆-designs contain application
conditions determining under which feature configurations
the specified modifications have to be carried out. These
application conditions are Boolean constraints over the fea-
tures contained in the feature model and build the connection
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between features in the feature model and the design level.
A ∆-design does not necessarily refer to exactly one feature,
but potentially to a combination of features. For example,
if the feature model contains two features A and B, the
constraint (A ∧ ¬B) attached to a ∆-design denotes that the
modifications are only carried out for a feature configuration
if feature A is selected and feature B is not selected.

The general application constraints allow very flexible
∆-designs as combinations of features can be handled
individually. The number of ∆-designs that are created for
a feature model depends on the desired granularity of the
application conditions. The application conditions of all
∆-designs can be checked if all features are addressed in at
least one design. In order to obtain a design for a particular
product during application engineering, all ∆-designs
whose constraints are valid under the respective feature
configuration are applied to the core. This can involve
different ∆-designs that are applicable for the same feature
in isolation as well as in combinations with other features.
To avoid conflicts between modifications targeting the same
design entities, first all additions, then all modifications and
finally all removals are performed.

Implementation Layer. In order facilitate automated
product derivation, the structure of the design is mapped
to the structure of the implementation artifacts that are
developed during domain engineering. The implementation
artifacts are separated into a core implementation and ∆-
implementations. The core design is implemented by the
core implementation. As the core design is a complete prod-
uct, single application engineering methods can be applied
for implementing the core. This implementation can also be
validated and verified thoroughly by well-established prin-
ciples. ∆-designs are implemented by ∆-implementations
which have the same structure as the ∆-designs. The addi-
tions, modifications and removals of code specified in ∆-
implementations capture the corresponding additions, mod-
ifications, removals declared in the ∆-designs. The applica-
tion condition attached to a ∆-implementation determines
under which feature configurations the code modifications
are to be carried out. The conditions directly refer to the
application condition of the implemented ∆-designs. The
process to obtain a product implementation for a specific
feature configuration during application engineering is the
same as for the design. The modifications specified by all
∆-implementations with a valid application conditions under
a specific feature configuration are applied to the core.
Again, first all additions, then all modifications and finally
all removals of code are carried out. This analogous priority
rule ensures that a product implementation generated for a
specific feature configuration is an implementation of the
corresponding product design.

The close correspondence between design layer and im-
plementation layer provides a general approach to create

reusable artifacts during domain engineering that suitable for
automated product derivation during application engineer-
ing. The design layer provides the structure for the corre-
sponding code artifacts. Because core design and core imple-
mentation are complete products, they can be developed by
well-established principles from single application engineer-
ing. The independence of ∆-designs and ∆-implementations
from core designs and core implementations, respectively,
yields the potential of incremental, evolutionary product
line development. Refinement of designs along the lines of
model-driven development can easily be incorporated into
the proposed framework, because refinement is orthogonal to
the concepts for capturing product line variability. Since the
design layer is independent of the implementation layer, the
proposed model-based framework can be used with different
concrete implementation techniques, as long as the concrete
implementation technique allows expressing the desired
modifications and supports automatic code generation.

IV. A FRAMEWORK FOR MODEL-BASED AUTOMATED
PRODUCT DERIVATION

In order to evaluate the proposed approach, we realized
the model-based framework for automated product deriva-
tion for developing an information system product line.
As application domain for the product line, we use the
Common Component Modeling Example (CoCoME) [24]
that describes a software system for cash desks dealing with
payment transactions in supermarkets. Information systems
involving clients-server communications are generally dis-
tributed and highly concurrent. To deal with this inherent
complexity, we implement our system in the object-oriented,
data-centric CoBox component and concurrency model [11].
A CoBox is a runtime component consisting of a (non-
empty) set of runtime objects, i.e., other CoBoxes or in-
stances of ordinary classes. Each CoBox at runtime executes
a set of tasks, of which at most one can be active at any
time. A task is active as long as it has not finished or
willingly suspends its execution. Thus, inside a CoBox all
code is executed sequentially. A CoBox communicates with
other CoBoxes outside of its own CoBox via asynchronous
messages. CoBoxes allow flexible deployment because the
location where a CoBox is instantiated does not influence its
functional behavior. This allows considering also variability
of deployment besides variability of functionality in the
product line to be developed

A. Feature Layer

For representing product line variability on the feature
layer, we use feature diagrams [25]. In a feature diagram,
the set of possible product configurations is determined by
a hierarchical feature structure. A feature can either be
mandatory, if it is connected to its parent feature with a
filled circle, or optional, if it is connected with an empty
circle. Additionally, a set of features can form an alternative
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Figure 2. Feature Model for the CoCoME Software Product Line

selection in which at least one (filled triangle) or exactly
one (empty triangle) feature has to be included in a valid
configuration. Furthermore, constraints between features can
be represented by explicit links.

To use CoCoME [24] as an example for a product line,
we extended the application scenario with functional and
deployment variabilities keeping the original system as one
possible configuration. The feature model for the CoCoME
software product line is shown in Figure 2. A CoCoME
system has different payment options. First, it is possible
to pay by cash or by one of the non-cash payment options,
i.e., credit card, prepaid card or electronic cash. At least one
payment option has to be chosen for a valid configuration.
Product information can be input using a keyboard or a
scanner where at least one option has to be selected. Further-
more, the system has optional support to weigh goods, either
at the cash desks themselves or at separate facilities. With
respect to deployment, there is the alternative option to have
a single-desk system with only one cashier or a multi-desk
system with a set of cashiers. The multi-desk system can
optionally comprise an express mode which requires cash
payment or a self-service mode requiring non-cash payment.

B. Design Layer

Since we aim at a CoBox-based design and implemen-
tation of the product line, the design layer has to capture
all relevant aspects for specifying CoBoxes. This includes
the CoBoxes that classes belong to as well as deployment
information for the CoBoxes. We introduce an extension to
UML class diagrams [26] to express the additional informa-
tion. Usually, UML diagrams are extended by stereotype
annotations. This, however, would drastically impair the
readability of the diagrams. With the extended notation, a
CoBox design consists of a set of CoBoxes and ordinary
classes. Graphically, CoBoxes are represented by a rounded
box named the same as the owning CoBox class. Ordinary
classes are denoted as usual UML classes. Both, CoBox
classes and ordinary classes have member variables and
methods. CoBoxes can contain other CoBoxes and other
ordinary classes. UML relations describe relations between
CoBoxes and classes. In addition, deployment information

Figure 3. Core Design for the CoCoME Software Product Line

is provided by determining on which deployment targets
CoBoxes should be instantiated. This is expressed by a
doubled-headed arrow from a deployment target to a CoBox.

The design layer handles the variability of the feature
model by a core design and a set of ∆-designs. The core
design of a CoBox-based product line is denoted by a CoBox
design. ∆-designs require additional notation to specify the
modifications to the core design. In a ∆-design, it is defined
which CoBoxes or classes are added or removed and which
member variables or methods in existing CoBoxes or classes
are added, removed or modified. The + symbol marks
additions, − marks removals and ∗ denotes modifications.
As UML class diagrams already use the + and − symbols
for public and private members, we attach the alteration
symbols to the right top corner of an altered CoBox, of
an altered class or of an rectangle surrounding the altered
class members. Additionally, each ∆-design contains its ap-
plication condition, a Boolean constraint over the features in
the feature model, to determine for which configurations the
∆-design is applied to the core. The application condition
is displayed in an angular box at the top of the design.

The core configuration of the CoCoME software product
line includes cash payment, keyboard input, and is a multi-
desk system because cash payment and keyboard input are
features of almost any cash desk system and most shops
comprise more than one cashier. Other optional features
are not incorporated into the core in order to keep it as
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Figure 4. ∆-Design for Credit Card Payment

small as possible. The resulting CoBox core design is
shown in Figure 3. The design specifies the CashDesk
and StoreServer CoBoxes for realizing the core func-
tionality. Instances of the CashDesk and StoreServer
CoBoxes are created on the deployment targets Cash Desk
Client and Store Server, respectively, that have to be
physically connected. The logical connection is established
via an additional ConnectionAgent CoBox created on
each deployment target.

Figure 4 depicts the ∆-design containing the modifi-
cations for credit card payment, that is not included in
the core configuration. To provide credit card functionality,
a CoBox Bank has to be added to the system. Further,
the CoBox CashDesk has to be extended by a CoBox
CardReader and further class members to take care of
the credit card payment. Also, the ConnectionAgent
gets further member variables and methods to handle the
communication with the Bank. This is denoted by the +
symbol attached to the respective classes and members.
Additionally, two methods of the CashDesk CoBox are
modified, which is shown by the ∗ symbol. Deployment
information for the Bank CoBox is provided relative to the
overall system. The deployment target Bank Server on
which the Bank CoBox is to be instantiated has to establish
a physical connection to the deployment target on which
CashDesk CoBox is executed. This allows dealing with
deployment modifications caused by other ∆-designs. The
angular box in the top right corner of the ∆-design shows

<x−f rame name=” CashDesk .CORE”>
p u b l i c cobox c l a s s CashDesk {

. . .
p r i v a t e Keyboard keyboard ;
p r i v a t e Order c u r r e n t O r d e r ;

<b r e a k name=” C a s h D e s k A d d i t i o n a l A t t r i b u t e s ”/>
. . .
p u b l i c vo id s e l e c t C a s h P a y m e n t ( ) {

keyboard ! s e t S t a t e C a s h P a y m e n t ( ) ;
}
. . .

<b r e a k name=” CashDesk Add i t iona lMethods ”/>
}
</x−frame>

Listing 5. Core Frame for the CashDesk CoBox

the application condition. This condition determines that the
∆-design is applied in all feature configurations in with
the CreditCard feature is included. During application
engineering, we obtain a design for a multi-desk system
containing cash payment, credit card payment and keyboard
input by applying the modifications specified in the ∆-
design to the core design. This allows performing model-
based validation and verification of this product already on
the design level before the implementation is derived.

C. Implementation Layer

The implementation layer for the CoCoME software
product line is realized by frame technology [12]. Frames
structure source code into parts with pre-defined break
points. The break points can be adapted by inserting code
from other frames or by removing code from break points.
In our model-based framework, the structure of the CoBox-
based design is directly mapped to the frame structure on
the implementation layer. The core design of a product line
is realized by a set of core frames. Each CoBox in the core
design is implemented by a core frame. The code in this
core frame also contains break points that are necessary
for modifications caused by ∆-frames. For each ∆-design
in which the CoBox is altered, a ∆-frame is constructed
that contains the respective modifications to this CoBox.
Additionally, for each CoBox newly created by a ∆-design,
a ∆-frame is generated that contains its implementation. The
application conditions of the ∆-frames are the same as the
ones of the implemented ∆-designs. Special build frames
capture in which feature configurations the modifications of
a ∆-frame are applied to the core frames.

XVCL [17] is a programming language-independent im-
plementation of frame technology using an XML-dialect
for defining frames, break points and break point adapta-
tions. We use XVCL to realize the implementation layer
of the CoCoME product line. The XVCL core frame for
the CashDesk CoBox is depicted in Listing 5. This
frame implements the design specified in Figure 3. The
frame contains XVCL break tags for including addi-
tional attributes and methods that are specified by feature
frames targeting this core frame. The ∆-frame in List-
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. . .
<i n s e r t−a f t e r b r e a k =” CashDesk Add i t iona lMethods ”>
. . .
p u b l i c vo id c r e d i t C a r d P i n E n t e r e d ( i n t p i n ) {

c a r d R e a d e r ! d i s a b l e ( ) . a w a i t ( ) ;
B a n k I n t e r f a c e bank = connec tWi thBank ( ) ;
i f ( bank == n u l l ) {

System . o u t . p r i n t l n ( ” CashDesk : Bank n o t a v a i l a b l e . ” ) ;
c a r d R e a d e r ! e n a b l e ( ) ;

r e t u r n ;
}
i f ( bank ! v a l i d a t e P a y m e n t D a t a ( c u r r e n t C r e d i t C a r d N u m b e r ,

pin , c u r r e n t O r d e r . p r i c e ) . a w a i t ( ) ) {
rece iveMoney ( c u r r e n t O r d e r . p r i c e ) ;

} e l s e {
System . o u t . p r i n t l n ( ” CashDesk : Unable t o v e r i f y p i n . ” ) ;

c a r d R e a d e r ! e n a b l e ( ) ;
}

}
</ i n s e r t−a f t e r >

Listing 6. ∆-Frame for the CashDesk CoBox for the Credit Card Feature

ing 6 is an XVCL frame corresponding to the modifi-
cations applied to the CashDesk CoBox for the Credit
Card feature that is specified in the ∆-design in Figure
4. Among other modifications, this ∆-frame defines that
the CashDesk_AdditionalMethods break point in the
CashDesk core frame has to be adapted by inserting
the creditCardPinEntered method if the Credit Card
feature is part of the configuration to be implemented.

The code for a product implementing a particular feature
configuration can be automatically derived from the core
frames and ∆-frames of the product line implementation
during application engineering by the two-step derivation
process depicted in Figure 7. Adapting core frames as it is
necessary for automated product derivation is not possible
in a single XVCL run. XVCL frames are defined in a tree-
structured frame hierarchy. This structure is traversed (in-
order) during processing, such that adaptations in superordi-
nate frames overwrite adaptations in subordinate frames, if
both frames target the same break point. This is useful for
flexible specialized frame adaptations, but in our application,
frames adapting the same break point should not modify
each other. Therefore, in the two-step derivation process,
first, the modifications specified in the ∆-frames with
valid application condition are accumulated into a single
temporary modification frame by one run of the XVCL
processor. The selection of the ∆-frames contributing to
the accumulated modifications is controlled by special build
frames capturing the application conditions of the ∆-frames.
In the second processing step, the accumulated modifications
in the temporary modification frames are applied to adapt
the corresponding core frames by a second run of the XVCL
processor. This ensures a flat frame hierarchy for the second
process, so that a set of modifications targeting the same
break point are accumulated instead of being overwritten.
The result of this process is a product implementation for
the desired feature configuration.

Figure 7. Automated Product Derivation using XVCL

V. EVALUATION

We realized the CoCoME product line with the pro-
posed model-based framework for automated product deriva-
tion [27]. The CoBox-based implementation of the product
line is carried out in JCoBox1 that is compiled to standard
Java. As XVCL is programming language-independent, it is
straight-forward to use it for the JCoBox implementation of
the CoCoME product line. In the current implementation,
168 different products of the CoCoME product line can be
derived automatically by the XVCL-based two-step deriva-
tion process. The implementation of the CoCoME software
product line consists of 12 core frames, 21 ∆-frames and 12
build frames. The derivation process requires 6 additional
meta frames not containing any source code to guide the
derivation. Non-variable system parts are implemented in 5
regular source code files.

The advantage of the presented approach is that it is not
limited to a particular implementation language or technique
and applicable in a variety of scenarios. The development
of the product line core allows using established single
application engineering principles. Manual product-specific
intervention is explicitly avoided such that modifications in
any of the product line artifacts can be fully automatically
propagated to existing products. There is no need for ad-
ditional customization of products after product derivation.
Modifications of the product line artifacts, however, affect
all three layers. This introduces the need for additional syn-
chronization mechanisms in case of parallel modifications.

VI. CONCLUSION

We have presented a model-based framework for auto-
mated product derivation relying on an independent model-
based design layer. The design bridges the gap between

1http://softech.informatik.uni-kl.de/Homepage/JCoBox

20



feature models and product implementations. Its structure
guides the development of implementation artifacts capable
of automated product derivation. We realized and evaluated
the proposed framework with an extended version of UML
for the design and frame technology for the implementation.

For future work, we will realize the introduced framework
with different implementation techniques to evaluate its
general applicability. A first candidate is the trait-based
language presented in [28]. Additionally, we will improve
the tool support following our prototypical implementation.
In order to analyze the effects of product line evolution
for automated product derivation, we will formalize our
approach to give a formal account how the design and
implementation layers are affected by newly added features.
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Abstract—The accomplishment of an efficient IT service 
management is considered a significant success factor in large 
businesses. Configuration Management (CM) constitutes one of 
its core disciplines. Off-the-shelf CM systems support the 
maintenance of the IT by handling the lifecycle of so-called 
Configuration Items (CIs) and by establishing Change, 
Configuration and Release Management processes. However, due 
to the complexity of today’s IT infrastructure in large companies, 
the tailoring of these systems based on concrete stakeholder 
requirements can become a laborious and error-prone task. 

We present an approach that enables the configuration of a CM 
system by leveraging variability management techniques 
stemming from product line engineering. The synthesis and 
configuration of a feature model is driven by the Common Data 
Model, a large domain-specific model that describes CIs and 
their relationships. We show how our feature-based approach 
can improve the tailoring of CM systems. Furthermore, we 
expand on its prototypical realization, elaborate on the 
integration into the requirements engineering process and  
discuss its applicability based on experiences obtained from a  
first evaluation. 

IT service management; configuration management; feature 
modeling; requirements engineering 

I.  INTRODUCTION 

During the past decades, the technological innovation of 
information technology has been the main driving force to 
achieve a higher level of efficiency and effectiveness within 
businesses [1]. However, the growing complexity of 
companies’ IT environments has indicated a need for more 
comprehensive IT management support. One solution of 
tackling the growing complexity is the introduction of IT 
service management (ITSM) techniques. ITSM provides a 
process-centered view on the management of IT infrastructures 
and aims at assuring the quality of IT services. 

One of the most important disciplines that ITSM comprises 
is Configuration Management (CM) which is responsible for 
keeping information about the managed IT infrastructure to be 
managed both up-to-date and accurate. According to 
Klosterboer [2], the implementation of CM is very difficult to 
accomplish. Many companies have problems with the 
realization of CM practices. Especially the tailoring and 
installation of the CM database and the establishment of 
change processes present some of the most complicated tasks. 
It is critical to design a concrete and accurate specification for 
the CM database that reflects all the data required for ITSM 
processes. 

We were faced with the problem of configuring a CM 
database as part of an outsourcing project for a company that 
has to manage a large IT infrastructure with more than 2000 
servers. The tailoring of the database, i.e. the creation of its 
concrete data model, was driven by requirements that had to be 
elicited from stakeholders. Additionally, the data model of the 
database had to conform to the Common Data Model (CDM), a 
domain-specific model from IBM Tivoli that defines types of 
Configuration Items (CIs) and their relationships. 

The manual and indirect tailoring of the database turned out 
to be very laborious and error-prone: First, the configuration 
knowledge is elicited indirectly via textual requirements from 
the customer. Second, the actual configuration has to be  
carried out by experts with significant knowledge about the 
database specification, the CDM elements and a considerable  
number of constraints. 

In this context, we present a model-driven approach to 
creating a CM database specification that leverages Feature 
Modeling [3] techniques. It dynamically synthesizes a feature 
model that provides different levels of abstraction over the 
database specification, incorporates CI dependencies as 
constraints and supports a staged configuration process. In 
summary, it exposes the structure and configuration options of 
the database specification more explicitly and provides a more 
abstract view of it. 
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The remainder of the paper is structured as follows: In 
section 2, we give an introduction to Configuration 
Management for IT services, describe the Common Data Model 
and portray our concrete problem context. Section 3 presents 
our approach that traces CM database tailoring back to a 
feature configuration problem. Section 4 expands on the 
prototypical realization of a tool relevant for our method and 
section 5 reports on the evaluation experiences gained. Finally, 
we discuss relevant conclusions and outline future  
work in section 6. 

II. CONFIGURATION MANAGEMENT 

CM basically denotes “the process responsible for 
maintaining information about Configuration Items required to 
deliver an IT Service, including their relationships. This 
information is managed throughout the lifecycle of the CI.” [4]. 
For a more comprehensive introduction to CM, including a 
definition of Configuration Items, we refer to Alison et al. [5] 
and Lacy et al. [6]. 

A. System Architecture 

Fig. 1 provides a high-level view on the realization of the 
CM system in our project context as well as the connection to 
the various service management processes. The system consists 
of two main parts: ITADDM 1  and CCMDB 2  [7]. ITADDM 
denotes the Discovery System responsible for discovering, 
collecting and storing information about the IT infrastructure. 

                                                           
1  IBM Tivoli Application Dependency Discovery Manager: 

http://www-01.ibm.com/software/tivoli/products/taddm/ 
2  IBM Tivoli Change and Configuration Management Database: 

http://www-01.ibm.com/software/tivoli/products/ ccmdb/ 

This information comprises CIs and their relationships and is 
saved in a database called Discovered CI Store. 

However, not all the data that has been discovered by 
ITADDM is relevant for IT service management processes. 
Thus, the information is filtered and transferred into the 
CCMDB. The CCMDB, in turn, consists of two logical 
databases realized in one physical database. These logical 
databases are named Actual CI Store and Authorized CI Store. 
The former one just keeps a subset of the discovered data, but 
still contains sufficient information that is necessary for the 
CM system to operate correctly. This information is stored with 
a high level of detail and is necessary for root cause analysis, 
but not for the IT management itself. In contrast, the 
Authorized CI Store only keeps CIs and relationships that are 
subject to change and configuration management processes. 
This information is essential for a failure-free operation of  
the IT infrastructure. 

Fig. 2 shows an example of how part of the data discovered 
by ITADDM is filtered for its usage in conjunction with IT 
service management processes. More precisely, the diagram 
shows parts of the CI Stores’ specifications, which are sets of 
CI Types and their relationships. The CI Types themselves, 
their attributes and relationships are defined in IBM Tivoli’s 
Common Data Model.  

B. Common Data Model 

The Common Data Model3 is a domain-specific model that 
describes concepts in the CM domain. According to Tai et 
al. [8], CDM “provides consistent definitions for managed 
resources, business systems and processes, and other data, and 

                                                           
3  http://www.redbooks.ibm.com/redpapers/pdfs/redp4389.pdf 

Figure 1. CM system and processes overview 
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the relationships between those elements”. Thus, it can be seen 
as a domain-specific language rather than just as a data model 
for the CI Stores. In fact, many CM tools from the IBM Tivoli 
family are built upon concepts as defined in the CDM. 

Technically, it is modeled in UML2 and contains about 750 
classes with attributes as well as 82 named association types 
(e.g. contains, installedOn, virtualizes). Three UML2 
Profiles define stereotypes in order to specify technical tool and 
data mappings. CDM further introduces the notion of Sections, 
which categorize related classes. They are organized 
hierarchically and each of the 36 Sections corresponds to a 
concrete class diagram. 

Classes that represent real-world CIs realize the interface 
ConfigurationItem and are subject to IT service 
management processes. Thus, they embody the main entities 
that are to be saved in the CI Stores. However, since 
administrative and meta-information also has to be stored in the 
CI Stores, all classes derived from ModelObject can be 
persisted in the databases. Furthermore, concrete relationships 
between classes are defined and named according to their 
corresponding association type. Altogether, almost 1600 
unique relationships – defined as associations – exist in CDM. 

C. CI Store Specification 

In order to support the IT service management processes, the 
stores have to be tailored towards the stakeholders’ 
requirements. Basically, this tailoring comprises the creation of 
a specification for the CM databases, i.e. for the Actual and the 
Authorized CI Store. A specification contains (1) a set of CI 
Types including meta/administrative information and (2) a set 
of relationships as defined by the CDM. Furthermore, a  
logical hierarchy is introduced, which is based on a specific 

relation between classes in CDM. This hierarchy is defined 
using a Parent attribute in classes, but each parent-child  
relation is further detailed by a corresponding association. 
Fig. 3 illustrates the mapping between a store specification  
and the CDM. 

In this paper we focus, however, on the specification of the 
Authorized CI Store. Setting up the Actual CI Store is not 
addressed here since it is rather driven by technical aspects than 
by customer requirements. The mapping and transfer between 
Discovered and Actual CI Store is realized by predefined 
adaptors with the option to define the hierarchy depth.  

D. Authorized CI Store 

The current process of creating a specification for the 
Authorized CI Store can be characterized as follows: 

Elicitation of requirements from the customer: Based on 
the current specification of the Actual CI Store, requirements 
reflecting the necessary CI Types and relations have to be 
elicited from the stakeholder. Our project, for example, 
comprised more than 700 requirements [9]. 

Analysis of requirements: CIs, meta/administrative 
information and relationships that are to be transferred from the 
Actual to the Authorized CI Store have to be identified on the 
basis of the elicited requirements and the CDM. In practice, 
requirements are currently mapped to CDM elements in 
Microsoft Excel spreadsheets.  

Discovered CI Store

ComputerSystem

OperatingSystem

CPUMemory

ComputerSystemCluster

federates runsOn installedOn

containscontains

MediaAccessDevice

contains

Actual CI Store

ComputerSystem

OperatingSystem

CPUMemory

ComputerSystemCluster

federates installedOn

containscontains

Authorized CI Store

ComputerSystem

OperatingSystem

CPUMemory

installedOn

containscontains

virtualizes

Figure 2. Filtering of CIs among the CI Stores 
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Figure 3. Mapping between CDM and CI Store specifications 

24



Applying the specification: Finally, the specification has 
to be applied to the Authorized CI Store by entering all 
elements into a web configuration interface. Furthermore,  
the former hierarchy of the Actual CI Store has to be  
retained or recreated. 

In its current form, the process turns out to be quite 
ineffective for the following reasons: First, profound 
knowledge about possible CI Types and relationships is 
expected from the stakeholders. Second, available elements are 
limited by the current specification of the Actual CI Store. 
Third, consistency between CI Types and relationships is 
difficult to maintain. Furthermore, terminology and translation 
issues concerning the textual requirements occur. 

III. FEATURE MODEL SYNTHESIS AND CONFIGURATION 

In order to bridge the gap between the (1) Actual CI Store 
specification, the definitions in the (2) CDM and the implicit 
(3) configuration knowledge of the stakeholders, we introduce 
an approach based on Feature Modeling and Feature Model 
Configuration [10,11] techniques as known from Software 
Product Line Engineering [12,13]. 

We try to reduce the disadvantage of the current method by 
providing a simplified and more coherent view on the Actual 
CI Store specification in form of a feature model. This model 
provides a higher level of abstraction for the selection of 
relevant CI Types and relations that are essential for the 
stakeholders. The goal is to obtain a specification for the 
Authorized CI Store.  

Our approach (cf. Fig. 4) consists of three main steps:  

• Feature Model Synthesis 

• Feature Model Configuration 

• Authorized CI Store Creation 

The approach facilitates the configuration of the feature 
model on different levels of abstraction. On the highest level, 
the presented view is intended to be simpler and easier to 
understand for stakeholders without specific knowledge about 
the underlying CDM. 

A. Feature Model Synthesis 

The first step of our approach deals with the dynamic 
creation of a feature model. The model is based on the current 
specification of the Actual CI Store and allows an adjustable 
representation of the prospective Authorized CI Store. We 
introduce four types of features: 

 Diagram Concept features: root feature describing the 
underlying logical data model (i.e. the scope of the 
feature model). 

 CDM Section features: describing the highest 
abstraction level of the CDM - Sections.  

 CI Type features: representing CI Types contained in 
the logical data model.  

 CI Relation features: representing relations between  
CI Types.  

The feature model is built in three stages. In each stage 
features of different types are added to the model. All of them 
are optional, we didn’t need to introduce mandatory features or 
mutual exclusions. An example of the feature model levels, 
created by the described procedure, is presented in Fig. 5. The 
synthesis stages are as follows:  

The first stage consists of two steps: the creation of the 
Diagram Concept feature (e.g. Actual CI Store) and the 
creation of CDM Section features (e.g. Administration 
Section or ComputerSystem Section). These features are 
either child features of the Diagram Concept feature or of other 
CDM Section features. This stage of feature model synthesis is 
initially executed once for all projects.  

The second stage of the synthesis comprises the creation of 
CI Type features corresponding to CDM Sections. The parent 
feature of these features is a CDM Section feature. This stage is 
automatically executed on the basis of the CDM Section – CI 
Type mapping and the Actual CI Store structure. For instance, 
the CI Types CPU and ComputerSystem belong to the CDM 
Section ComputerSystem Section and are part of the Actual 

Figure 4. Feature model synthesis and configuration steps 

Diagram Concept

CDM Sections

CI Types

CI Relations

Actual CI Store

Administration Section ComputerSystem Section

AdminInfo ComputerSystem

administers_ComputerSystem contains_CPU
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Figure 5. Levels of the feature model 
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CI Store; thus, they are added to the feature model as children 
of the ComputerSystem Section feature. If the added feature 
represents a CI Type which is not labeled in the Actual CI Store 
as top-level, a constraint pointing to the feature of its parent CI 
Type in the logical Actual CI Store hierarchy is added to the 
feature model. 

The third stage of the synthesis creates CI Relation 
features. This stage is automatically executed on the basis of 
the Actual CI Store structure. Those CI relations are added to 
the feature model, for which the source CI Type and the target 
CI Type exist in the feature model. They are added to the model 
as children of the source CI Type feature. Furthermore, for each 
CI Relation feature, a constraint pointing to the target CI Type 
feature is added to the feature model. 

B. Feature Model Configuration 

The second step of the feature-based approach comprises a 
kind of staged configuration of the synthesized feature model. 
This configuration is performed by the stakeholders in order to 
select features directly and, thus, to omit or at least reduce the 
error-prone elicitation of requirements. We also leverage the 
choice propagation functionality in feature model tools for the 
purpose of assuring relationships, which have been added as 
extra constraints to the feature tree. 

In summary, this step extends the current requirements 
engineering that is carried out for gaining configuration 
knowledge from stakeholders (cf. Fig. 1 and Fig. 4). 

The configuration of the feature model is executed in three 
stages. The initial feature model is created in the first Feature 
Model Synthesis stage. In the first configuration stage the 
CDM Sections relevant for the stakeholder are selected. After 
that, the second feature synthesis stage is performed and the CI 
Type features corresponding to the selected CDM Sections are 
loaded. This allows the execution of the second configuration 
stage in which the stakeholders select the required CI Types. 
Based on the selected CI Types, the third feature model 
synthesis stage is executed and CI Relation features are added 
to the feature model. The third configuration stage is 
performed on the basis of the CI relations added in the third 
synthesis stage. The CI relations necessary for the 
stakeholder’s IT infrastructure are selected, resulting in the 
final configuration of the feature model. This configuration is 
the basis for the specification of the Authorized CI Store. 

C. Authorized CI Store Creation 

The last step of our feature-based approach constitutes the 
creation of the Authorized CI Store specification. This 
specification is generated on the basis of the final configuration 
of the feature model (see Fig. 6). The Authorized CI Store 
specification is subdivided into two parts: a list of CI Types 
selected by the stakeholders and a list of selected CI relations 
between those selected CI Types. These specification lists are 
saved in database-specific XML format. Based on these XML 
files, the Authorized CI Store logical hierarchy is created in the 
CM system.  

IV. PROTOTYPICAL REALIZATION 

We have realized our approach as an Eclipse plug-in, since 
we wanted to be able to embed it with other tools from IBM 
Tivoli and since we chose to integrate with FMP4 [14] as a 
Feature Modeling tool. FMP turned out to be the most 
appropriate one for our purpose. It is available as Open Source 
software, supports basic Feature Modeling with extra 
constraints, staged configuration and choice propagation. 
Cardinalities are also supported in FMP, but were not necessary 
for our approach. 

In summary, our plug-in extends FMP, realizes the feature 
model synthesis and staged configuration as well as it provides 
adapters for the Actual CI Store in order to obtain the current 
specification. 

As described in section 3, the synthesis procedure creates a 
feature model in FMP by leveraging the structure of CDM 
Sections and loading the current Actual CI Store specification. 
We load subsections just on demand since we faced 
performance issues5  when creating the whole feature model 
from a large Actual CI Store in one step. Our plug-in adds 
relationships as subfeatures and adds binary constraints in FMP 
in order to support choice propagation. Since there exists 
another logical hierarchy between CIs (cf. section 2.3), 
additional constraints representing it are introduced into the 
feature model. For further implementation details such as 
naming rules, feature ID definition for traceability reasons, or 
constraint realization, we refer to [15]. 

Fig. 7 illustrates the feature model view, especially with the 
ComputerSystem and OperatingSystem sections. Fig. 8 
shows a list of constraints of the feature model presented on 
Fig. 7. For instance, constraints between the features 
SYS.COMPUTERSYSTEM and SYS.OPERATINGSYSTEM and 
between relations and whose target CI Types. 

                                                           
4  Feature Modeling Plug-in: http://fmp.sf.net 
5  These are known issues owed to FMP’s meta-modeling and just-in-

time reasoning capabilities. 
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V. EVALUATION 

We evaluated our approach and the realized prototype in a 
small-scale setup with some colleagues. Although they did not 
represent stakeholders, they were familiar with customer 
projects. Their experience with CDM and the CM system 
ranged from deep to no experience at all with CDM.  

Based on the goal of our work, we wanted to know (1) if 
the synthesized feature model provides a simplified view on the 
CDM-based Actual CI Store specification, (2) if our approach 
speeds up creating the specification and (3) how the tool would 
be accepted by stakeholders. 

Accordingly, we gave a quick introduction into the 
approach and the tool. Thereafter, the participants performed a 
test scenario and created an Authorized CI Store specification. 
Finally, we asked them to fill out a questionnaire with  
nine questions. 

We received very positive answers from the participants 
(for details cf. [15]): (1) The tree-based navigation and the 
support of constraints within the configured feature model were 
regarded as a significant advantage. (2) All participants also 
mentioned the time-saving potential. However, some of them 
also pointed out that time saving depends on the project size, 
i.e. the difference could be marginal for smaller projects. (3) 
Furthermore, participants agreed on the potential to increase 
customer acceptance, since less knowledge about CDM is 
necessary when using the tool. However, experts might miss 
some additional information that is intentionally omitted in the 
feature model. 

In summary, the feature-based approach met with favor and 
appreciation participants of the evaluation. Especially the 
convenience and the focus on the stakeholder’s interests and 
goals were emphasized very positively. 

VI. RELATED WORK 

Although our approach is – to a certain degree – specific to 
the CDM, we depict some work that, in a broader sense, deals 
with variability in data models or data specifications by using 
Feature Modeling techniques. 

Usually, feature models are used in various kinds of domain 
analysis. However, there is some work that uses feature models 
to provide a tree-oriented-view on fine-grained data with many 
relationships. Czarnecki et al. [16] elaborate on the 
expressiveness of feature models compared to rich ontology 
modeling techniques. In their work, they also provide a case 
study that synthesizes a feature model from a domain-specific 
ontology, i.e. they accomplish a more abstract view on  
domain data.  

Barthold et al. [17] address the problem of variability in 
data models that appears in conjunction with software 
variability. They propose an approach to represent and manage 
data variability in entity models. Their approach is based on 
adapters that provide a specific view on the database, i.e. they, 
for example, omit entities or relations that are not relevant for a 
certain feature. 

Some work that deals with mappings between UML 
diagrams and feature models comprises for example the 
following: Braganca and Macada [18] provide a mapping 
between features and the elements of Use Case diagrams. They 
establish a model-driven approach to deriving a concrete Use 
Case diagram that represents one product of a product line 
based on the feature configuration. Furthermore, Czarnecki and 
Antkiewicz [19] treat class and activity diagrams as templates 
containing variability in order to derive concrete model 
instances. They also deal with checking the consistency of 
derived UML diagrams. 

VII. CONCLUSIONS AND FUTURE WORK 

In this work, we have developed a feature-based approach 
to creating a data specification for a CI Store. We dynamically 
synthesize a feature model that represents such specifications 
on a higher level of abstraction and provides a simplified view 
that is more stakeholder-oriented. This model is configured in 
three stages in order to obtain a concrete CI Store specification. 
The aim of our approach was to reduce the gap between 

Figure 7. Feature model example 

Figure 8. Feature constraints 
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stakeholder’s implicit configuration knowledge and the 
complex Common Data Model’s definitions of CIs and 
relationships. 

More precisely, we defined a mapping between features and 
CDM elements that exploits structural characteristics in order 
to obtain a hierarchical feature tree. Further CDM relationships 
are incorporated as extra constraints of the feature tree. We 
have realized the approach as a tool prototype and have 
performed a first, small-scaled evaluation. 

However, there is definitely room for improvement in this 
field and several enhancements to the method are possible. The 
current focus was on providing a general view for all 
stakeholders on the complex CDM-based specifications. 
Stakeholder may be even more enabled to configure this 
complex data model by using hierarchically structured feature 
models that are tailored towards particular groups. View 
integration and derivation with feature models, as proposed in 
[16], could provide interesting opportunities. Concerning the 
actual configuration by the stakeholders, an increase of the 
number of stages would also be possible. Furthermore, the 
synthesized feature model could be extended with additional 
features that reflect supplementary meta information, as 
requested by some evaluation participants. 

Another reason for extending the approach lies in the 
conceivable evolution of CI Stores. When IT service 
management processes change, the modifications have to be 
reflected in the CI Store specification as well. 
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Abstract—This paper addresses product configuration and
product derivation in product lines of embedded systems. We
show how domain-specific languages (DSLs), which are used to
describe the implementation of the product, can be translated
into configurable models with formal semantics. This facili-
tates, tool support during configuration including (1) side-by-
side visualization of features and corresponding implementation
components, (2) automated reasoning to calculate consequences
of the user’s configuration decisions and (3) visual explanations
for automatically calculated consequences. In addition, we discuss
(4) how a completed configuration can be turned into a product-
specific model in the domain-specific language, using negative
variability and subsequent pruning of the implementation model.

The approach is demonstrated for product lines of embedded
systems using Simulink as an domain-specific language for the
model-based engineering of embedded systems. We report on
first evaluation results with a product line of parking assistant
applications, including experimentation on a rapid prototyping
platform with a 1:5 model car.

I. INTRODUCTION

Many approaches in Software Product Lines (SPL) structure
the applied models into two areas (see figure 1): A model
describing the available choices, e.g., a feature or variability
model d and, one or more implementation models, which
describe how these choices are implemented Cd. Usually these
two types of models are mapped onto each other to support
further techniques.

During Product Configuration the user (i.e., a customer or
an application engineer supporting him) decides which of the
available product options to choose. In Product Derivation,
he generates or assembles the product implementation that
corresponds to these configuration decisions.

There are well-known techniques and tools for the interac-
tive configuration of feature models, for instance in commer-
cial tools such as pure::variants [1] or our earlier work on
interactive configuration with formal semantics [2], [3].

Interestingly, during product configuration the developer
typically configures the feature model d only – even though
the mappings between the feature model and other SPL models
are available . Interaction with the implementation models Cd

is usually not provided at this stage.
While there might be good reasons to abstract from the

implementation deliberately (e.g., to hide complexity), the
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Fig. 1. Simplified Framework for Software Product Line Engineering.

inclusion of other models in the interactive configuration
process can provide additional benefits:

1) The user can see (visual representations of) dependen-
cies between features and the related elements in other
models (e.g., an edge representing that the feature f1

requires the component c1).
2) When making configuration decisions (in the feature

model) the user can immediately see consequences in
related models (e.g., after the user selects the feature f1,
the tool automatically selects the component c1).

3) Moreover, it is possible to apply configuration decisions
in the implementation model first (e.g., indicating that
the implementation component c1 will not be available)
and derive implications for the feature model from that
(f1 is no longer an option).

In this paper, we address this side-by-side configuration
by integrating the implementation model into the configu-
ration process. This allows us to provide the functionality
sketched above. To further motivate our research, we will first
use a sample case from product lines of embedded systems
(section II). We will then explain our approach (sections III
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to VI). The paper concludes with a discussion (section VII),
an overview of related work (section VIII) and some final
remarks.

II. SAMPLE CASE: EMBEDDED SYSTEMS IN CONTROL
ENGINEERING

As a sample case for this paper, we want to apply Software
Product Line techniques to the domain of control engineering.
Such control system are typically developed using model-
based tools like Matlab/Simulink. They can be considered as
(or implemented as) a special form of embedded systems.

The task of a controller is to influence an environment with
actuators to achieve a certain behavior. To this end, the con-
troller gathers information of the environment using sensors.
With the information provided by the sensors the controller
uses the actuators to influence the controlled environment. In
many cases, the part of the environment that is the object of

control (observed by the sensors, influenced by the actuators)
is called the plant. The whole system (consisting of sensors,
controller, actuators, and the plant) is called a control loop [4].

When developing the code for such a controller, the main
requirements are the reaction time, the input-output stability
and the control error. The behavior of the control loop depends
on both the controller and the plant. To understand the
behavior of the plant and the controller, models of both are
developed in a first step. These models are improved using the
results of simulation.

If the desired behavior is achieved, a next development step
is performed. The model of the controller will be translated
to source code and executed using a prototyping hardware.
During this development step either a prototyping plant or a
real-time model of the plant is influenced by the controller.
In this development timing requirements can be observed and

30



tested.
During the third development step the controller code is

executed on the real product hardware. This is the first time
the real plant (and not the simulated one) is tested with the
controller. Cost and safety issues are the main reasons for the
late testing with the real plant. One important task during this
stage is to optimize the controller. To this end, the controller
has parameters that can adopted until the control loop finally
meets the requirements.

To built such systems, model-based design is a common
engineering practice. Simulink is a very well-known example
of a domain-specific modeling language for embedded sys-
tems, including corresponding tools. Using such development
frameworks is one way to tackle the increasing complexity.

While this is already a nice foundation, in an industrial
context we require additional techniques that help us to build
whole product lines of such systems. To this end, model-
based design techniques for embedded systems are extended
with mechanisms for variability and model-driven product
derivation.

We discussed some concepts and techniques for this in [5],
[6] where we extend domain specific implementation models
with variability. In this paper we focus on how feature models
and the related implementation models can be combined to
support their integrated, interactive configuration.

III. OVERVIEW OF OUR APPROACH

Before we explain the details of our approach, we first
want to give an overview as an orientation for the reader, see
figure 2. Similar to common SPL Engineering methods our
approach can be structured into Domain Engineering (upper
layer) and Application Engineering (lower layer).

The overall goal of this process is to turn a product line
implementation Dd (upper right corner of figure 2) into an
product-specific implementation Da (lower right corner) and
finally an executable program.

To support common techniques and processes from Embed-
ded Systems Engineering, we integrated our approach with
the domain specific language Simulink. Hence, the chain of
processes to begins in the Simulink world (right-hand
side of figure 2) moves over ( ) to the Eclipse-based Models
(left-hand side), which are configured and processed. Finally,
by code generation ( ) we return to the implementation DSL.
In the following sections we will now discuss these processes
in more detail.

IV. DOMAIN ENGINEERING

For the context of this paper, we will assume that most
processes, which are necessary to create the product line
artefacts ( d to Dd) have already been performed. See [5] for
more details.

Those processes that are of interest here, start off with the
mdl2sl transformation , which converts the implementation
given in Simulink’s native .mdl format Dd into an correspond-
ing Eclipse-based implementation model Cd. Subsequently, we
are able to map this model to the feature model and perform

further processing with Eclipse-based frameworks, such as
the numerous frameworks from the Eclipse Modeling Project
(EMP) [7] or openArchitectureWare (oAW) [8].

To enable the integrated configuration of feature and im-
plementation models, we transform these models and the
mappings between them into an integrated SPL model .
The basic idea is to represent all configurable parts of the
product line (feature selected? component present?) as one
large feature tree, where different subtree represent different
SPL models. So, for instance, we can have one subtree with
the real feature model i and one subtree representing the
configuration status of components i , as well as mappings
and between them i . This enables us to interactively configure
the whole product line within one integrated model.

This translation is realized by an model transformation
in ATL (Atlas Transformation Language) [9]. It applies an
semantic interpretation of the domain-specific concepts in the
Simulink model, translating them into feature model elements,
which make up the integrated SPL model . Some rules
for translation are shown in Table I for the Simulink model
(translating from Cd to i ) and Table II for the mapping model
(translating from d to i ).

Representation within
Simulink Cd the integrated
(concepts in the meta-model) SPL model i

Simulink Model m mandatory feature f(m)
System s optional feature f(s)
Block b optional feature f(b)
contained blocks/systems subfeatures
in blocks/systems
Line from block a f(b) requires f(a)
to block b but not vice-versa

TABLE I
TRANSLATION FROM SIMULINK TO THE INTEGRATED SPL MODEL

Representation within
Mapping d the integrated
(concepts in the meta-model) SPL model i

Feature f mapped to f(f) requires f(c)
component c

TABLE II
TRANSLATION FROM MAPPING MODEL TO THE INTEGRATED SPL MODEL

The elements created in the target model are fine
grained elements of a feature model, which we call feature
model primitives. Examples for such feature model primi-
tives are f1-hasOptionalSubfeature-f2, f3-requires-f4 or f1-
hasBeenSelected. These primitives have clearly defined se-
mantics, including the corresponding behavior of our S2T2
Configurator tool during interactive configuration. These
semantics are given by further translation of the feature model
primitives into propositional logic. For instance, f3-requires-
f4 would be translated into ¬f3∨f4. Details of this translation
can be found in [2].

In summary, the transformations provide the following re-
sult: We now have (1) an integrated model presenting features,
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automatically selected
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user selected f3 and
f3 requires c2

f1 exludes f3

f2 requires f3

f2 is implemented by c2

Fig. 3. The S2T2 Configurator showing an integrated SPL model during configuration.

their implementation, and relations between them in one model
and (2) this model can be used in an interactive configuration
tool.

V. PRODUCT CONFIGURATION

After converting the given SPL artefacts into one integrated
model, we can use our tool S2T2 Configurator to per-
form an interactive configuration .

Whenever a model is loaded, the Configurator internally
transforms it into a formal representation, which is used by a
reasoning engine to keep the configured model in an consistent
state, to calculates consequences of the user’s decisions and,
on demand, and to provides visual explanations for such
consequences [2].

Figure 3 shows the Configurator with a very simple model
with just three features f1 to f3 (left-hand side) and two
components c1 and c2 (right-hand side). Within the feature
model, we have two dependencies (f1 and f3 are mutually

exclusive; f2 requires f3). The features and components are
connected via requires edges, which represent that features are
implemented by certain components.

In the example, the user decided earlier that f2 is eliminated
and f3 is selected (this is indicated by the red cross in front
of f2 and the green check mark in front of f3). From these
decisions and information in the model the tool derived that,
f1 has to be eliminated and c2 has to be selected. In the
screenshot, the user just asked why c2 was selected (see the
open context menu). The tool responded by highlighting f3,
c2 and the requires edge between them.

We can apply this tool to handle more realistic models,
which have been derived from a real Simulink implementa-
tion model (using the model transformation briefly explained
earlier).
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VI. PRODUCT DERIVATION

Given the product configuration a we now have to turn
this into an executable product. In the overview in figure 2
this corresponds to the process of Product Derivation .

A. Negative Variability

The first step towards the executable product is the deriva-
tion of the Application Simulink Model Ca .

Here, we apply a well-known technique called negative
variability: The Domain Simulink Model Cd contains the union
of all possible product-specific Simulink Models Ca . Based
on the configuration decisions in the product configuration a

we then copy the Simulink models while filtering out all
elements, which correspond to eliminated features. Hence, the
term negative variability.

This technique can, for instance, be implemented with ATL
model transformations (as demonstrated in earlier work [10])
or with openArchitectureWare’s XVar component. For the
approach discussed here we are currently experimenting with
a connector that connects our Configurator to openArchitec-
tureWare [8].

B. Pruning

The technique of negative variability is a first step, but it
is not sufficient to get a consistent model. We will briefly
discuss two situations, where we have to adapt more than just
removing some affected blocks.

The first situation arises with alternative features. With
such alternative groups of features, often the outputs of the

corresponding implementation blocks are connected to the
same port of a third block. This pattern is not a legal Simulink
model, because Simulink does not know anything about the
alternative group and the elements which will be removed later
to obtain a legal model.

Hence, to create and test such a model within the Simulink
tools, we have to introduce helper mechanism like Switch
blocks. When we later apply negative variability, these helper
mechanisms have to be adapted (or removed) as well. An
example is depicted in the figure 4, where two signals lead
into Block 5 and are handled by a switch block. Whenever,
only one of these two signals is left, we can remove the switch
block altogether.

A second situation, where we have to adopt additional
components in the Simulink model are Bus elements. These
elements allow to combine multiple signals into one logical
bus, to simplify the model (Bus Creator). In a different
location in the same model, such a bus can again be separated
into the single signals (Bus Separator). Whenever we apply
negative variability, some signals within these buses might
have to be removed (because the blocks providing these signals
are no longer present). Hence, we have to adapt the bus. See
the bus creator and bus separator in figure 4. In the given
example, the signals i3, o2 and o3 could be pruned.

VII. DISCUSSION

In this work we implemented an approach, where we
combined the feature, the mapping, and the implementation
model into one big feature model. To this end, we transformed
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Fig. 5. The model car of the VeRa Rapid Control Prototyping platform.

the Simulink blocks of the implementation model into features
and the mappings into constraints between the features and the
blocks represented as features.

We experimented with this approach by using a product line
of parking assistant applications, which is implemented using
a Simulink model and a Rapid-Control-Prototyping system
called VeRa. The model of the parking assistant can be simu-
late within Simulink or executed on a 1:5 model car, which is
shown in figure 5. The application contains variability because
of alternative distance sensors and an optional compass sensor,
which helps the car to orientate itself in a parking bay.

This model contains a large number of blocks, subsystems
and buses. Two parking algorithms are implemented to deal
with the variability: One which uses the compass information
and one without this information.

The transformation of a big Simulink model like our parking
assistant into a feature model does not need remarkable time.
So scalability in terms of execution time of the transformation
seems to stay in reasonable bounds.

However, for larger models, during configuration the cog-
nitive complexity and usability become an issue. Some tech-
niques how to mitigate these problem with interaction tech-
niques introduced to our S2T2 Configurator have been
described in [3]. Up to now, we do not know if our approach
scales in terms of usability. Hence, we intend to use large,

realistic Simulink models and evaluate the configuration ap-
proach.

During the implementation we made the experience that
Simulink is less strict about the syntax and the contents of
values and parameters. This causes problems during transfor-
mation because the mechanisms further down the tool chain,
such as Eclipse Modeling Framework (EMF, for handling
models), ATLAS Transformation Language (ATL, for trans-
forming models) and our Configurator are more strict about
values.

For instance, it is perfectly legal to name a Block ”S-
Function” in Simulink, actually including the quotes in the
value. However, this will lead to technical problem when
converting this to an EMF model. Similarly, Simulink does
not care if names of blocks are unique. In EMF, however,
it is desirable to have unique names since these are used as
identifiers in references.

VIII. RELATED WORK

In earlier work we presented the basic architecture of the
configurator [2] and discussed interaction techniques [3]. Here
we extend this work by (1) a new approach of visualizing
features and implementation, (2) using a configured feature
model for product derivation and (3) pruning approaches
to adapt the implementation model. The whole approach is
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evaluated using a parking assistant as application and a tool
chain using a Rapid Control Prototyping System.

Approaches which are related to our work can be roughly
grouped in two categories, (1) approaches to deal with variabil-
ity in domain-specific languages and (2) approaches to model
variability in model-based development with Matlab/Simulink.

Weiland [11] addresses the challenges of variability in
Matlab/Simulink. He uses marked standard Simulink blocks
like switches to represent the different choices. Hence, the
Simulink model contains the whole variability, a variant is then
chosen by setting the corresponding parameters and selecting
a specific signal path.

Kubica [12] starts from a feature model modeled in
pure::variants, where the developer has to choose the desired
features. Subsequently, the corresponding Simulink model
is build automatically from templates and fragment models
stored in the configuration tool.

There are other approaches, which are dealing with domain-
specific techniques as well. For instance, Voelter and Gro-
her [13] describe how to use openArchitectureWare [8] for
Software Product Line Engineering. They use aspect-oriented
and model-driven methods to generate products. To evaluate
their approach they discuss a product line of Smart Home
applications.

When dealing with variability, a typical challenge is the
mapping of features or variation points to their implementa-
tion. Czarnecki and Antkiewicz [14] used a template-based
approach where visibility conditions for model elements are
described in OCL. Heidenreich et al. [15] present FeatureMap-
per, a tool-supported approach which can map features to
arbitrary EMF-based models [16].

IX. CONCLUSIONS

In this paper, we presented an approach to the configuration
of product lines within an existing tool for feature configura-
tion.

The necessary translation from the implementation model
into feature models and the targeted feature modeling lan-
guage, present some limits with respect to expressive power.
We can only “translate” model structures that are related to
configuration, such as selection/elimination or x−requires−y
dependencies. More domain-specific concepts, e.g., voltages
or oscilloscopes cannot be represented in a feature model in
a meaningful way.

On the other hand, this translation enables us to configure
an integrated model of the whole product line within one
configuration tool. In particular, it provide the functionality
described in the introduction:

1) The user can browse dependencies between features and
the related elements in other models.

2) After applying configuration decisions he/she can im-
mediately see consequences in related models.

3) It is possible to apply configuration decisions in the
implementation model first and derive implications for
the feature model from that.

In future work, we intend to improve (1) the product
derivation mechanisms, including the connector which links
our Configurator to openArchitectureWare and (2) the model
transformation that implements the pruning.
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Real-Time Systems Group

Technische Universität Darmstadt

Werner Müller
Global Systems Engineering Methods

Adam Opel GmbH

Abstract—Software Product Lines (SPLs) are an approach to
improve reusability of software in a large number of products
that share a common set of features. In SPLs, Feature Models
(FMs) are frequently used to model commonalities and variabil-
ities. However, according to the best of our knowledge, there are
no approaches to automatically generate test cases on the basis
of a stand-alone FM. We introduce a method, which fills this
gap. In single system software testing, Classification Trees (CTs)
are a proven approach for generating test cases derived from
the original system specification. In this paper, we explore the
relations and similarities between FMs and CTs and integrate
both methods to a unified approach called Feature Model for
Testing (FMT).

I. INTRODUCTION

SPL-engineering is one of the most promising approaches
of the Software Engineering community to reduce the develop-
ment costs, for as well as to increase the quality of families of
similar software product instances [4]. As a consequence, soft-
ware product line engineering is successfully used in various
domains, including the domain of automotive software devel-
opment. In this area, the combination of highly parametrized
software of electronic control units (ECUs), together with
an abundance of configuration options of networks of ECUs
will soon lead to a situation, where (1) a single ECU may
be instantiated in at least 10.000 different ways and (2) the
software of a network of more than 50 ECUs in a single car
may exist in millions of different configurations.
As a matter of fact, we are, therefore, running into a situation
where each instance of a certain brand of car possesses a
unique configuration of the embedded software of all its ECUs.
Testing all these millions of instances of an automotive SPL in
the following traditional way is no longer feasible: create all
actually used instances of an SPL and then develop for each
instance a separate suite of integration test cases. Hence, the
automotive industry as well as engineers from other domains
are urgently looking for new methods how to systematically
generate sets of software product instances that represent
equivalence classes of instances with a sufficiently similar
behavior from a system integration testing point of view.
Furthermore, model-based and more traditional black and
white box testing approaches are adapted in such a way that
families of test models and derived test cases can be developed,

together with semi-automatic procedures that allow one to
select the appropriate test cases for a specific SPL instance.
Examining more closely the state-of-the-art of SPL develop-
ment and software testing approaches in the automotive in-
dustry we see that various kinds of feature modeling concepts
and tools are used for the design of SPLs and the selection
of needed instances [4], [21]. On the other hand, CTs and
related tools such as CTE [1] are successfully used for black-
box testing of single product instances. We are not aware
of any proposal how to combine feature modeling concepts
used for the description and selection of features (parameters,
options, ... ) of SPLs with CT-concepts used for the description
and selection of test case parameters of selected product
instances—despite of the fact that the borderlines between
feature selection at compile time and input parameter selection
at runtime are blurred, and the same parameter may either be
instantiated at compile time or flash time, to unlock a specific
function or changed at runtime to activate a certain mode of
operation.
To overcome these problems we will first present in Section II
of this paper the fundamentals of SPL description by means of
FMs and the specification of parameter equivalence classes for
testing purposes by means of CTs. Furthermore, this section
introduces our paper’s running example, a subset of a case
study provided by the Adam Opel GmbH which is a subsidiary
of GM (General Motors) Corp. Afterwards, we explain in more
detail the state-of-the-art of systematic testing approaches of
SPLs and black box testing with CTs in a related work section.
Section IV then systematically compares the basic modeling
elements of FMs, similar to the developed FMs in FODA [14]
and the classification approach as supported by the tool CTE
[1]. Based on this comparison, a tight integration of both
modeling languages is proposed and the abstract syntax of
the resulting feature and test parameter modeling language
“FMT” is presented. In Section V we describe the derivation
of a product with corresponding test cases from the FMT.
Additionally, we discuss an approach of testing SPLs using
FMT. The conclusion summarizes the advantages of such an
integrated feature and parameter equivalence class modeling
approach and lists a number of ongoing and future research
activities.
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II. FUNDAMENTALS

The contribution of this paper is to generate variants and
corresponding test cases on the basis of one representation of
the SPL.

A. Running Example

Our running example is a very simple subset of hard-
ware and software components of the recently released Opel
Insignia. We restrain ourselves to four sensors, two actors
(engines), and one software component. The sensors are rain
light sensor (RLS), turn indicator sensor (TIS), steering angle
sensor (SAS), and the vehicle speed sensor (VSS). The RLS
detects rain and the TIS indicates the driver’s choice to turn
left or right. SAS senses the steering angle and the VSS
senses the speed of the car. Two different types of engines
serve as hardware features: a 1.6 liter and a 2.0 liter turbo
engine. Additionally, we use one feature of the (Adaptive
Forward Lighting) AFL+ technology. The bending light is a
functionality which belongs to AFL+ and realizes an adaptive
curve light. All parameters presented in this paper are provided
by the Adam Opel GmbH. We use the running example to
exemplify the differences and commonalties between FMs and
CTs and to motivate our approach of integrating both to a
Feature Model for Testing (FMT).

B. Product Lines and Feature Models

SPLs provide a high level reuse of software in a spe-
cific problem domain [4], [21]. FMs are frequently used
to describe an explicit representation of the commonalities
and variabilities in an SPL. FMs consist of features each
representing “a system property that is relevant to some
stakeholder” as defined in [6]. One major advantage of using
FMs to model SPLs is that they offer a very intuitive way
to represent commonalities and variabilities. However, FMs
by themselves are insufficient for a complete modeling of
an SPL. Usually FMs are complemented by development
artifacts such as UML diagrams or code fragments that are
traced to the corresponding features. An FM provides a tree-
like structure and incorporates different node notations and
cross-tree-constraints. The first feature model was introduced
by Kang et al. in [14] as part of FODA, in 1990. In the
FM of FODA node notations like, mandatory, optional, and
alternative features can be modeled. It is also possible to use
require and exclude constraints between features, which are
described textually. Since the introduction of FODA, further
extensions of FMs were introduced to improve precision
and expressiveness, including amongst others cardinalities,
probabilities, and weighting. We can employ cardinalities to
formulate the different notations of features and groups of
features [7]. The probabilities can be based on empirical
data and/or system specifications and are used to state that
a certain feature is more likely than another one [8]. Weights
can be used to represent cost factors of features to help the
engineers to build products appropriate for a certain budget
[13]. Czarnecki et al. summarize some existing extensions
of the FODA FM [6]. However, our FM is very similar to

the original FODA with additional cardinality extension [7].
Table I depicts the used notation. We do not want to discuss

Graphical Notation Cardinality Formal description
Single features

edge with filled circle 1..1 feature is mandatory
edge with unfilled circle 0..1 feature is optional

Group of features
filled circles 1..n choose exactly

and connected edges one feature
unfilled circles n..m choose any combination of

and connected edges features, but at least one

TABLE I
NOTATION

every FODA extension because our approach is not limited to
a certain FM. We also aim e.g. to support the Orthogonal
Variability Model (OVM) proposed by Pohl et al. [21]. A
detailed description of the relation between FMs and OVMs is
given in [18]. We, therefore, assume that our unified approach
using FMs may also use the OVM approach.
The FM in Fig. 1 shows an excerpt of the Opel Insignia FM.
All dependencies and constraints within the FM have to be
taken into account when deriving a product.

Fig. 1. Feature Model of Opel Insignia

C. Software Testing with Classification Trees

After extracting a variant from the FM, suitable test cases
need to be built. For this purpose the CT-method was in-
troduced by Grochtmann and Grimm [11]. It provides an
approach to black box testing. Test cases can be extracted
by defining rules for valid input combinations. A CT consists
of classifications (boxes with bold lines), compositions (boxes
with thin lines), and equivalence classes (values in brackets).
Each equivalence class represents a disjoint subset of param-
eter values for a classification, while the composition splits
complex input parameters into a number of subcomponents.
To generate test cases from a specification using CTs the
following procedure needs to be applied:

1) evaluate the specification and identify all classifications
with the corresponding equivalence classes

2) build the CT
3) fill the test case table with respect to the CT using

parameter value combination heuristics
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4) extract all possible test cases from the test case table by
identifying valid combinations of equivalence classes
omitting illegitimate samples out of the test set

Fig. 2 depicts a variant of the Insignia SPL and a correspond-
ing CT to test this instance. Sensors is a composition, while
turn indicator is a classification of the equivalence classes
representing test values. The model is extracted from the
specification of the product instance. Test cases can be derived
easily by choosing a valid combination of equivalence classes.
This model can e.g. be used to check the output characteristics
of the AFL+ dependent upon the sensor intervals. The range of
the intervals is defined by the designer. It depends on suitable
test scenarios chosen by the designer or extracted from the
specification. A test case table is built, which incorporates all
relevant test cases in an abstract way.

Fig. 2. Classification tree of selected product instance

In Fig. 2 three test cases for the CT of the running example
are given. Each test case consists of the equivalence classes
marked by the black dots in a horizontal line.

III. RELATED WORK

In this section we focus on SPL-testing and the role FMs
play in that context. We also present research activities related
to software testing using the CT-method to generate test cases.

A. Testing SPLs

Miscellaneous approaches exist dedicated to SPL testing.
Although there are no real FM-based testing approaches, many
test methods partially use the FM of the SPL under test. A
summary of methods is given in [28]. The authors distinguish
between the following approaches to integrate testing into the

development process of SPLs:
Product-by-product testing: In the majority of cases, each
instance of an SPL is tested individually. This method is
called product-by-product testing. Each product instance may
be tested using the CT approach. However, this method is very
exhaustive and normally not practicable. For instance, in the
automotive field a single ECU like the engine control unit may
be instantiated in at least several 10.000 different ways. Since
a car may consist of up to 50 ECUs this results in millions of
different configurations. An individual test of all configurations
is feasible neither at the end of the assembly line nor during
the development process. One method to improve product-by-
product testing is to identify a minimal set of products which
is representative for all other products. However, finding a
minimal test set is an NP-complete problem [26]. Different
heuristics are used to approximate a minimal test set. A very
promising procedure is mentioned in [26]. The author uses a
simplified version of the OVM approach. Members for the
representative set of products are selected on the basis of
requirements. That means that certain products are chosen so
that all requirements are verified at least once. Optimization
problems are formulated to produce a minimal test set.
In [20], an approach with a motivation similar to [26] was
published. It uses dependencies derived from architecture and
implementation to extend the FM of the SPL under test. Sub-
sequently, pairwise testing that considers these dependencies
is used to generate a representative set of products.
In both approaches the generation of test cases with appropri-
ate input parameter values is out of scope.
Incremental Testing: In this approach, the first product de-
rived from the SPL is tested individually, for instance by using
the CT-methodology. With respect to the commonalities be-
tween the different products, the following products are tested
using regression testing techniques [17]. The challenging part
of this approach is to identify those parts of a product which
stay unchanged and those which vary. The question arises
if only the modified and added parts have to be tested. In
addition, one has to find out if the modified parts can be
tested individually or if some of them have to be tested in
combination with unchanged components.
Reusable assets: The goal is to create reusable test assets.
To ensure reusability, these assets are created during domain
engineering. For each product these assets are customized
during application engineering. Pohl et al. apply model based
testing techniques. The authors use activity diagrams which
are developed in domain engineering, based on requirements,
and customized during application engineering to derive test
cases. The so called ScenTED approach focuses on the reuse
of test cases [25], [24], [22]. It uses substitution in order
to derive configuration specific test cases. This is a very
promising approach which we will take into account in our
future work. However, test parametrization and the selection
of proper values is still an open problem.
Division of responsibility: In [28], this method is described
according to the levels of the development process, for instance
the V-model. For example, unit testing can be executed during
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domain engineering and the other levels of the V-model could
be executed in the application engineering phase.
All approaches confirm that testing is very challenging in
SPL-engineering due to the high level of variability. However,
the fact that the parametrization within an SPL leads to an
additional degree of variability is often neglected as well as
the fact that the borderlines between parameters that model
variability at design time and parameters that are instantiated
at runtime are often moving.
Furthermore, we are not aware of any SPL testing approach
that combines SPL variant selection strategies with parame-
ter value selection strategies as supported by CT. The tool
pure::variants [23] offers e.g. the option to store parameter
information in attributes of features, but gives no support
for the definition of equivalence classes etc. The approach
published in [19] is as far as we know the most similar
SPL testing method to FMT. It uses one decision model to
represent the variability of an SPL as well as to document input
parameters of the regarded system. An integrated SPL variant
and parameter value selection process is presented with rather
promising evaluation results. Compared to FMT presented here
the decision model is considerably less expressive and the
introduced selection process is considerably less expressive
than the algorithms for SPLs and the heuristics developed for
CT-based black box testing purposes.

B. Black-Box Testing Products with CT

CTs are a widely used technique for test case generation.
There are many publications related to this topic. A CT can
be used to test a single product instance derived from the
FM. The resulting product instance has specific actors and
sensors, which interact complying to the specification. A CT
splits the input domain of the sensors into relevant equivalence
classes. These classes can be used to test an actor that is
part of the product instance. Several approaches to improve
and extend CTs like the Classification Hierarchy Table [3],
the Classification Tree Transformer [27], Class Graphs [15],
adding attributes [16], and introducing a time line [5] have
been discussed. There are tools like the Classification Tree
Editor for Embedded Systems (CTE/ES) that support the
designer when trying to build a CT and its test table. The
CTE/ES provides a graphical user interface that enables the
designer to build a CT and the corresponding combination
table.
All CT-based testing approaches we are aware of share the
drawback that they deal with single product instances only
and thus are only compatible with a product-by-product SPL
testing approach.

IV. UNIFIED APPROACH - FMT

As introduced in the preceding sections FMs and CTs
have been used in software engineering for rather different
purposes until now. An in-depth comparison of the modeling
language constructs of FMs and CTs in the sequel reveals
that both modeling approaches share a majority of their
concepts. Therefore, this section is structured as follows: the

first subsection starts with the in-depth comparison of FM
and CT modeling constructs. Based on the results of this
comparison, the following subsection then selects a minimal
number of language constructs that correspond to a superset of
the concepts of both FM and CT. Finally, the last subsection
introduces a metamodel that captures the essential design of
the new integrated FMT modeling language from an abstract
syntax point of view.

A. FMT Language Constructs

In this section we develop language constructs which
present a minimal list of abstract language concepts that is
a superset of the concepts of FM and CT. Table II lists the
constructs of FMs and CTs and the corresponding constructs
for the unified approach: FMT. First, we have to define which
kinds of nodes the FMT needs to support. CTs distinguish
between compositions, classification, and equivalence classes.
Composition and classification (line 1 in Table II) in CTs
are nodes with child elements and equivalence classes (line
3 in Table II) are leafs in a CT. In FMs only compound
features contain child elements and leafs are always features.
To integrate CTs and FMs with regard to the different kinds
of nodes, we need to examine the differences. Compositions
are always mandatory and classifications are always optional
nodes. As a consequence, we can use the compound feature
known from FMs, and use cardinalities to state that the
compound feature is either optional (0..1) or mandatory (1..1).
Therefore, we adopt the compound feature for the FMT
approach. The leafs of CTs and FMs differ obviously. On the

Feature Model Classification Tree FMT
1. compound composition, compound feature

feature classification
2. Feature none Feature
3. none equivalence atomic feature

class
4. mandatory composition mandatory feature

feature (1..1) (1..1)
5. optional classification optional feature

feature (0..1) (0..1)
6. (1..n) equivalence (1..n)

features class features
7. (n..m) none (n..m)

features features
8. cross-tree- only between cross-tree-

constraints equivalence classes constraints
9. feature none feature

attributes attributes
10. feature none feature

types types

TABLE II
LANGUAGE CONSTRUCTS

one hand, an equivalence class represents a value or range
of values of a parameter necessary for testing. On the other
hand a feature in FMs can be any feature or property of
an SPL. To realize an integration we need a leaf, which is
capable to represent both information: a feature in general and
a representation of values of parameters. Another difference,
which we have to take into account for the integration, are the
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cardinalities. In FMs features and compound features may have
four different types of cardinalities to describe commonalities
and variabilities. In CTs three of them are present: composition
(1..1), classification (0..1), and equivalence classes (1..n). We
adopt the missing cardinality of FM to ensure that the FMT is
as expressive as the original FM. Furthermore, all four types
of cardinalities may be used on all levels of an FMT tree in
contrast to the much more restrictive approach of CT.

In addition, we allow cross-tree-constraints between all
nodes of the FMT (line 8 in Table II). Finally, we adopt the
node attributes and node types from feature modeling (line 9
and 10 in Table II).

B. Concept

We now describe the integration of FM and CT by means
of a metamodel depicted in Fig. 3. We developed this class
diagram on the basis of Table II. Please note that the depicted
class diagram is a small extract of the complete FMT meta-
model that illustrates the concept of the unified approach. It
does e.g. not contain any information concerning the test case
generation. The characteristics of the nodes of the FMT ap-
proach are described using the following classes: Compound
Feature, Feature, and Atomic Feature. The last one
can either be a feature representing its property in form of
a literal or an interval. This is realized using the two classes
Literal and Interval. These classes may represent:

• a value or a range of values of test parameters as known
from equivalence classes in CTs

• a value or a range of values of parameters needed for
product instantiation purposes

• the labels of features known from FMs.

Fig. 3. Simplified metamodel of the unified approach

A node in the FMT can only be a Compound Feature or
a leaf node (Literal or Interval), because the classes
Feature and Atomic Feature are abstract. Compound
Feature, Literal, and Interval inherit properties from
Feature. All nodes in the FMT may have a Type and an
arbitrary number of Attributes. In a Type the information
of the data type of a feature is stored if existent. This is
important, for instance, to distinguish between parameters of
an integer or real data type. Attributes can store any
information of the node. To obtain sufficient information to
properly plan the test effort it is for example important for
vehicle OEMs to embed information about realizing a feature

in hardware or software. Additionally, we can apply constraints
between Features and, therefore, also between Compound
Features and Atomic Features. According to FMs we
allow Require and Exclude constraints between all nodes.
Since we want to adopt the cardinalities, describing the relation
of features or groups of features to their parent node, we model
a relation between Features and Compound Features
by means of the class Dependency, which contains the
cardinality constraints as attributes (minimum and maximum
cardinality).
Fig. 4 depicts an object diagram that shows how dependencies
and cardinalities are used to distinguish between the four
different categories of subfeatures of Table II. A Feature is

Fig. 4. Object Diagram describing cardinality in FMT

always connected to its Compound Feature by a depen-
dency. Therefore, Dependencies with different cardinalities
can be placed beneath a Compound Feature.

V. APPLICATION

In this section we briefly describe the application of our
FMT approach by generating test cases for our running
example. Additionally, we discuss a tool, which is under
development in our research groups.

A. Generating a test case
We demonstrate the ability to derive products and test

cases on the basis of the FMT using our running example
depicted in Fig. 5. We now derive two different products
and present the handling of the parameters. The two products
differ because they use different types of engines which results
in different configurations. The 2.0 Turbo ECOTEC engine
allows a vehicle maximum speed of 240km/h and, therefore,
needs to be tested above 200km/h. The 1.6 ECOTEC engine
is limited to 192km/h and does not require the test instance
for vehicle speeds above 200km/h. Therefore, when testing the
product containing the 1.6 ECOTEC engine, the equivalence
class representing a speed range between 201 and 250 km/h
has to be disregarded.
For both instances we derived some example test cases, which
was done according to the well-known procedure described in
section II-C. In the following we will describe the FMT in
Fig. 5 which integrates the information of the FM of Fig.
1 and the CT of Fig. 2. Leaf nodes of the FMT, therefore,
either represent basic features of the Opel Insignia SPL or
equivalence classes of (runtime) parameter values. All non-
leaf nodes of the FMT are inherited from the FM of Fig. 1,
whereas leaf nodes are inherited from Fig. 1 and 2. The nodes
of the new FMT have to be interpreted as follows:
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Fig. 5. FMT of the running example

• All nodes below the sensors node represent optional
or mandatory Opel Insignia sensors together with their
output parameter value definitions which are used as input
parameters for control function test cases.

• All nodes below the actors node represent available actors
(actuators) for the Opel Insignia such as different types
of engines. Input parameters that control the behavior of
these actors have been omitted due to lack of space. These
missing parameters are output parameters of to be tested
control functions. Specifications of their values can be
used as oracles during the execution of test cases.

• A node like bending light represents a group of control
functions that shall be tested. Again due to lack of space
we do assume that bending light consists of a single
function only which consumes output values of a subset
of all sensors and produces input values for a subset of
all actors defined in Fig. 6.

Node attributes (which are not visualized in Fig. 5) are used
to distinguish these different categories of nodes of FMTs as
well as for other purposes like the definition of additional node
selection constraints (cf. metamodel of Fig. 3). Furthermore,
Fig. 5 shows that the optional bending light functionality still
requires the optional rain light sensor (as well as all other
mandatory sensors of our SPL). The fact that the bending
light control function also requires input values from the
three other mandatory sensors is not visualized in Fig. 5.
A more realistic FMT splits the bending light functionality
into a number of subfunctionalities such as curve light, rain
light, city light, or highway light which have to be tested
separately. As a consequence we have to distinguish between
features (functions, parameters, sensors, actors) that are part
of a regarded product instance, but irrelevant for a specific test
case, and features that are directly involved in a specific test
case. The test case specifications in the lower part of Fig. 5
use black and white shapes for these two different purposes.

The selection of a specific variant and associated test cases
is specified in a style adopted from CTs (due to lack of space
the FMT metamodel of Fig. 3 does not cover these elements).
Different shapes on vertical lines are used to distinguish
between the following three cases, when a certain feature or
parameter is selected:

1) square: selection at design time
2) circle: selection at installation time (flash time)
3) triangle: selection at runtime

The first two options correspond to the selection of a certain
variant in an FM, whereas the third option corresponds to the
selection of test cases with parameter values in a CT.

Regarding the bottom part of Fig. 5 we can see that the type
of engine is of course selected at design time. The bending
light functionality can be added or removed by firmware
updates as long as the optional rain light sensor is present.
The fact that all presented variants with their associated test
cases do contain the optional rain light sensor is implicitly
represented by the fact that all test cases possess a parameter
value definition for this type of sensor (Wet or Dry). Black
triangles represent Wet and Dry values that are actually used
in a specific test case, whereas white triangles represent the
fact that the rain light sensor is present and computes output
values that are not needed as input for the just regarded test
cases. Finally, Fig. 5 shows that four of the six depicted test
cases are related to the functionality of the bending light (black
bending light circles). In general, the distinction between black
and white shapes related to other nodes of the FMT reflect the
information which features and parameter values are relevant
for which test case. It consists of nodes describing the product
line and nodes for the test cases. Test case values are depicted
in brackets.
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Fig. 6. Using FMT for SPL testing

B. Testing SPLs using FMT

In this subsection we describe in more detail how the FMT
approach is used for SPL testing purposes, i.e. we sketch
a methodology how to generate the bottom part of Fig. 5
automatically. For this purpose we describe the current state
of development of our MoSo-PoLiTe project, which realizes
the test methodology described in [20], but use FMT instead
of FM. The generation of a representative set of products is
subdivided into three steps [20].

1) Adding dependencies derived from system architecture
and code as additional edges in the FMT.

2) Simplification of the FMT such that the resulting FMT
uses a minimal set of modeling concepts.

3) Integrated selection of variants and runtime parameter
values using the pairwise combination approach of [20]

Fig. 6 depicts the individual steps. We refer to [20] for further
details. To use the FMT approach we are currently developing
an FMT tool suite using MOFLON and GEF [10]. MOFLON
is a meta-CASE tool for rapid development of CASE tools
and tool adapters [2] developed at the Technische Univer-
sität Darmstadt. MOFLON supports model analysis, model
transformation, and model integration for standard modeling
languages like UML or domain-specific modeling languages.
The abstract syntax of the new FMT modeling language as
well as its static semantics rules are described using the
OMG metamodeling approach supported by MOFLON, i.e. a
combination of MOF 2.0 and OCL 2.0. Using this description
as input we can generate an FMT model repository imple-
mentation together with all specified static semantics rules
in Java. Furthermore, a generic text-oriented user interface
for the definition of FMT instances is generated, too. The
implementation of the user interface of a visual FMT editor
on top of GEF is ongoing work. Model transformation rules

(graph transformations) can be used to implement automat-
ically executable FMT transformations. The last processing
step of Fig. 6 has been implemented by modifying an existing
Java implementation of a pairwise testing tool. The modified
implementation in addition takes all kinds of dependencies
between FMT nodes into account. The incorporation of CT-
parameter value selection heuristics dealing e.g. with illegal
or stress parameter equivalence classes (cf. Section II-C)
is subject of ongoing research activities. The same is true
for the first processing step depicted in Fig. 6. Right now
dependencies that capture the fact that certain features or
parameters interact from an implementation point of view
have to be added manually. The adaption of ideas how to
automatically derive this information from SPL architectures
or code is also subject to future research activities.
According to the approach described in [20] we use the
pairwise combination method to generate a representative set
of products. At this point the major advantages of the FMT
approach comes into play. We can generate the test cases
for the selected products semi-automatically as described in
the previous section. To summarize, we benefit from several
advantages using FMT instead of FM. The FMT is more
precise than FM when it comes to parametrization and for each
product of the representative set we can derive the correspond-
ing test cases semi-automatically. Likewise, the FMT describes
parameters explicitly, therefore, we can consider dependencies
which only occur between certain values of parameters.

VI. CONCLUSION AND FUTURE WORK

Within this paper we have presented a new approach how
to integrate SPL engineering with feature models (FMs) and
black-box testing of system functions with CTs. Our mo-
tivation for this line of research is based on the fact that
both FM- and CT-based methods are, e.g., well established
in the automotive industry for embedded software system
development purposes. On the one hand FMs are a suitable
modeling method to describe commonalities and variabilities
of an SPL. CTs, on the other hand, support the generation of
test cases, using equivalence classes of parameter values of a
regarded system function. We are not aware of any integrated
approach that combines both methods for the generation of
variants as test candidates and the associated test cases. Today,
FM-based methods are first used to select one variant after
the other; then for each of these variants a separate CT has
to be defined which is then used to guide the related test case
selection process. The integration of FM and CT in the form of
the presented new FMT (Feature Model for Testing) method
seems to be the perfect symbiosis of two very promising
and widely used techniques. The key advantages are: (1) we
use a single model for SPLs and test case generation, (2)
approaches known from FMs and CTs can still be applied,
and (3) generation algorithms of variants and test cases can
be combined. We are currently working on different projects
using FMT for SPL testing purposes including the BMBF
project feasiPLe. Ongoing and future research activities will
address the following problems:
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• Checking the consistency of the FMT with respect to
an additionally available specification of the behavior of
the studied system. The FMT needs to incorporate the
complete functionality described in the specification. This
must be done before generating test cases.

• In embedded systems, our main application area, real-
time constraints play an important role. Furthermore, test
cases often have to be executed in a specified order and
continuous parameter values reflecting physical properties
of a controlled system and its environment have to be
synthesized from sequences of selected discrete parame-
ter values using well-known interpolation methods.

• Defining a measure of completeness for the generated test
scenarios with respect to an additionally available system
behavior specification is challenging, too [26]. Complete-
ness checkers are useful to evaluate the generated test
cases and to find gaps and corner cases.

• The nodes of the FMT have to be extended to describe the
cost of creating configurations and requirements priority
which is essential for complex SPLs in the automotive
sector.

• We are currently applying our approach to several SPL
scenarios. These are real world examples and FMTs
generated randomly.

• We apply the pairwise testing approach [20] to generate a
representative set of test cases and measure the coverage
using appropriate and well known coverage metrics.

We focus on model checking techniques to address some of the
problems stated above. Hence, another field of our research is
the use of model checkers for test case generation and FMT
validation. For this purpose, we need to develop a tool that
is able to translate the FMT and the resulting test cases into
boolean formulas, which can be evaluated by a model checker.
Methodologies to translate an FM into a boolean formula have
already been introduced in [12], [9].
Finally, we have to address the problem that realistic complete
FMT models cannot be displayed directly as depicted in
this paper. Various methods have to be developed how to
collapse/hide irrelevant substructures efficiently.
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Abstract—Variability on source code level in automotive soft-
ware engineering is handled by C/C++ preprocessing directives.
It provides fine-grained definition of variation points, but brings
highly complex structures into the source code. The software
gets more difficult to understand, to maintain and to integrate
changes. Current approaches for modeling and managing vari-
ability on source code do not consider the specific requirements
of the automotive domain. To close this gap, we propose a model-
driven approach to support software engineers in handling source
code variability and configuration of software variants. For this
purpose, a variability model is developed that is linked with the
source code. Using this approach, a software engineer can shift
work steps to the variability model in order to model and manage
variation points and implement their variants in the source code.

Index Terms—automotive software engineering; programming;
model-driven engineering; variability modeling;

I. INTRODUCTION

Today the automotive industry provides customers a lot of
possibilities to individualize their products. They can select
from a huge set of optional fittings, e.g., parking assistant, rain
sensor, intelligent light system, and/or comfort access system.
The possibility to configure individual vehicles leads to the
situation that both OEMs (Original Equipment Manufacturers)
and suppliers have to capture explicitly potential variation
points in their artifacts [1]–[3].

Thereby, the existence of variation points range over the
whole electric/electronic (E/E) development process. They are
available in the requirements, system specification, architec-
ture design, source code, but also in the test and integration
phase. Beyond that, variation points arise also during pro-
duction, operation and maintenance phase. This means that
in the whole product life cycle for a vehicle which hold up
approx. 20-25 years, there evolve various types of variation
points [4], [5]. Therefore, artifacts of different phases in the
development process have to be investigated in order to explore

their specifics [3], [6].
This paper deals with variability on source code level. Here,

we focus on the programming languages C/C++, because they
are the most widely used languages in automotive software
engineering. With about 51% C has the most portion followed
by C++ with about 30%. Assembler comes with about 8% and
all other languages are applied less than 5% [7].

Variation points are implicitly modeled by implementing
C/C++ preprocessing directives. In this way, variable (condi-
tional) compilation results in specific software variants. This
approach allows fine-grained definition of variation points,
but brings highly complex structures into the source code.
The software gets more difficult to understand, to maintain
and to integrate changes. The main reason for this is that a
software engineer has no support on source code level beside
the programming language. Particularly, the user has to deal
simultaneously with problem space, configuration knowledge,
and solution space [8]. If a huge number of variation points
exists, knowledge about a valid configuration gets difficult.
Furthermore, a software developer has to find out the scattered
code and the dependencies of one variant manually which is
also very hard and time consuming.

There exists a wide range of techniques and mechanisms
for modeling and managing variability [2], [9]–[15]. Most of
them handle variability on a higher abstraction level. Elements
of reusability are primarily software components, or constructs
of object-oriented programming such as classes and methods
which are replaced for specific variants of software. A support
for fine-grained specifications of variation points on source
code level are provided by a few number of concepts and tools
[16]–[20], but they do not consider the specific requirements
for the automotive domain. Particularly, safety critical applica-
tions come under regular code reviews and therefore have high
demands on source code quality. Consequently, readability and
understandability of source code are of high importance, but
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the above mentioned existing solutions do not consider this
sufficiently.

To close this gap, we propose a model-driven approach
to support software developers in handling versatile source
code and configuration of software variants. For this purpose,
we have developed a concept to separate problem space,
configuration knowledge, and solution space. The problem
space includes a common cardinality-based feature model to
capture and manage variability [10], [11]. Furthermore, it
supports the possibility to configure a software variant. The
configuration knowledge can subsequently be transformed to
the solution space. The solution space contains the source
code. Here, we use a view-based approach in order to display
the current configuration and hide everything that do not
belong to the configuration.

The paper is structured as follows: In Section II, we
analyze preprocessing directives that can express variation
points. Particularly, a detailed consideration will show where
problem space, configuration knowledge, and solution space is
integrated. Furthermore, the problems that we will treat will be
described in detail by using an example. In Section III, we will
describe our approach to solve the problems. Here, we explain
the separation of problem space, configuration knowledge, and
solution space and go into detail of the three parts. Section IV,
contains a short description of our implementation approach.
In Section V, we will check if we have solved the mentioned
problems. Finally, Section VI will summarize the paper.

II. ANALYZING SOURCE CODE VARIABILITY

In this section, we will investigate how variability can
be expressed using C/C++ preprocessing directives. We will
introduce an example in order to explain arising problems of
this approach in more detail.

A. Expressing Variability with C/C++ Preprocessing Direc-
tives

The current approach to express variation points and to
configure specific software variants is to apply C/C++ pre-
processing directives. For this purpose, statements for condi-
tional inclusions are used, e.g., #ifdef, #ifndef, #if,
#elif, #else (see Figure 1) [21]. In the following, we will
use preprocessing block or block as a synonym for complete
preprocessing directives.

The identifier for #ifdef and #ifndef directives
in Figure 1a and 1b is a point of variation, because depending
on its evaluation the contained source code is either included
for compilation or not.

In the same way, the constant-expression in #if
and #elif preprocessing directives shown in Figure 1c
and 1d is also a point of variation. If it is evaluated to nonzero,
the appropriate part of source code is included for compilation,
otherwise not. Note, that a constant-expression allows
more complex arithmetic and logical expressions. In the fol-
lowing, we will use block rule or simply rule as a synonym
for a constant expression.

#ifdef identifier
. . .

#endif
(a) #ifdef preprocessing directive.

#ifndef identifier
. . .

#endif
(b) #ifndef preprocessing directive.

#if constant-expression
. . .

#endif
(c) #if preprocessing directive.

#if constant-expression1
...

#elif constant-expression2
...

#elif constant-expressionN
. . .

#else
. . .

#endif
(d) #if, #elif, #else preprocessing directive.

Fig. 1. Preprocessing directives to handle variation points before compilation.

Fig. 2. Multilayer information in the solution space.

Analyzing preprocessing directives in detail, we have iden-
tified that different aspects of variability information is mixed
into the code. We have decided to divide the information
in analogy to Czarnecki’s generative domain model which
consists of a problem space, solution space and a configuration
knowledge mapping between them [8]. Figure 2 illustrates this
by an example.

The constant-expression Feature_A && Feature_B of
the #if preprocessing directive is used to control the in-
clusion of the contained source code. Thereby, an identifier
references a feature that is implemented in that code block,
e.g., Feature_A and Feature_B. This kind of information
is part of the problem space. The linking of an identifier
with arithmetic and/or logical operations reflect configuration
knowledge. Finally, the contained code reflect the implemen-
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1 #if PRIO_USE_SORTED_OBJECTS == 1
2 #define PRIO_QUICKSORT 1
3 #define PRIO_INSERTIONSORT 0
4
5 ...
6
7 #if PRIO_QUICKSORT
8 ...
9 #endif

10
11 #if PRIO_INSERTIONSORT
12 ...
13 #endif
14
15 static void sortTracks(...) {
16 #if PRIO_QUICKSORT
17 quicksortTrack(...);
18 #elif PRIO_INSERTIONSORT
19 insertionsortTracks(...);
20 #else
21 #error missing ...
22 #endif
23
24 }
25 #endif

Fig. 3. An example for variability handling with preprocessing directives.

tation which is part of the solution space.

B. Problem Description by Example

In this section, we will explain the problems that currently
exists when dealing with C/C++ preprocessing directives to
handle variability information. For this purpose, we will in-
troduce an example.

Typically, sensors are adopted to collect data. In some
situations it is necessary to prioritize the captured data. If so,
different variants of sorting algorithms can be applied, e.g.,
quick-sort or insertion-sort.

The associated C source code is shown in Figure 3. The
code between line 1 to 25 is only included if prioritization is
selected. One of the sorting algorithms have to be configured
(set to 1) in order to integrate the appropriate source code into
the software variant. In our case, it is the quick-sort (see line
2). Particularly, the sortTracks(...) function (line 15)
includes only the part of the source code which belongs to the
quick-sort algorithm (line 17).

Although using preprocessing directives allows fine-grained
and flexible specification of variation points, the source code
gets more difficult to understand, to maintain, and to integrate
changes. Analyzing the source code, we have identified four
main problems, i.e.,

1) mixing problem space, configuration knowledge and
solution space,

2) viewing all variation points without the knowledge of a
valid configuration,

Fig. 4. Separation of problem space, configuration knowledge, and solution
space.

3) code-variants of one variation point are scattered and
have to be find manually, and

4) no explicit capturing of dependencies between variation
points.

As described in Section II-A we have detected information
in the source code that belongs to both problem space and
solution space. For example, line 1, 7, 11, 16 etc. in Figure 3
are variability information that are part of the problem space
and configuration knowledge. Even so, they are strongly
integrated into the solution space, i.e., the source code.

Furthermore, considering the source code example, a soft-
ware engineer always has to work with all variation points
simultaneously, even most of them are not part of a specific
variant. For example, the insertion-sort algorithm in Figure 3
does not belong to the variant if quick-sort is chosen (lines 3,
11-14, and 18-19). If more complex code sizes are regarded,
solving a valid configuration gets more difficult.

Moreover, code-variants of one variation point are typically
not implemented in a complete block but rather are scattered.
For example, the quick-sort variant in Figure 3 appears in
lines 2, 7-9, and 16-17. Particularly, this complicate including
changes into code-variants or their appropriate preprocessing
directives. If the code gets more complex, finding the code-
variants manually gets very hard and time consuming. If
changes into code or conditions have to be done, all relevant
source code have to be find out manually to hold them
consistent.

Finally, in many cases variation points are not isolated but
depend on each other. In the source code, there is no explicit
capturing of such information. For example, quick-sort and
insertion-sort in Figure 3 are only included if a prioritization
is necessary. If so, then they have an exclusive dependency on
each other, i.e., only one can be chosen.

III. MODEL-DRIVEN SUPPORT FOR SOURCE CODE
VARIABILITY

To deal with the identified problems mentioned in Sec-
tion II-B, we propose a model-driven approach to treat source
code variability and to support configuration of software
variants. Therefore, we have developed a concept to separate
problem space and configuration knowledge from solution
space. The problem space is supported by a variability model
that is based on Czarnecki’s cardinality-based feature model
[10], [11] (in the following we will use the term variability
model as a synonym). Here, variation points are captured and
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Fig. 5. Meta-model of the cardinality-based feature model.

managed. The configuration knowledge contains all informa-
tions to transform knowledge from problem space to solution
space. The variability model supports the configuration. The
solution space includes the source code. By integrating a
view-based approach, only the configured part of the source
code is displayed. This reflects the result from problem space
transformed to solution space.

Figure 4 gives an overview of the separation of our ap-
proach. The general idea is, that a software developer not only
work on the solution space, i.e., the source code, but also shift
work steps into the variability model that is able to capture
the problem space and configuration knowledge.

A. Source Code Variability Model

The focus on this paper does not lie on defining a new
variability model, but rather using existing solutions to support
variability on source code level. Analyzing existing approaches
we have decided to adapt a cardinality-based feature model.
Since it is a very common way to model variability, an
integration of other tools and models get more simple. Partic-
ularly, this integration would allow using variability modeling
techniques which are applied on a more abstract level, i.e.,
managing variability for classes, methods, objects etc. Our
approach can then be used for fine-grained modeling of
variability, i.e., on source code lines.

Figure 5 shows the meta-model for the cardinality-based
feature model. It allows to define a tree-based structure.
Thereby, a Concept node contains exactly one feature, i.e.,
the rootFeature. A Feature consists of an arbitrary number
of children features. Moreover, a Concept node references
an arbitrary number of Groups which define the number of
elements in a group that can be specified for a configuration.

B. Transformation of Configuration Knowledge

To profit from the separation, it is an essential part to shift
work steps to the central variability model. For this purpose,
a connection between variability model and source code is
necessary. To achieve this, we will use preprocessing directives
which were, as described in Section II, the primary concept
to express variation points. In this way, it will be possible to
automatically add or delete preprocessing directives.

A user configures a specific variant whereas every modifi-
cation of the source code, i.e., adding, deleting or modifying
code lines, is linked with that configuration. Later on, it will
be possible to display or hide code blocks depending on a
specified configuration.

The basic principle for every transformation is the con-
figuration knowledge from the variability model. If features
F 1, F 2, . . . , F n are selected, a transformation into a rule
of the form F_1 && F_2 && ...&& F_n is executed. In
the following examples, we always assume that this constant-
expression is used.

Depending on the modification of the source code, the
constant-expression is integrated into a preprocessing direc-
tive.

1) Modification of Source Code Outside Existing Prepro-
cessing Blocks: The most simple case is when a software
engineer modifies code outside existing preprocessing blocks.

a) Adding: If we have a rule of the form F_1 && F_2
&& ...&& F_n, then it is embedded to an #if preprocess-
ing block:

#if F_1 && F_2 && ...&& F_n
. . .

#endif

In this way, the code is only included for compilation, if the
appropriate configuration is selected.

b) Deleting: Deleting code lines during a given configu-
ration F 1, F 2, . . . , F n do not delete them from the source
file, but implies that the deleted lines should not appear in
that configuration. For this purpose, we use the following #if
preprocessing directive with the deleted code lines:

#if !(F_1 && F_2 && ...&& F_n)
. . . deleted code lines

#endif

2) Modification of Source Code Inside Existing Preprocess-
ing Blocks: A slightly different case arises, if modifications
inside existing preprocessing blocks are made.

a) Adding: If code is added inside a preprocessing block,
then it is split in two blocks with the constant-expression as
before and the added code lines are embraced with an #if
preprocessing directive and a rule F_1 && F_2 && ...&&
F_n that is transformed from the specified configuration.

#if constant-expression 1
line 1
line 2
line 3

#endif

⇒

#if constant-expression 1
line 1

#endif
#if constant-expression 2

line 2
#endif
#if constant-expression 1

line 3
#endif

4 Implementation

5 Related Work

6 Conclusion
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expression F_1 && F_2 && ...&& F_n (in the figure
above, denoted as constant-expression_2).

This adaptation differs from the transformation for modifi-
cation of source code outside existing preprocessing directives.
If we would transform the added code lines in the same way
as in Section III-B1a then we would get a nested structure. But
this would bring an implication into the code that possibly is
not planned by a software developer. For example, if line_2
would be nested into the superior preprocessing block, then
the code lines would only exist in a variant that includes
a configuration of the superior block. By dividing them in
multiple blocks of preprocessing directives this side effect
is avoided and the described implication is still possible if
the software engineer uses the configuration of the variability
model.

b) Deleting: When deleting code lines, the mentioned
problems for adding code do not appear, because the reference
to the superior preprocessing block is mandatory and must be
kept, so that the constant-expression of the superior prepro-
cessing block and the constant-expression that is transformed
from the current configuration must be included.

#if constant-expression 1
line 1
line 2
line 3

#endif

⇒

#if constant-expression 1
line 1

#endif
#if constant-expression 1

&& !constant-expression 2
line 2

#endif
#if constant-expression 1

line 3
#endif

4 Implementa ion

5 Related Work

6 Conclusion
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In the example above, the red marked and struck out code line
(line_2) on the left side is deleted during a configuration
F 1, F 2, . . . , F n. In that case, line_1 and line_3
are embraced with the preprocessing block as before and
line_2 is included into an #if preprocessing block
with a constant-expression constant-expression_1
&& !constant-expression_2, where constant
expression_2 is the result of the transformation of the
current configuration, i.e., F_1 && F_2 && ...&& F n.
We have decided to split the preprocessing block but nesting
them would in this case also be possible.

If only #if !constant-expression_2 would be
included then the deleted code line would be appear in
each variant that do not contain the configuration F 1,
F 2, . . . , F n. Particularly, it would be independent from
constant-expression_1.

3) Modification of Source Code for Complete Preprocessing
Blocks: Beside of adding or deleting code lines, in some
situations it is also reasonable to add or delete complete
preprocessing blocks in a given configuration.

a) Adding: If it is necessary to add a preprocessing block
of one variant (or configuration) into another one, this could be
done by configuring the variant where the code block appears,
copying it, configuring the variant where it should appear,
and then pasting it. This method is a little bit uncomfortable.
Therefore, we support adding complete code blocks into a
configuration automatically without copy/paste actions. For

this purpose, we only have to extend the constant-expression
of the preprocessing block which include the code lines that
should appear in the current configuration.

#if constant-expression 1
line 1
...
line n

#endif

⇒

#if constant-expression 1
|| constant-expression 2

line 1
...
line n

#endif
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In the example above, the blue marked code lines
on the left side should included into a configuration
F 1, F 2, . . . , F n. The appropriate preprocessing
block after transformation is shown on the right side.
The code line now would appear in configuration
that is transformed to constant-expression_1
or constant-expression_2, where constant-
expression_2 is the current configuration F 1, F 2, . . . ,
F n.

b) Deleting: If a complete preprocessing block is
deleted, an adaptation of the constant-expression should be
made. Thereby, the transformation of a configuration is moti-
vated by the same principle as for deleting code lines inside
existing preprocessing blocks.

#if constant expression 1
line 1
...
line n

#endif

⇒

#if constant-expression 1
&& !constant expression 2

line 1
...
line n

#endif

Deleting
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Based Approach for Modelling and Deploying Config-
urable Software Product Families. In PFE 2003: Software
Product-Family Engineering, 5th International Workshop,
volume 3014 of Lecture Notes in Computer Science, pages
225–249 Spring r, 2003

[3] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.
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In the example above, the red marked and struck out code
lines on the left side are deleted during a configuration F 1,
F 2, . . . , F n. The result of the transformation with the
given configuration is shown on the right side. Considering
the constant-expression on the right side, the appropriate
code lines only appear if constant-expression_1
but not constant-expression_2 holds, where
constant-expression_2 is equal to F_1 && F_2 &&
...&& F_n.

C. Views on Source Code

The solution space of our approach is the source code. In
order to take the advantages of the division the transformation
of configuration knowledge must be reflect in the source code.
For this purpose, we have adopt a view-based approach where
all source code is hidden that is not part of the configuration.

The configuration is made on the cardinality-based feature
model which was explained in Section III-A. Depending on
the configuration, all constant-expressions of preprocessing
directives are evaluated to decide whether the block should
be displayed or hidden. In principle, this emulates the prepro-
cessor with the advantage that targeted configurations can be
viewed.

IV. IMPLEMENTATION

The described concepts are implemented in a way that they
can be integrated into existing development processes and
projects as seamless as possible. Therefore, we had to follow
general requirements:

48



Solution Space

Problem Space

Configuration
Knowledge

Fig. 6. A screenshot of the developed Eclipse plugin.

1) At all time, valid C/C++ code must be available.
2) Editing and maintenance of source code must be possi-

ble without the need for specific tooling.
3) Additional work load for a software developer must be

as low as possible.
4) Dynamic changes must be feasible.

The implementation is fulfilled by developing a plugin for
the Eclipse Framework [22]. The cardinality-based feature
model is implemented with support of the Eclipse Modeling
Framework (EMF) [23]. An editor for the feature model was
also generated by using EMF which can be used in parallel
to the Eclipse C/C++ Development Tooling (CDT) [24]. A
screenshot is shown in Figure 6.

The left part contains the editor where C/C++ source code
can be written. The right part contains a view on a configurable
feature model. The software developer can use both parts in
parallel in order to configure a specific variant of interest so
that all other code lines that are not included into the variant
are hidden. In some situations, not all modifications on model
configuration should influence the view on the source code.
In the same way, not all modifications on source code should
influence the selected configuration. For this purpose, the user
gets the possibility to explicitly select a control element that
triggers the linking between code and model. If the linking
is stopped the transformation is subsequently executed. This
means, that all preprocessing directives are added into the
source code.

The editor to configure a variant has the ability to select or
deselect features and to solve implications. Furthermore, the
configuration of invalid variants are avoided. At the same time,

it supports a software developer to detect modeling errors.

V. PROBLEMS REVISTED

If we consider again the listed problems in Section II-B, we
observe that they are solved by the described concepts.

The core problem was that problem space, configuration
knowledge, and solution space were mixed. By dividing them
we have formed a basis to solve the other problems. Knowl-
edge about a valid configuration is given through support
of the configurable feature model. Code-variants must not
find out manually, but are solved by the configuration which
then is transformed to the source code. By adopting a view-
based approach only the relevant code lines are displayed.
Dependencies between variation points are also stored in the
feature model by expressing cardinalities.

Overall, complex work steps are now shifted to a model
where they can be handled more easier. The software engineer
can now concentrate on the main work, i.e., developing
software.

VI. CONCLUSION

In this paper we have described a model-driven approach
to handle source code variability. We have outlined existing
problems, analyzed them in detail in order to propose a
solution. The main problem is that problem space, configu-
ration knowledge, and solution space is mixed, i.e., a software
engineer works only on the source code without any support
to treat variability. This leads to the situation that source code
is overcrowded with variation points without knowing how
they depend on each other. In our approach we have suggest
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a division of problem space, configuration knowledge, and
solution space. A cardinality-based feature model is adopted
and linked with the source code in order to shift work steps
into the model. By a configuration support modifications on
the source code are linked with the model. Furthermore,
transformation of configuration is supported by adopting a
view-based approach.

In future work, we want to integrate this approach with
earlier phases of an E/E development process. Software ar-
chitectures are one essential artifact that need support for
variability handling. If variability support is provided, an
integration with the source code level would be an essential
benefit.

REFERENCES

[1] P. Clements and L. Northrop, Software product lines: practices and
patterns. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.
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Abstract—Feature selection is the process of determining
features that should be included in a product to satisfy the
requirements for the various stakeholders. Feature binding time
refers to the time at which variable features are selected for a
product and their implementations are bound into the product.
A feature may have different binding times for different prod-
ucts. In this paper, we present an aspect-oriented approach to
supporting flexible feature binding time.

Index Terms—component; formatting; style; styling;

I. INTRODUCTION

In software product line engineering, a product is derived
by selecting some of product line features that satisfies the
product requirements. Feature selection is the process of
determining features that should be included in a product to
satisfy the requirements for the various stakeholders.

The time at which features are selected for a product may
vary depending on marketing strategies. For instance, one
marketing strategy may be to deliver products to customers
by prepackaging product specific features, as customer needs
in this market rarely change. In this case, product specific
features may be selected for a product during product build
time. On the other hand, another marketing strategy may be
to allow customers to start with a product with core features
and then grow to a bigger one by adding new features at load
time or run time. In this case, product specific features may
be selected for products at product load time or run time.

Feature binding time refers to the time at which variable
features are selected for a product and their implementations
are bound into the product. Feature binding time has signif-
icant influences on the way a feature is implemented. There
are many variability mechanisms for realizing feature binding
times. Some of those include conditional compilation, macro
processing, virtual dispatch tables, reflection, dynamic class
loading, etc.

These mechanisms, however, are strongly tied to a particular
choice of binding time [1]. The problem may occur when a
feature may have different binding times for different products.
That is, the variability of feature binding time affects the way
a feature is implemented. To support multiple feature binding
times effectively, code for feature binding times needs to be
separated from feature implementations.

Aspect-oriented programming (AOP) provides effective
mechanisms for separating crosscutting concerns from mod-

ular components. Since the code for multiple feature binding
times may affect multiple feature implementation components,
this paper uses AOP mechanisms to achieve flexible feature
binding time. That is. The approach makes it possible to
choose among compile-time, load-time and run-time binding
for selected features.

For better understanding of this paper, the next section
presents the concept of feature binding. Based on this un-
derstanding, aspect-oriented patterns for supporting flexible
feature binding time are presented in section 3. Section 4
discusses areas requiring further research and concludes this
paper.

II. FEATURE BINDING

A feature has to be bound into a product to provide its
capability to users. As shown in Fig. 1, an unbound feature
must be first included into a product to provide its capability.
However, it is considered that a feature is not bound into a
product, if it is not available to users although included in
the product. Therefore, feature binding means that a feature
is included into a product and become available to users. It is
important to note that available features that are bound into a
product can provide their capabilities to users only when they
are active.

Unavailable Inactive Active

Available to users

activated

deactivated

made available

made unavailable

selected

deselected

Included in a product

Unbound

Fig. 1. Feature Binding Context.

For feature binding to occur, the inclusion and availability of
a feature may be decided simultaneously at compile time, load
time, or run time. Or, the inclusion of a feature is decided at
compile time, but its availability may be postponed until load
time or run time.
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Feature binding at compile time: In this case, the code
related to the selected features is included into a product and
becomes available to customers at compile time, while the
code for deselected features is excluded from the product. This
results in different packaging of the product.

Feature binding at load time: There are two cases for load
time feature binding to occur. The first case is that features
are included into a product at compile time and become
available at load time. The second case is that the inclusion
and availability of features are decided at load time. The main
difference between the compile feature binding and the load
time feature binding is that the software derived from the
compile time feature binding must be compiled, whereas that
from the load time feature binding needs not.

Feature binding at run time: Feature binding in this class is
similar to the load time feature binding. That is, features are
included into a product at compile time and become available
at run time or included at product load time and available at
run time. Alternatively, both the inclusion and availability of
features are decided at run time.

Depending on the inclusion and availability decisions of a
feature, it may have to be implemented in different ways. In
the next section, we present an aspect-oriented approach to
supporting flexible feature binding times.

III. ASPECT-ORIENTED DESIGN PATTERNS

The current AspectJ weaver provides explicit support for
compile-time and load time weaving. This implies that if we
implement variable features with aspects, we do not need to
change the aspects to support for either compile-time or load-
time feature binding. However, when we want to implement a
load-time binding feature that has to be included at compile-
time and becomes available at load-time, we have to change
the feature implementation to support the required feature
binding decisions. Moreover, if we consider run-time feature
binding, we may have to change the feature implementation
as well. This implies a feature with multiple binding times
may have to be implemented differently depending on which
binding time decisions are decided for a product.

In this section, we present aspect-oriented design patterns
for supporting flexible feature binding times.

A. Variable Inclusion Decisions

For feature binding to occur, the code implementing a
feature must be included in a product and integrated with the
other code for the product. Since the time at which a feature
is included in a product may vary for different products in a
product line, the variable inclusion times may require variable
feature implementations.

To support flexible binding times effectively, the code
implementing the decision on feature inclusion needs to be
separated from the code implementing the core functionality
of a feature. As shown in Fig. 2, CompileTimeBinding
is an aspectual implementation for integrating the module
(VFModule) implementing a variable feature with the module
(CFModule) in the scope of a product at compile time.

The pointcut variationPoint defines the join points in
CFModule at which VFModule is bound into a product.
The advice body in CompileTimeBinding defines actual
binding between CFModule and VFModule. If VFModule
and CompileTimeBinding are given to a AspectJ compiler
at compile time, the compiler produce a weaved product.

<<module>>

CFModule

method1()

pointcut variationPoint()
advice(): variationPoint() {

featureModule.method2();
}

<<module>>

VFModule

method2()

advices

CompileTimeBinding

<<aspect>>

VFModule featureModule =
new VFModule();

Fig. 2. Compile-Time Inclusion Pattern.

Note that AspectJ provides explicit support for load
time weaving. Therefore, we can integrate VFModule and
CompileTimeBinding with an existing product at load
time, simply by including them before program execution.

<<module>>

CFModule

method1()

pointcut variationPoint()
advice(): variationPoint() {

if (featureModule!= null)
featureModule.method2();

}

<<module>>

VFModule

method2()

advices RunTimeBinding

<<aspect>>

void include(VFModule a) {
featureModule = a;

}
void exclude(VFModule a) {..}

VFModule featureModule;

Fig. 3. Run-Time Inclusion Pattern.

Although AspectJ does not provide support for run time
weaving, we can implement the run time feature binding which
includes the implementation of a variable feature in a product
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at run-time. As shown in Fig. 3, RunTimeBinding allow
VFModule implementing a variable feature to be included in
a product scope and integrated with CFModule, which is an
implementation module in the product scope.
RunTimeBinding is similar to CompileTime-

Binding in that it specifies the join points used to integrate
CFModule and VFModule using pointcut definitions.
However, their integration is deferred until the actual instance
of VFModule is included in the product at run-time. A
external configurator has the responsibility for including the
instance using the include method based on the user’s
decision at run-time.

B. Deferring Availability Decisions

Although AspectJ weaver does not provide explicit support
for run-time weaving, we can support runtime feature binding
using AOP, in case inclusion is determined at compile-time
but availability is decided at load-time or run-time. That is,
availability of included aspects is decided by enabling or
disabling advices in the aspects.

<<module>>

CFModule

method1()

pointcut variationPoint()
advice():  variationPoint() && if(isAvailable){

featureModule.method2();
}

<<module>>

VFModule

method2()

advices CompileTimeInclusion

<<aspect>>

VFModule featureModule = new VFModule();
boolean isAvailable = false

<<aspect>>

LoadTimeAvailablity

LoadTimeAvailability() {
isAvailable =           
Configurator.isSelected(“vFeature”);

}

<<aspect>>

RunTimeAvailablity

void setAvailable(boolean on} {
isAvailable = on;

}

Fig. 4. Variable Availability Pattern.

Fig. 4 shows how to support the load-time or run-
time binding of a variable feature, which is included
at compile time but becomes available during load-time
or run-time. CompileTimeInclusionNotAvailable
is similar to CompileTimeBinding shown in Fig. 2
except that the boolean type variable isAvailable
is used to allow the availability decision to be de-
cided in its child aspects (LoadTimeAvailability and
RunTimeAvailability).
LoadTimeAvailability determines the value of

isAvailable when the aspect is created by consulting
with an external configuration, which has responsibility for

configuring a product after compilation. On the other hand,
RunTimeAvailability sets the variable isAvailable
to true using the method setAvailable. But the decision
is made by an external configurator at run-time.

With these patterns, we can clearly separate binding time
decisions from the code implementing the core functionality
of a feature. This enables us to select different choices among
multiple feature binding implementations when a feature has
multiple feature binding times.

IV. RELATED WORK

The concept of feature binding time was first introduced by
Kang et al. [3]. Gurp et al. [5] elaborated it more precisely
and provided a classification of many variability realization
techniques. A broad range of mechanisms exist to implement
different binding times, including the use of compiler direc-
tives, dynamic linking and loading, load tables, reflection,
plug-ins, configuration files, etc. However these solutions are
limited in that each supports only a specific binding time. They
cannot be used effectiely in a situation where the binding
time of a feature may vary depending on different product
requirements.

Dolstra et al. [2] introduced the notion on the variability of
feature binding time as timeline variability. However, they do
not provide concrete mechanisms for realizing flexible feature
binding time. They only suggested some future directions for
the solutions.

There have been several attempts to realize flexible feature
binding time. Hoek [6] proposed architecture-based approach
to support any-time variability. The Koala component model
[7] allows connection between components to be established
either at compile time or at run time through a switch.
Depending on the setting of a switch, the Koala compiler
generates C code for connecting components either at compile
time or at run time. Both of these approaches specify product
line variabilities at design time, but resove them at any time
thereafter. On the other hand, the approach presented in this
paper uses aspect-oriented design patterns using AOP.

Similar to our approach, Edicts [1] uses AOP for flexible
feature binding. However, it only supports run time feature
biding which includes a feature at compile time and makes it
available at run time. But our approach can add more flexibility
of feature binding time from different choices of inclusion and
avaiability decisions.

V. RESEARCH ISSUES AND CONCLUSIONS

In this paper, aspect-oriented patterns are introduced to
support flexible feature binding times. There are many issues
that have to be addressed before this approach becomes useful.
Some of these issues are summarized below:

• Method: We need methods for analyzing feature binding
time, developing a software product line applying the
patterns presented above, deriving a product based on a
feature configuration, which can be determined at either
compile-time, load-time, or run-time.
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• Feature model extension: Although there have been many
attempts to extend the original feature model [3], there
has been no attempt to model the variability of feature
binding time. Since the inclusion and availability deci-
sions for feature binding are affected by resources avail-
able during run time or development environments such
as programming languages or operating environments,
when we model variabilities of feature binding time, we
may take into account constraints or dependencies from
various sources (e.g., available resources). Also we may
have to consider finer classification of feature binding
times.

• Implementation mechanism: In this paper, we illustrated
the patterns using AspectJ. However, more advanced
mechanisms such as Prose [4], which supports run-time
weaving, can be used to support flexible feature binding
time. Which one among current available technologies or
mechanisms can be best utilized for achieving this goal?
We need to analyze pros and cons for each technology
or mechanism.

In this section, we have examined some of research issues
that have to be addressed. Although we are at an early stage
of research, most of research topics discussed above are being
addressed.
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