
Semantics of Links and Document Structure Discovery

John R. Punin
puninj@cs.rpi.edu

http://www.cs.rpi.edu/~ puninj
Department of Computer Science, RPI, Troy, NY

12180.

M. S. Krishnamoorthy

moorthy@cs.rpi.edu
http://www.cs.rpi.edu/~ moorthy

Department of Computer Science, RPI, Troy, NY
12180.

ABSTRACT

This paper presents a novel algorithm to discover the hier-
archical document structure by classifying the links between
the document pages. This link classi�cation adds metadata
to the links that can be expressed using Resource Descrip-
tion Framework Syntax [7]. Several well-known programs
automatically generate HTML web pages from di�erent doc-
ument formats such as LaTeX, Powerpoint, Word, etc. Our
interest is in the intertwined HTML web pages generated
by the LaTeX2HTML program [6]. We use the web robot of
the WWWPal System [11] to save the structure of the web
document in a webgraph. Then the web analyzer of the sys-
tem applies our algorithm to discover the semantics of the
links and infer the hierarchical structure of the document.

1. INTRODUCTION

The semantic information of a document is conveyed by
its logical structure. Suppose we are given a collection of
URL's of a web document, along with the up, previous, and
next links, and we are asked to determine the hierarchical
structure of the document. This task can easily be accom-
plished using some standard traversal of the web document.
However, if all the links in the web document are classi�ed
the same, the problem of �nding the document's hierarchical
structure is not trivial. Our hierarchical structure �nding
algorithm solves this nontrivial problem and discovers the
logical structure.
Several well-known programs automatically generate HTML

web pages from di�erent document formats such as LaTeX,
Powerpoint, Word, etc. Our interest is in the HTML web
pages generated by the LaTeX2HTML program [6]. Our al-
gorithm is also applicable to HTML documents produced by
Powerpoint.
This hierarchical discovery problem is related to �nding

a Hamiltonian path in a webgraph. Linearization result-
ing from following the next links from the starting web page
corresponds to a Hamiltonian path. Of course not all Hamil-
tonian paths are meaningful linearizations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission by the authors.
Semantic Web Workshop 2002 Hawaii, USA
Copyright by the authors.

In recent years, a number of software systems have been
developed for the analysis of web pages, such as Mapuc-
cino [8] [9], Microsoft Site Analyst [12] and WWWPal [11].
WWWPal is di�erent because it can handle large graphs
(called webgraphs), has a better display that uses cluster-
ing algorithms, and has a skeletal graph browser. One of
WWWPal's functions is to visualize the output XGMML
�le from the web robot into a graph that represents the
structure of the website. Several drawing algorithms have
been implemented to visualize webgraphs that produce nice
graph layouts. The graph visualization for web documents
generated using the LaTeX2HTML program is not able to
layout the hierarchical structure of the underlying web doc-
ument. See Figure 1. Our algorithm discovers the structure
by classifying the links and then using the semantics of the
links for discovering the hierarchical structure of the web
document.
In the following sections, we describe the problem state-

ment, our algorithm, examples and the report of link classi-
�cation using RDF.

2. PROBLEM STATEMENT AND ANALY

SIS

2.1 Common Characters in LaTeX2HTML
websites

After several LaTeX2HTML websites (web documents gen-
erated by the LaTeX2HTML program) are examined and
the XGMML �les are generated by a web robot, some in-
sights for the LaTeX2HTML websites are obtained. Most of
the LaTeX2HTML websites contain the following nodes/pages:

1. Table of Contents Node: Most of the LaTeX2HTML
documents have this node at the top, which we can
call the root. It lists all the sections the site covers
much like a book's table of contents.

2. Index Node: This node functions like the book's index
pages, one can go to this node and �nd the terminolo-
gies one is interested in. Then one can go directly to
the content related to the term through the link from
the Index Node.

3. Bibliography Node: This node contains the informa-
tion of the author or some related materials and links.

4. Start Page Node: This is not the same as the Table of
Contents Node, but it includes the same links as the
Table of Contents Node. It is the initial page of the
whole document.

3. ALGORITHMFORHIERARCHICALSTRUC

TURE DISCOVERY

Edges in a webgraph represent the links between web
pages. These links can have a type such as: start, next,
prev, chapter, etc. A group of these standard types has
been recommended for HTML 4.0 [10]. When a webgraph
has a hierarchical structure, we would like to visualize the
webgraph as a radial tree drawing so the hierarchical struc-
ture of the document can be clearly seen. For example, the
webgraph of Figure 1 and Figure 2 have the same structure.
We can see that the hierarchical structure of the webgraph
is not evident in Figure 1, but it is easily visible in Figure
2. The only di�erence between these two drawings is that
in Figure 1 the type of the edges are not considered for vi-
sualization, and in Figure 2 the links of type chapter and
section are visualized as tree edges. In Figure 2 we can no-
tice that node 5 is a chapter of Node 1, and nodes 16 to
20 are sections of node 5. We can also notice that each of
the children of node 1 have subtrees, and they are linked
together through next and prev links. Figure 3 shows how
the subtrees of node 1 are linked with the links of type next

and prev.
There are many webgraph instances where the type of the

links is missing. So we have to apply an algorithm to assign
a type to each link of the webgraph. In this subsection we
will explain a novel algorithm to classify the links of a web-
graph that represents the structure of a web document. Our
algorithm will only assign these four types of links: chapter,
section, next and prev The following rules assign types to
the edges of the webgraph:

� The children of the root node that also have a back
link are considered node chapters. Therefore the edges
from the root node to those children are classi�ed as
chapter edges.

� Our algorithm �nds the subtree of the chapter nodes.
The links between these subtrees are classi�ed as next

and prev links.

� Our algorithm orders these subtrees so there is a linear
order of all nodes of the webgraph. This linear order
can be considered the Hamiltonian path of the web-
graph. This order can be used, for example, to make
a linear print out of the web document.

� The subtrees of the webgraph are considered chapters

of the document and each of the chapters have sec-

tions. Hence the previous rules can be applied to these
chapters in order to �nd the subtree sections.

These rules will be applied until all edges are classi�ed so
the chapters and sections are fully resolved. For the purpose
of visualization the chapter and section edges are mapped to
tree edges and a radial tree drawing is applied (Figure 2).
The classi�cation of the edges (or links) algorithm has

two steps: �rst, the ordering of the children nodes of the
root tree, and second, the traversal of the tree by retrieving
the next node. The �rst task helps us to �nd the �rst child
node and �nd the chapter and section edges; the second task
linearizes the webgraph and �nds the next and prev edges.
The �rst task is implemented in the function get first child.

This function receives the root node (Start Page Node) of
the subtree and returns the �rst of its children nodes. We

Figure 1: Radial Tree Drawing of a Web Docu-
ment/webgraph

Figure 2: Typed Links Drawing of a Web Docu-
ment/webgraph

Figure 3: Subtrees of Node 1

Figure 4: Example of the Typed Links Drawing

Node Neighbor Count Count Neighbor

2 8 1 | |
8 2 3 12 1
12 17 1 8 2
17 12 2 22 1
22 17 4 | |

Table 1: Neighbor nodes of the children of the root
node and the counts

found that if we apply Breadth First Search (BFS) starting
at any of the children nodes of the root node, the next child
node is visited at most one time and the previous node is vis-
ited at least one time. For example, in Figure 4, the children
of the root node 1 are nodes 2, 8, 12, 17 and 22. If we apply
BFS starting in child node 12, node 8 is visited two times
and node 17 is visited once. We can conclude that node 8 is
the previous node and node 17 is the next node of node 12.
With this information a table is constructed (Table 1) with
the number of times that BFS visited the next and previous
nodes. Using this table we can conclude what neighbors are
previous and next to each children node of the root node 1.
Previous nodes are the ones whose counts are greater than
one and next nodes are the ones whose counts are exactly
one. Table 2 shows the next and previous node for the chil-
dren of the root node 1 (Figure 4). We can easily see that
the �rst child of node 1 is node 2. Notice that the �rst node
2 does not have a previous node. However, we have to verify
that there is a linear ordering between all the children of the
root node 1 to conclude that node 2 is indeed the �rst node.
If a �rst node is not found, the function get first child
returns a null node and a failure error code.
The algorithm of the second step uses the get first child

function to retrieve the �rst node of the current visited node.
If �rst node is not found, it means that the current node is
a leaf node. Hence, the next node is the neighbor node that
has not been visited yet. This algorithm produces a linear

Node Previous Next

2 | 8
8 2 12
12 8 17
17 12 22
22 17 |

Table 2: Table of previous and next nodes for the
children of the root node

// Linear traversal of the webgraph
int linear traversal(PNODE root)
f
int error = 0;
PNODE next = root;
// chapter edges
classify chapter edges(root);
// Linear traversal
while(next &&error) f
next = get next vertex(next, &error);
g
return error;
g
// Get next node in linear traversal
PNODE get next vertex(PNODE v, int *error)
f
PNODE next;
mark(v);
// get �rst child of children nodes
next = get �rst child(v, error);
// section edges
if(next &&*error)
classify section edges(v);
// leaf nodes
if(!next &&*error) f
next = get unmarked neighbor(v,error);
// next and previous edges
if(next &&*error)
classify next prev edges(v,next);
g
return next;
g

Table 3: Algorithm for classi�cation of the edges of
a webgraph

ordering of the nodes of the webgraph. The edges between
the current node and the not-visited neighbors are classi�ed
as next and prev edges. The edges between the current node
and its children are classi�ed as chapter and section edges.
Table 3 shows the algorithm of the second step of the web-
graph traversal. Once all edges of the webgraph have been
assigned a type, the chapter and section nodes are mapped
to tree edges (black color), the next edges are mapped to for-
ward edges (magenta color), and the prev edges are mapped
to backward edges (green color). Afterwards, a tree or ra-
dial tree drawing can be applied to visualize the hierarchical
structure the webgraph. (Figures 2 and 4).
Our algorithm fails when all the counts of the table of

neighbor nodes (Table 1) are one since we will not be able
to construct the table of previous and next nodes (Table 2).
Without that table we cannot conclude which node is the
�rst node. For example, Figure 5 shows a simple hierarchical
webgraph where we cannot infer what node is the �rst node;
it is either node 2 or 8. When we construct the table of
neighbor nodes all counts are one as shown in Table 4.
Our algorithm is of linear time complexity as each node

gets visited a constant number of times.

4. REPORTOFLINKCLASSIFICATIONUS

ING RDF

Figure 5: An example of a Web Document/webraph
where the Algorithm fails.

Node Neighbor Count Count Neighbor

2 3 1 | |
3 4 1 2 1
4 3 1 5 1
5 4 1 6 1
6 5 1 7 1
7 8 1 6 1
8 7 1 | |

Table 4: Neighbor nodes of the children of the root
node and the counts - All being equal to 1 makes
the algorithm fail

The algorithm described in the previous section attaches
semantics to the links and hence the web pages. One may
question the usefulness of the algorithm if the semantics of
hyperlinks, such as up, next and prev is known apriori. We
envisage that explicitly specifying the links in a common
semantic vocabulary will be useful to both the users and
the agents.
As an example, the RDF description for node 9
(http://cbl.leeds.ac.uk/ nikos/doc/www94/subsection3 4 1.html)
of the webgraph of the Figure 3 is as follows:

<rdf:RDF xmlns:rdf=''http://www.w3.org/1999/02/22-rdf-syntax-ns#''
xmlns:rs=''http://purl.org/net/rdf/papers/sitemap#''
xmlns:dc=''http://purl.org/dc/elements/1.1/''>

<rdf:Description rdf:about=''http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html''>
<dc:title>Common Objections to Automatic Conversion</dc:title>
<rs:prev rdf:resource=''http://cbl.leeds.ac.uk/~nikos/doc/www94/section3_4.html''/>
<rs:next rdf:resource=''http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_1.html''/>
<rs:section rdf:resource=''http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_1.html''/>
<rs:section rdf:resource=''http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_2.html''/>
<rs:section rdf:resource=''http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_3.html''/>
<rs:section rdf:resource=''http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_4.html''/>
<rs:section rdf:resource=''http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_5.html''/>
<rs:section rdf:resource=''http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_6.html''/>
<rs:contents rdf:resource =''http://cbl.leeds.ac.uk/~nikos/doc/www94/tableofcontents3_1.html''/>

</rdf:Description>
</rdf:RDF>

The RDF triples in N-triples format [2] are:

<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html>
<http://purl.org/dc/elements/1.1/title>
"Common Objections to Automatic Conversion" .
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html>
<http://purl.org/net/rdf/papers/sitemap#prev>
<http://cbl.leeds.ac.uk/~nikos/doc/www94/section3_4.html> .
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html>
<http://purl.org/net/rdf/papers/sitemap#next>
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_1.html> .
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html>
<http://purl.org/net/rdf/papers/sitemap#section>
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_1.html> .
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html>
<http://purl.org/net/rdf/papers/sitemap#section>
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_2.html> .
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html>
<http://purl.org/net/rdf/papers/sitemap#section>
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_3.html> .
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html>
<http://purl.org/net/rdf/papers/sitemap#section>
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_4.html> .
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html>
<http://purl.org/net/rdf/papers/sitemap#section>
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_5.html> .
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html>
<http://purl.org/net/rdf/papers/sitemap#section>
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsubsection3_4_1_6.html> .
<http://cbl.leeds.ac.uk/~nikos/doc/www94/subsection3_4_1.html>
<http://purl.org/net/rdf/papers/sitemap#contents>
<http://cbl.leeds.ac.uk/~nikos/doc/www94/tableofcontents3_1.html> .

Notice that we use the Dublin core [DC] and the RDF Sitemap vocabulary [RS].

5. EXAMPLE

We illustrate the output of our algorithm on a webgraph,
obtained from visiting the LaTeX2HTML website \State of
the Art Review on Hypermedia Issues And Applications" at
http://cbl.leeds.ac.uk/nikos/tmp/hypemedia/hypemedia.html.

Figure 6 shows the radial tree drawing of the web docu-
ment, and Figure 7 shows the hierarchical drawing of the
same web document, where the chapter nodes and section

nodes can be observed.

6. CONCLUSION

This paper is yet another important contribution to the
Semantic Web [1][7][3][4] as we provide semantic classi�ca-
tion of links and the web pages of a LaTeX2HTML website.
This paper also provides a visualization tool based on our
algorithm. This visualization not only draws a pretty graph,
but also semantic content is imparted. Our algorithm can
be extended for other types of documents.
Printing a web document, consisting of a number of web

pages, is a laborious task [1], as each of the web pages has to
be traversed in a linear order. This linearization is obtained
automatically from the hierarchical structure order discov-
ered by our algorithm. WWWPal uses this linearization to
simplify the printing of web documents.

7. REFERENCES
[1] T. Berners-Lee, Semantic Web Area for Play: Closed

World Machine.
http://www.w3.org/2000/10/swap/Overview.html,
February 2001.

[2] T. Berners-Lee, Notation 3.
http://www.w3.org/DesignIssues/Notation3.html,
April 2001.

[3] D. Brickley, RDF sitemaps and Dublin Core site
summaries,
http://purl.org/net/rdf/papers/sitemap/02),
June 1999.

[4] D. Brickley, Biz/ed RDF Metadata Testbed,
http://ilrt.org/discovery/2000/08/bized-meta,
July 2001.

[5] O. De Troyer and T. Decruyenaere, \Conceptual
Modelling of Web Sites for End Users," WWW
Journal, Vol.3 , Issue 1, Baltzer Science Publishers,
2000.

[6] N. Drakos, \From text to hypertext: A post-hoc
rationalisation of LaTeX2HTML," In Proceedings of
the First World Wide Web Conference, Geneva,
Switzerland, 1991.

[7] O. Lassila and R. Swick, W3C, Resource Description
Framework (RDF) Model and Syntax Speci�cation.
http://wwww.w3.org/TR/REC-rdf-syntax, 1999.

[8] Mapuccino http://www.ibm.com/java/mapuccino/

[9] Y. Maarek and I. Shaul, \WebCutter: A System for
Dynamic and TailorableSite Mapping," In Proceedings
of WWW 6 Conference, Santa Clara, USA, 1997.

[10] D. Raggett et al, HTML 4.01 Speci�cation,
http://www.w3.org/TR/html401/ , 1999.

[11] J. Punin and M. Krishnamoorthy, \WWWPal System
- A System for Analysis and Synthesis of Web Pages",
In Proceedings of the WebNet 98 Conference,
Orlando, November, 1988.

[12] M. Tabini et al, Professional Site Server 3.0, Wrox
Press Inc, July 1999.

Figure 6: Radial Tree Drawing of a Web Document

Figure 7: Hierarchical Tree Drawing of a Web Document

