
Remote Sensing Service chain Self-Evolution Method

Haifeng Li
Supervised by Qing Zhu

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote

Sensing, Wuhan University

430079 Wuhan, China

hfli6135@lmars.whu.edu.cn

Abstract. In order to facilitate continuous and quick adaptation to the change of

environment and use requirement, this paper presents a self-evolution method

for the remote sensing information service chain to keep effective and robust of

service chain with lesser modification, and to maximize all users’ utilization

under concurrent user requirements. According to the driver forces of service

chain change, we partition self-evolution method into three levels: (1) a fuzzy

semantic based relatedness analysis and min-conflict heuristic based service

chain reconfigure methods to adapt to user requirement change; (2) a sensitivity

analysis and robust optimization based method to keep maximum stability of

service chain in dynamic environment; (3) a non-cooperative game approach

for multi-service chain cooperation optimization under concurrent tasks

concurrent condition.

1 Introduction

As satellites of Earth Observing System (EOS) currently beam down several hundred

terabytes annually, the inconsistent between powerful data instruments and

incompetent data process become ever more standing, which are making this field

“data-rich but analysis-poor” [1]. The key reason lead to this is not that we lack of

applications to handle with these data, but mechanisms how to aggregate the

applications which distributing in internet extensively (hence be looked as remote

sensing services) together and cooperate them to satisfied the need of the data analysis.

This is so-called remote sensing service chain[2] through service composition.

Compared with generic Web service composition, remote sensing services have some

typical features as follows:

Complex in user requirements, for examples: real-time monitor for forestry fire,

coast, and flood; concurrent in user requirements, for instance, in Sichuan Wenchuan

Earthquake, we must evaluate earthquake damage and monitor coast, landslides, and

barrier lakes at the same time.

Rich in data dimensions. Data in remote sense with dimensions of spatiality,

temporal, image resolution, sensor type, and image spectrum, makes it harder to be

descript and more complicated in processing flow. What’s more, mass remote sensing

images make the service chain more sensitivity to response time.

Complicated in remote sensing processing. Remote sensing service composition

has been constrained by more strict process semantic; Computation-intensive feather

in remote sensing also make remote sensing processing more time consumed.

So, remote sensing service chain should be flexible enough to effectively adapt to

fast change of use requirements and environment, through frequently refine their

structure. The existent methods to generate services have some disadvantages as

following:

Lack of mechanism to adapt user requirements change via local reconfigure at

function level which are known as abstract services[3]. The state-of-art service

composition approaches[4] are facing more and more serious bottlenecks of

effectiveness and stability, since new service chain must be generated from “scratch”

for each requirement. Those methods are also known as “first principle”. Distinguish

with it, another way is how to make use of relativity between remote sense service

chains and reuse knowledge about similar, already solved problems successfully. This

methods are always known as “second principle”[5], which aim to make service chain

generate more effectively and execute more stably. Although there are some

researches generate service chain by case based reasoning[6, 7], but they all do not

take into account strict process constraints in remote sense. What’s more how to

measure similarity between cases accurately and to refine service chain effectively are

still open questions.

Lack of robust adapting to dynamic environment at capability level known as

concrete services[3] which usually modeled as QoS constraint based optimization.

The service chains are more sensitivity to services and transport network performance,

because data-intensive and computing-intensive are essential features in remote

sensing. A small perturbation in QoS dimension of services and transport network

will make former optimization solution becomes infeasible. There are many

researches dynamic modify service chain through runtime monitor and re-planning

technology[8]. But, because of high dynamic and uncertain of services and transport

network in nature, the dynamic modification may be too frequency, and lead to

unstable and decrease of performance of service chain. Therefore, we still are short of

quantization model to estimate the influence of QoS perturbation on service chain.

The mechanism how to keep service chain robust in dynamic and uncertain

environment is unclean.

Lack of optimal mechanisms to deal with concurrent user requirements. The

existing optimal composition approaches search optimization solution[9] under QoS

constraints (such as response time, cost, stability and available) via “selfish” way. Yet,

these methods only take single used requirements into account, not adapt to

applications like remote sensing emergency and disaster response where concurrent

task happened frequently. Concurrent tasks competing optimal services lead to

conflict problem and decreased performance of all service chains, which are known as

“tragedy of the commons”. A key problem here is how to reduce the conflict cause by

concurrency tasks to make all service chain reach optimization at the same time.

In conclusion, in the face of high dynamic environment and user requirements, and

high concurrent of user requirements, the challenge of remote sensing service chain

generation is: how service chains adapt to user requirements and environment to keep

effective and robust of service chain with lesser modification and how to implement

multiple service chain cooperation optimization under concurrent tasks to maximize

all user’s utilization. Hence, we put forward a novel self-evolution method to solve it.

2 Remote Sensing Service chain Self-Evolution Method

The basic conception behind remote sensing service chain self-evolution method is: it

is a self-adaptive behavior responding to exterior dynamics factors, through frequent

revise structure, function and capability of service chain, with completeness,

minimization and consistency.

Exterior factors dynamics refer to user requirements, services runtime environment

which including service temporarily disabled, modification of services QoS and

network QoS, and so on.

Completeness, refer to if it is feasible to change from current service chain to

others, then, we always can find the post-evolution service chain.

Minimization, refer to achieve the evolution process with minimum service chain

changing. The minimization has two means here: maximum reuse existent service

chain and least revision that establish the upper and lower limits of the sensitivity

interval and find a robust solution with lesser sensitivity to dynamic environment.

Consistency, include function consistency and capability consistency, i.e. evolution

process must satisfied constraints such as function constraints and QoS constraints.

We first analyze driving forces of service chain evolution to understand which

factors make it change.

2.1 Driving Forces of Service chain Evolution

We classify driving forces into two categories: user which provides information

requirements and preference, and runtime environment of services, shown as fig. 1.

Fig. 1. Driving forces of service chain evolution

The driving forces of user are decomposed into information requirements which

describe function demands and preference which describe non-function demands. The

former associate with abstract and the latter associate with concretion service chain[3].

The information requirements describe the function about use demand. A typical

requirement can be described as following:”2008-8-8 Beijing Olympic Country 1m

geospatial resolution panchromatic IKONOS image”. Another requirement changes

to:”2008-8-8 Beijing Olympic Country 0.5m geospatial resolution panchromatic

image”. Now, the abstract service chain must be modified.

The preference describes the non-function about user demand. The preference can

also divide into QoS preference and QoS constraint. The former describes how

important QoS dimension means to user, the latter describes anticipant upper or lower

limit of QoS dimension. A typical preference can be described as following:”response

time less than ten minutes and weight equal to 0.5, cost less than 100 dollars and

weight equal to 0.3, successful execution rate more than 80% and weight equal to 0.3”.

The non-function here mainly refer to QoS dimensions such as five dimensions model

presented by[9]. The concrete service chain should modify with preference changing.

Runtime environment of services include network QoS (the response time is

computed by the sum of the processing time and the transmission time) and services

QoS such as the response time of service change from 20 minutes to 30 minutes. The

alterations of them make performance (object function in optimization) of concretion

service chain fluctuate frequently and irregularly.

What’s more, concurrent tasks will lead to value of network and services QoS

change more severity because of “completion of best resource”.

2.2 Service chain Self-Evolution Method

We reduce self-evolution method to two levels and three hierarchies according to the

driving forces motioned above, shown as table 1. The proposed research methods

consist of three aspects as follows, also shown as fig. 2:

Table 1. The basic idea of service chain evolution.

Service chain level Question Basic idea

Single service

chain

How to adapt user

requirement changing

Choosing a most similarity service chain by

user requirements relatedness analysis, and

fast reconfiguring by local revising based on

reuse knowledge about similarity, already

solved problems successfully.

How to keep service

chain robust in dynamic

and uncertain

environment

Analysis the influence of QoS perturbation

including QoS preference, QoS constraints,

and services QoS on service chain; set up a

robust optimization model to keep service

composition optimal solution more stability.

Multi-service

chain

How to make all service

chain reach optimization

at the same time in

concurrent situation.

Modeling competition relationship between

tasks by non-cooperative game, which assures

maximizing all tasks’ utilization under multi-

task conflict condition.

http://www.google.com/search?hl=en&client=firefox-a&rls=org.mozilla:en-US:official&newwindow=1&ei=hjOUSvLVBoSA7QPHn43xAg&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=hierarchy&spell=1

Fig. 2. Architecture of service chain self-evolution method

(1) Adapt to user requirement

We model remote sense requirements as and/or graph. To estimate relativity

between two requirements, we proposal fuzzy semantic distance based method on

node level, and Hausdorff distance based method on graph level.

After relatedness analyses, we accomplish service chain explanation by

quantitative analysis the influence domain of each service. Finally a min-conflict

heuristic based regression algorithm is presented to search a minimal influence

domain solution to achieve service chain reconfigure, and prove be A*.

(2) Robust optimization in dynamic environment

We quantitative analysis the influence of QoS perturbation on service chain

performance via mix integer linear programming model. Based on this, we cast QoS

preference, QoS constraints, and QoS of services and network to profit parameters,

left-hand side and left-hand side of constraints, respectively, and establish the upper

and lower limits of the sensitivity interval through sensitivity analysis.

Then, we set up robust optimization model via minimax criterion[10] and

decompose service chain to three execution stage (executed, executing, un executed) .

Based on this, we decrease service chain sensitivity to dynamic environment and

reduce re-planning frequency by finding robust optimization solution.

(3) Concurrent tasks optimization

A non-cooperative game based mathematics model is proposed to analysis

competition relationship between tasks through best reply function, which is defined

to quantize conflict between tasks to assure each task finds optimal composition

strategy adapting to other tasks’. Based on this, we present an iteration algorithm

converging to Nash equilibrium, which maximizing all task’s utilization under multi-

task conflict condition.

3 Conclusion

Remote sensing service chain self-evolution method is a self-adaptive behavior to

exterior factors dynamics, through frequent revise structure, function and capability of

its. We have done some experiments on user requirements change and tasks

concurrent scenarios and our methods show good performance in former and good

convergence and better practice utility of all tasks in latter.

Next step, we will focus on our sensitivity analysis and robust optimization based

method to test capability of keeping service chain stability in dynamic environment.

References

1. Clery, D. and Voss, D.: All for one and one for all. Science, 308(6):757, (2005)

2. Alameh, N.: Chaining geographic information Web services. IEEE Internet Computing,

7(5):22-29, (2003)

3. Canfora, G., Penta, M.D., Esposito, R. and Villani, M.L.: A framework for QoS-aware

binding and re-binding of composite web services J. Syst. Softw., 81(10):1754-1769, (2008)

4. Sirin, E., Parsia, B., Wu, D., Hendler, J. and Nau, D.: HTN Planning for Web Service

Composition Using SHOP2. In Proc. Proceedings of 2nd International Semantic Web

Conference(ISWC'03). pp. 20-23. Springer, Sanibel Island, Florida, USA (2003)

5. Koehler, J.: Planning from second principles. Artificial Intelligence, 87(1-2):145-186, (1996)

6. Klusch, M. and Renner, K.-U.: Fast Dynamic Re-Planning of Composite OWL-S Services.

In Proc. Proceedings of the 4th IEEE European Conference on Web Services (ECOWS 2006)

pp. 134-137. IEEE CS Press, Zurich, Switzerland (2006)

7. Recio-García, J.A., Diaz-Agudo, B. and González-Calero, P.A.: A Distributed CBR

Framework through Semantic Web Services. In: Bramer, M., Coenen, F.andAllen, T. (eds.):

In Proc. Proceedings of the Twenty-fith SGAI International Conference on Innovative

Techniques and Applications of Artificial Intelligence, AI 2005. pp. 88-101. Springer (2005)

8. Canfora, G., Penta, M.D., Esposito, R. and Villani, M.L.: QoS-Aware Replanning of

Composite Web Services. In Proc. Proceedings of the IEEE International Conference on

Web Services (ICWS'05). pp. 121-129. IEEE Computer Society (2005)

9. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J. and Chang, H.: QoS-

Aware Middleware for Web Services Composition. IEEE Transactions on Software

Engineering, 30(5):311-327, (2004)

10. Beyer, H.-G. and Sendhoff, B.: Robust optimization – A comprehensive survey. Comput.

Meth. Appl. Mech. Eng., 196(33-34): 3190-3218, (2007)

